

First‑principles calculations on the frst row transition metals‑substituted TMC6N7 clusters

Zhi Li1 · Zhen Zhao[2](http://orcid.org/0000-0002-3813-6654) · Tao‑tao Shao1

Received: 31 January 2020 / Accepted: 23 March 2020 / Published online: 2 April 2020 © Springer Nature B.V. 2020

Abstract

The confgurations, stabilities, electronic, and magnetic attributes of the frst row transition metal (TM)-substituted $TMC₆N₇$ clusters have been investigated at the PBE level. The results display that the frst row TM atoms are inclined to replace the N atom which approaches the N atom out of the C–N rings except for Cu and Zn. As for the CuC₆N₇ and ZnC₆N₇ clusters, the N atom out of the C-N rings is inclined to be substituted. The ScC₆N₇(GS), TiC₆N₇(GS), VC₆N₇(GS), CoC₆N₇(GS), $TiC_6N_7(a)$, and $CoC_6N_7(a)$ clusters display more structurally stabilities than the pristine C_6N_8 clusters. The ground-state 3d TMC $_6N_7$ clusters exhibit more dynamic stabilities than the pristine C_6N_8 clusters except for Zn. Partial of 4*s* orbital electrons of TM atoms is transferred to the neighbor C atoms. The V, Cr, Mn, and Fe atoms of the ground-state TMC_6N_7 clusters display the opposite spin to Co and Ni atoms of the ground-state TMC_6N_7 clusters.

Keywords C_6N_8 clusters \cdot First-principles \cdot Electronic properties \cdot Magnetic properties

Introduction

Graphite carbon nitride (g-C₃N₄) has been regarded as an excellent carbon carrier of catalyst [[1\]](#page-9-0). It has the advantages of low cost, simple synthesis, thermal and chemical stabilities, biocompatibility, and non-toxicity, etc. $[2-5]$ $[2-5]$. However, the photocatalytic efficiency of pristine $g - C_3N_4$ is limited by the intrinsic lack of lightabsorbance, charge mobility, and recombination rate of electron–hole pairs [\[6](#page-9-3)]. To solve these problems, doping has been widely adopted to modulate the electronic

 \boxtimes Zhi Li lizhi81723700@163.com

School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China

² School of Chemistry and Life Science, Anshan Normal University, Anshan 114007, People's Republic of China

configurations of $g - C_3 N_4$ to improve conductivity, optics, magnetism, etc. [\[7](#page-9-4)]. That is, doping reduces electronic transition energy and provides a 'bridge' for lower energy photo-generated electrons [\[3](#page-9-5)]. Various non-metals and metals have been considered to modify the intrinsic characteristics and obtain novel properties of layered $g - C_3 N_4$ [\[8](#page-9-6)]. g-C₃N₄, with rich pyridine-like nitrogen, prefers to trap TM atoms to the hexagonal rings of g-C₃N₄ [[1,](#page-9-0) [3](#page-9-5)]. At present, a large number of studies have been performed on frst row TM (i.e., Ti [[9\]](#page-9-7), V [[10\]](#page-9-8), Cr [[4\]](#page-9-9), Mn [\[1](#page-9-0), [8,](#page-9-6) [11\]](#page-9-10), Fe [[1,](#page-9-0) [7,](#page-9-4) [11](#page-9-10)[–18](#page-9-11)], Co [\[1](#page-9-0), [11](#page-9-10), [14](#page-9-12), [16,](#page-9-13) [19\]](#page-9-14), Ni [\[20](#page-9-15)], Cu [\[11](#page-9-10), [12](#page-9-16), [16](#page-9-13), [21,](#page-9-17) [22\]](#page-9-18), and Zn [\[11](#page-9-10), [17,](#page-9-19) [23\]](#page-9-20)) doping on the $g - C_3N_4$ sheet. The strong hybridization between 3*d* orbitals of TM atoms and the p_{π} orbitals of g-C₃N₄ not only can improve the photocatalytic properties but also can induce spin polarization $[1, 3, 8]$ $[1, 3, 8]$ $[1, 3, 8]$ $[1, 3, 8]$ $[1, 3, 8]$. Given the complexity of the reaction process, we have calculated the 3*d* TM-substituted TMC₅N₈ clusters [[24\]](#page-9-21). However, the difference in the radius of C (0.86 nm) and N (0.80 nm) atoms is so small [[3\]](#page-9-5). The precise recognition of the effective active sites has not been explored [\[25](#page-9-22)]. gh-C₃N₄ is more stable than gt-C₃N₄ [\[8](#page-9-6)], and the structural unit of g-C₃N₄ is ordered tri-s-triazine (C_6N_7) which is planar and aromatic [[26\]](#page-9-23). C_6N_7 can provide many binding sites that interact with metals or other pollutants [\[18](#page-9-11)].

 C_3N_4 exhibits versatile electronic and magnetic properties which originate from the holey geometrical character $[27, 28]$ $[27, 28]$ $[27, 28]$ $[27, 28]$. In this study, the configurations, stabilities, electronic, and magnetic properties of the $TMC₆N₇$ clusters are investigated by using density functional theory (DFT). It is very important to understand the evolution mechanisms of $gh - C_3N_4$ -based materials. It is also helpful to control defects and design novel properties of C_3N_4 -based materials [\[28\]](#page-9-25).

Computational details

The pristine C_6N_8 clusters are extracted by gh-C₃N₄ in Ref. [\[8](#page-9-6)]. A TM atom is adopted to substitute a N atom of the pristine C_6N_8 clusters in order to design the $TMC₆N₇$ clusters, respectively. The optimization and property calculations have been performed by DFT which are implemented in the DMol³ package. The Perdew–Burke–Ernzerhof (PBE) functional (including a semi-empirical van der Waals (vdW) correction) within the generalized gradient approximation (GGA) is adopted for the exchange–correlation [\[26](#page-9-23), [29\]](#page-9-26). Because of strong electronic coupling of TM atoms of the TMC $_6N_7$ clusters [\[30](#page-9-27)], the approximate semi-classical dispersion correction scheme DFT + D must be selected $[31, 32]$ $[31, 32]$ $[31, 32]$ $[31, 32]$. In order to avoid omitting certain configurations of the TMC $_6N_7$ clusters, symmetry unconstraints is adopted [\[33](#page-9-30), [34\]](#page-9-31). Considering the electron relativity efects of the TM atoms, all electron relativistic treatment is selected [[35\]](#page-9-32). Spin polarized is selected as a result of certain TM atoms exhibit high spins [[34\]](#page-9-31). Double numerical plus polarization (DNP) is used [\[32](#page-9-29), [36\]](#page-9-33). Furthermore, the Mülliken population analysis is executed to obtain the net charges and spin properties of the TMC_6N_7 clusters [\[34](#page-9-31)].

The average binding energy (E_b) of the TMC₆N₇ clusters was calculated to determine the structural stability [[34](#page-9-31)]:

$$
E_b = [E(TM) + 6E(C) + 7E(N) - E(TMC_6N_7)]/14
$$
\n(1)

where $E(TM)$, $E(C)$, and $E(N)$ present the total energies of isolated TM, C, and N atoms, respectively. $E(\text{TMC}_6\text{N}_7)$ is the total energy of the TMC_6N_7 clusters.

In order to determine the accuracy of the PBE functional selected, the calculated distance (6.840 Å) between two nitride pores is compared with the corresponding experimental value (6.81 Å) [[37\]](#page-9-34). And the calculated lattice constant (7.138 Å) of gh-C₃N₄ agree well with the other computational results (7.13 Å [\[38](#page-9-35)] and 7.14 Å [\[39](#page-9-36)]) and the experimental value (7.13 \AA [\[40](#page-9-37)]). As for the TM atom doping, it has been confrmed in our previous work [[35\]](#page-9-32). Consequently, the PBE functional is selected to investigate the $TMC₆N₇$ clusters.

Results and discussion

Confgurations

The optimized configurations of the $TMC₆N₇$ clusters have been displayed in Fig. [1.](#page-2-0) The gray balls present C atoms, the blue balls present N atoms, and other balls present TM atoms, respectively. Owing to the radius of TM atoms is larger generally than the substituted N atoms. It leads to the symmetry of the pristine C_6N_8 clusters is degraded to C_{[1](#page-2-0)}. The unplanar structures of the TMC₆N₇ clusters in Fig. 1 are labeled a star (*). As for these unplanar $TMC₆N₇$ clusters, the pseudo-Jahn–Teller distortion due to the electronic coupling of TM atoms leads to the planar C_6N_8 clusters is transformed into the characteristic buckling [\[41](#page-9-38)]. And TM atoms will advance the transformation from the quasi-planar confgurations to three-dimensional structures [\[42](#page-9-39)]. As for the planar

Fig. 1 Configurations of the TMC_6N_7 clusters

 $TMC₆N₇$ clusters which have not yield any significant distortion, it suggests that the interaction between them is weaker [\[43](#page-9-40)]. 3*d* atoms are inclined to replace the N atom which approaches the N atom out of the C–N rings except for Cu and Zn. As for the $CuC₆N₇$ and $ZnC₆N₇$ clusters, the N atom out of the C–N rings is inclined to be substituted. It derives from the polarization of Cu^+ ion and Zn^{2+} ion is stronger than that of other 3d TM atoms according to electron confgurations, which leads to the prominent polarization between them and the C_6N_7 fragments, and the corresponding chemical bonds transition from ionic bonds to covalent bonds. The isomers (d) which the N atoms in the centre of C–N rings substituted except for $ZnC_6N_7(d)$ are the most unstable structures. It originates from a larger efective decay radius of Zn which indicates a more intense localization of impurity states [\[43](#page-9-40)]. Wang et al. [\[2\]](#page-9-1) have observed the pore size of the Zn-doped C_3N_4 sheet expands by the BET analysis. The $ZnC_6N_7(b)$ clusters become a typical. Even it is more exaggerating than the $ZnC_5N_8(c)$ clusters [\[24](#page-9-21)]. And Yue et al. [\[23](#page-9-20)] have confrmed that Zn doping partly damages the structure of g-C₃N₄. Nevertheless, cross-link effect of Zn between the interlayers of g-C₃N₄ sheet is helpful to obstruct the exfoliation of $g - C_3N_4$ [[2\]](#page-9-1). However, Zn doping will create active sites on the surface of $g - C_3N_4$ for reducing protons into H₂ [[44\]](#page-9-41).

Stabilities

The average binding energies E_b of the TMC₆N₇ clusters have been displayed in Fig. [2](#page-3-0). The frst row TM symbols are listed to expound the abscissa of Figs. [2,](#page-3-0) [3,](#page-4-0) [4](#page-4-1), [5.](#page-4-2) The negative value of the binding energy presents a stable doping system [[3\]](#page-9-5). $ScC_6N_7(GS)$, TiC₆N₇(GS), VC₆N₇(GS), CoC₆N₇(GS), TiC₆N₇(a), and CoC₆N₇(a) actually improve the structural stabilities of the C_6N_8 clusters. As for other 3*d* TM atoms, they prefer to segregate and then aggregate the TM clusters [\[26](#page-9-23)]. In our previous work, only $ScC_5N_8(GS)$, TiC₅N₈(GS), and VC₅N₈(GS) can increase the structural stabilities of the pristine C_6N_8 clusters [[24\]](#page-9-21). Xiong et al. [\[45](#page-9-42)] have confirmed Ti doping can improve the thermodynamic stabilities of the CN_{x} coatings.

Fig. 2 Average binding energies of the TMC_6N_7 clusters

Fig. 3 HOMO–LUMO gaps of the $TMC₆N₇$ clusters

Fig. 4 Net charges of the TM atoms in the $TMC₆N₇$ clusters

Fig. 5 Spins of the TM atoms in the $TMC₆N₇$ clusters

The energy gaps between the highest occupied molecular orbital (HOMO) states and the lowest unoccupied molecular orbital (LUMO) states of the $TMC₆N₇$ clusters have been plotted in Fig. [3](#page-3-0). Although the calculated HOMO–LUMO gap (0.694 eV) of the pristine C_6N_8 clusters is significantly narrower than the experimental value (2.7 eV) of C_3N_4 [\[4\]](#page-9-9), it seems to be confirmed by that (1.24 eV) of monolayer CN [\[38](#page-9-35)] and that (1.22 eV) of two-dimensional C_6N_8 [[28](#page-9-25)], and that (1.040 eV) of the sole g-C₃N₄ [\[29\]](#page-9-26). The HOMO–LUMO gaps of the ground-state $TMC₆N₇$ clusters as an example, the TM substituting can improve the dynamic stabilities of the pristine C_6N_8 clusters except for

Zn. It is significantly different from those of the $TMC₅N₈$ clusters [\[24\]](#page-9-21). It originates from the hybridization between *d* orbitals of the TM atoms and *p* orbitals of the neighbor C atoms in the TMC₆N₇ clusters which is less than that between d -*p* orbitals of TM and N atoms of the TMC₅N₈ clusters [[24](#page-9-21), [26](#page-9-23)]. The metallic properties of Zn at the top site of the ZnC_6N_7 clusters are better kept because of Zn atoms exhibit the all paired $3d^{10}$ orbital systems [[26](#page-9-23)]. The metal-like electronic density of states of Zn will increase the non-adiabatic instability of the pristine C_6N_8 clusters [\[46\]](#page-9-43).

To expound the influence of TM atom substituted the pristine C_6N_8 clusters, the HOMO and LUMO states of the ground-state $TMC₆N₇$ clusters have been displayed in Table [1](#page-5-0). The blue regions prefer to trap electrons, and the yellow regions prefer to

Cluster	\circ HOMO	\mathbf{v} $\overline{1}$ LUMO
$\rm ScC_6N_7$		
$\rm{TiC_6N_7}$		
$\rm VC_6N_7$		
$\rm CrC_6N_7$		
$\rm Mn C_6 N_7$		
$\rm Fe C_6 N_7$		
CoC_6N_7		
$\mathrm{NiC_6N_{7}}$		
$\mathrm{CuC_6N_7}$		
$\rm ZnC_6N_7$		

Table 1 HOMO and LUMO orbitals of the ground-state TMC_6N_7 **clusters**

release electrons [[47\]](#page-9-44). The total charge density displays a high charge density around the TM atoms [\[47](#page-9-44), [48\]](#page-10-0), projecting to the C-TM bonds, indicating charge transfer from TM to C atoms. The degree of charge redistribution is mainly proportional to the interaction strength [\[48](#page-10-0)]. As for the ground-state $TMC₆N₇$ clusters except for the ZnC_6N_7 clusters, the HOMO and LUMO states display the hybridization between the 3*d* orbital electrons of the TM atoms and the 2*p* orbital electrons of the C atoms. While for the ground-state ZnC_6N_7 clusters, the hybridization effect is limited because of the Zn atoms exhibit the all paired $3d^{10}$ orbital systems [\[26](#page-9-23)].

Electronic properties

The net charges of the TM atoms of the $TMC₆N₇$ clusters have been plotted in Fig. [4.](#page-4-1) The positive charges on the TM atoms decrease generally as atomic number of the TM atoms increasing which is similar to that on TM embedded the sole $g - C_3N_4$ [\[29](#page-9-26)]. As for the ground-state $TMC₆N₇$ clusters, the TM atoms loss a few electrons within the scope of 0.113 lel and 1.039 lel. As for the transferred charge amounts of TM atoms of the TMC₆N₇ clusters are generally less than those (from 0.375|e| to 1.150lel) of TM atoms of the TMC₅N₈ clusters [\[24](#page-9-21)]. It derives from the TM atoms and the neighbor C atoms of the TMC_6N_7 clusters prefer to the electropositive which is diferent from that of the TM atoms and the neighbor negative N atoms of the $TMC₅N₈$ clusters [[48\]](#page-10-0). Z. Zhu et al. [[38\]](#page-9-35) have confirmed that the charge transfer of Co and $g - C_3 N_4$ by Raman enhancement factors. The electron transfer follows the formation of chemical bonds [[49\]](#page-10-1). The covalent bonding character of TM-C of TMadsorbed BC_6N have been confirmed [[43\]](#page-9-40). The differences in the net charges of TM atoms of the TMC $_6N_7$ isomers are shown in Fig. [4](#page-4-1) and the Mülliken charges of the C and N atoms of the TMC $_6N_7$ clusters are given in Table [2](#page-6-0). (The Mülliken charges in Table [2](#page-6-0) have been listed by the order from top to bottom and from left to right of atoms of the TMC₆N₇ isomers in Fig. [1.](#page-2-0)) It originates from the different atomic arrangements [[50\]](#page-10-2).

The natural electron configurations of the ground-state TMC_6N_7 clusters have been listed in Table [3.](#page-8-0) Compare the natural electron confgurations of isolated TM atoms with those of the TM atoms of the TMC_6N_7 clusters in Table [3](#page-8-0), the 4*s* orbital of the TM atoms of the TMC₆N₇ clusters lose more electrons than the 3*d* and 4*p* orbitals of the obtained. It confrms the hybridization mechanism of the *sp* orbital electrons of the TMC_6N_7 clusters.

Magnetic properties

The spins of TM atoms of the $TMC₆N₇$ clusters have been displayed in Fig. [5](#page-4-2). The spins of the TM atoms of the TMC_6N_7 clusters are found to be lower than those of isolated TM atoms in Ref. [[35\]](#page-9-32), it originates from the certain *d* orbital electrons are transferred or magnetic couplings in the TMC_6N_7 clusters [\[26](#page-9-23), [48](#page-10-0)]. As for the ground-state TMC_6N_7 clusters, the maximum spins of the TM atoms appear at Cr

and Fe. It derives from the 3*d* orbitals of Cr which display strong spin exchange splitting ε_d [\[51](#page-10-3)]. The V, Cr, and Fe atoms doping the g-C₃N₄ display ferromagnetic states [\[26](#page-9-23)], while Mn exhibits an anti-ferromagnetic behavior [[26,](#page-9-23) [52\]](#page-10-4). While for Cu and Zn atoms of the TMC₆N₇ clusters display the nonmagnetic states because of the all paired *d* orbital structures [[26\]](#page-9-23). The Cu and Zn atoms of TM-g-C₃N₄ sheets display nonmagnetic which has been confrmed [\[26](#page-9-23)]. As for the discrete spins of the $TMC₆N₇$ isomers, it derives from the spatial arrangements of interacting magnetic orbitals [\[26](#page-9-23)]. The neighboring C_{edge} atoms exhibit oppositely spin polarized with respect to the TM atoms [\[8](#page-9-6)].

Conclusions

In summary, the confgurations, stabilities, electronic, and magnetic attributes of the first row transition metal (TM)-substituted $TMC₆N₇$ clusters have been investigated at the PBE level. The results display that the 3*d* TM atoms are inclined to replace the N atom which approaches the N atom out of the C-N rings except for Cu and Zn. As for the CuC₆N₇ and ZnC₆N₇ clusters, the N atom out of the C-N rings prefers to be substituted. The ScC₆N₇(GS), TiC₆N₇(GS), VC₆N₇(GS), CoC₆N₇(GS), TiC₆N₇(a), and $CoC_6N_7(a)$ clusters display more structurally stabilities than the C_6N_8 clusters. The ground-state 3d TMC₆N₇ clusters exhibit more dynamic stabilities than the C_6N_8 clusters except for Zn. A small amount of 4*s* orbital electrons of the TM atoms is transferred to the neighbor C atoms by the net charge distribution of the $TMC_{6}N_{7}$ clusters. The V, Cr, Mn, and Fe atoms of the ground-state $TMC₆N₇$ clusters display the opposite spin to Co and Ni atoms of the ground-state $TMC₆N₇$ clusters.

Acknowledgements We gratefully acknowledge the fnancial support from the Key Fund Project of the National Science Foundation, People's Republic of China (Grant No. 51634004), Key Laboratory of Chemical Metallurgy Engineering Liaoning Province, University of Science and Technology LiaoNing (Grant No.USTLKFSY201711) and the Fund Project of University of Science and Technology Liaoning (Grant No.2017YY02).

References

- 1. Q. Liu, J.Y. Zhang, Langmuir **29**, 3821 (2013)
- 2. Z.T. Wang, J.L. Xu, H. Zhou, X. Zhang, Rare Met. **38**, 459 (2019)
- 3. R. Zhang, S. Niu, X. Zhang, Z. Jiang, J. Zheng, C. Guo, Appl. Surf. Sci. **489**, 427 (2019)
- 4. Y. Zhang, Q. Zhang, Q. Shi, Z. Cai, Z. Yang, Sep. Purif. Technol. **142**, 251 (2015)
- 5. H.A. Bicalho, J.L. Lopez, I. Binatti, P.F.R. Batista, J.D. Ardisson, R.R. Resende, E. Lorencon, Mol. Catal. **435**, 156 (2017)
- 6. C. Sun, H. Zhang, H. Liu, X. Zheng, W. Zou, L. Dong, L. Qi, Appl. Catal. B Environ. **235**, 66 (2018)
- 7. J. Gao, Y. Wang, S. Zhou, W. Lin, Y. Kong, ChemCatChem. **9**, 1708 (2017)
- 8. D. Ghosh, G. Periyasamy, B. Pandey, S.K. Pati, J. Mater. Chem. **2**, 7943 (2014)
- 9. Y. Wang, Y. Wang, Y. Chen, C. Yin, Y. Zuo, L.-F. Cui, Mater. Lett. **139**, 70 (2015)
- 10. G.D. Ding, W.T. Wang, T. Jiang, B.X. Han, H.L. Fan, G.Y. Yang, Chemcatchem. **5**, 192 (2013)
- 11. Z. Ding, X. Chen, M. Antonietti, X. Wang, Chemsuschem **4**, 274 (2011)
- 12. Z. Li, C. Kong, G. Lu, J. Phys. Chem. C. **120**, 56 (2016)
- 13. J. Ma, Q. Yang, Y. Wen, W. Liu, Appl. Catal. B: Environ. **201**, 232 (2017)
- 14. X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, J. Am. Chem. Soc. **131**, 11658 (2009)
- 15. S. Tonda, S. Kumar, S. Kandula, V. Shanker, J. Mater. Chem. A. **2**, 6772 (2014)
- 16. W. Oh, V.W.C. Chang, Z. Hu, R. Goei, T. Lim, Chem. Eng. J. **323**, 260 (2017)
- 17. X.C. Wang, X.F. Chen, A. Thomas, X.Z. Fu, M. Antonietti, Adv. Mater. **21**, 1609 (2009)
- 18. Q. Liao, D. Zou, W. Pan, W. Linghu, R. Shen, Y. Jin, G. Feng, X. Li, F. Ye, A.M. Asiri, H.M. Marwani, Y. Zhu, X. Wu, W. Dong, J. Mol. Liq. **258**, 275 (2018)
- 19. L. Deng, M. Zhu, RSC Adv. **6**, 25670 (2016)
- 20. L. Kong, Y. Dong, P. Jiang, G. Wang, H. Zhang, N. Zhao, J. Mater. Chem. A. **4**, 9998 (2016)
- 21. B. Tahir, M. Tahir, N.A.S. Amin, Appl. Surf. Sci. **419**, 875 (2017)
- 22. M. Ji, J. Huang, K. Zhang, D. He, S. Chang, D. Luo, E. Zhang, M. Xu, J. Liu, J. Zhang, J. Xu, J. Wang, C. Zhu, Inorg. Chem. Front. **5**, 2420 (2018)
- 23. B. Yue, Q. Li, H. Iwai, T. Kako, J. Ye, Sci. Technol. Adv. Mater. **12**, 034401 (2011)
- 24. Z. Li, Z. Zhao, Z. Liu, H. Wang, Q. Wang, Res. Chem. Intermediat. **46**, 2099 (2020)
- 25. S. Sarkar, S.S. Sumukh, K. Roy, N. Kamboj, T. Purkait, M. Das, R. Sundar Dey, J. Colloid Interf. Sci. **558**, 182 (2019)
- 26. E. Kroke, Angew. Chem. Int. Edit. **53**, 11134 (2014)
- 27. A. Bafekry, C. Stampf, S. Farjami Shayesteh, ChemPhysChem. **21**, 164 (2020)
- 28. A. Bafekry, S. Farjami Shayesteh, F.M. Peeters, J. Appl. Phys. **126**, 215104 (2019)
- 29. T. Wang, G. Yu, J. Liu, X. Huang, W. Chen, Phys. Chem. Chem. Phys. **21**, 1773 (2019)
- 30. Y. Yang, C. Yin, K. Li, H. Tang, Y. Wang, Z. Wu, J. Electrochem. Soc. **166**, F755 (2019)
- 31. S.A. Khandy, D.C. Gupta, RSC Adv. **6**, 48009 (2016)
- 32. Y. Guo, C. Tang, X. Wang, C. Wang, L. Fu, Chin. Phys. B. **28**, 048102 (2019)
- 33. Z. Zhao, Z. Li, Q. Wang, T. Shi, Mater. Chem. Phys. **240**, 122220 (2020)
- 34. Z. Zhao, Z. Li, Mod. Phys. Lett. B. **33**, 1950459 (2019)
- 35. Z. Zhao, Z. Li, Q. Wang, Chem. Phys. Lett. **739**, 136922 (2020)
- 36. B. Delley, J. Chem. Phys. **113**, 7756 (2000)
- 37. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. **8**, 76 (2009)
- 38. Z. Zhu, X. Tang, T. Wang, W. Fan, Z. Liu, C. Li, P. Huo, Y. Yan, Appl. Catal. B Environ. **241**, 319 (2018)
- 39. J. Cui, S. Liang, X. Wang, J. Zhang, J. Mater. Chem. Phys. **161**, 194 (2015)
- 40. P. Niu, L. Zhang, G. Liu, Adv. Funct. Mater. **22**, 4763 (2012)
- 41. D. Jose, A. Datta, J. Chem. Phys. C. **116**, 24639 (2012)
- 42. T. Teshome, A. Datta, Acs Appl. Mater. Inter. **9**, 34213 (2017)
- 43. A. Bafekry, Physica E. **118**, 113850 (2020)
- 44. H. Sudrajat, S. Hartuti, Optik. **181**, 1057 (2019)
- 45. Z.-W. Xiong, L.-H. Cao, J. Alloy. Compd. **775**, 100 (2019)
- 46. S.M. Pratik, C. Chowdhury, R. Bhattacharjee, S. Jahiruddin, A. Datta, Chem. Phys. **460**, 101 (2015)
- 47. A. Bafekry, C. Stampf, M. Ghergherehchi, S.F. Shayesteh, Carbon **157**, 371 (2020)
- 48. A. Bafekry, S. Farjami Shayesteh, M. Ghergherehchi, F.M. Peeters, J. Appl. Phys. **126**, 144304 (2019)
- 49. A. Bafekry, C. Stampf, S. Farjami Shayesteh, F.M. Peeters, Adv. Electron. Mater. **5**, 1900459 (2019)
- 50. G. Ge, Q. Jing, Z. Yang, Y. Luo, Chin. Phys. Lett. **26**, 083101 (2009)
- 51. L.J. Shi, Phys. Lett. A. **374**, 1292 (2010)
- 52. W. Zhang, H.Y. Cho, Z. Zhang, W. Yang, J. Korean Phys. Soc. **69**, 1445 (2016)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afliations.