

Binary copper and iron oxides immobilized on silicalayered magnetite as a new reusable heterogeneous nanostructure catalyst for the Knoevenagel condensation in water

Masumeh Gilanizadeh¹ • Behzad Zeynizadeh¹

Received: 7 February 2018 / Accepted: 11 May 2018 / Published online: 22 May 2018 © Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract In this study, a novel heterogeneous and reusable nanostructure catalyst was synthesized through the immobilization of bimetallic Cu–Fe mixed oxides on silicalayered magnetite. The prepared nanomagnetic $Fe₃O₄@SiO₂@CuO–Fe₂O₃$ was characterized using Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction, Brunauer–Emmett– Teller analysis, thermogravimetric analysis, differential thermal gravity, a vibration sample magnetometer, transmission electron microscopy and inductively coupled plasma optical emission spectroscopy. The catalytic activity of this mesoporous nanocomposite was studied in the Knoevenagel condensation of aromatic aldehydes and malononitrile in water to afford benzylidenemalononitriles in high to excellent yields. The nanocatalyst was able to be recycled five times without a significant loss in catalytic activity. This nanostructure catalyst allows for mild reaction conditions and acceptable reaction times, while delivering the desired products in high purity and yield without the use of dangerous organic solvents.

Keywords Benzylidenemalononitriles $Fe₃O₄@SiO₂@CuO-Fe₂O₃$. Knoevenagel condensation - Malononitrile - Nanocatalyst

 \boxtimes Masumeh Gilanizadeh masumehgilanizadeh@gmail.com

Electronic supplementary material The online version of this article ([https://doi.org/10.1007/s11164-](https://doi.org/10.1007/s11164-018-3475-0) [018-3475-0](https://doi.org/10.1007/s11164-018-3475-0)) contains supplementary material, which is available to authorized users.

¹ Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran

Introduction

Heterogeneous catalysis is utilized extensively today for facilitating a wide variety of organic reactions in both academic and industrial settings $[1-12]$. Numerous papers and documents show the importance of this type of catalysis [\[13–21](#page-15-0)]. Among the many heterogeneous catalysts, metal oxides exhibit a high level of activity, and they can be readily used as either active phases or solid supports for the immobilization of other promoters [[22\]](#page-15-0). In this context, metal oxides containing transition metals are the subject of increasing interest because of their inexpensive preparation, ease of regeneration and selectivity. These materials are generally classified by their crystalline systems and they are prepared in the form of a powder or as single crystals. In addition, they are widely used in electronics, nuclear research and ceramics [[23–25\]](#page-16-0).

Mixed metal oxides have two or more types of metal cations. According to the number of diverse metal cations, they can be categorized as binary, ternary and quaternary oxides. Hydrothermal methods [[26,](#page-16-0) [27](#page-16-0)], mechanochemical synthesis [\[28](#page-16-0), [29](#page-16-0)], sol–gel [[30–33\]](#page-16-0), co-precipitation [[34,](#page-16-0) [35\]](#page-16-0), wet impregnation [[36,](#page-16-0) [37](#page-16-0)] and microwave irradiation [\[38](#page-16-0)] are commonly used for the preparation of mixed metal oxides.

Recently, systems combining magnetic nanoparticles (MNPs) and mixed metal oxides have been developed for application in numerous processes, due to the vast surface area of the nanoparticles as well as the presence of acidic/basic sites on the metal oxides which improve the promoter activity and selectivity of the mixed composite systems. Moreover, they are easily separated by an external magnetic field at the end of reaction [\[39–49](#page-16-0)]. In this context, a number of manuscripts highlight the usefulness of mixed metal oxides as catalysts in several synthetic transformations [\[50–58](#page-16-0)].

The Knoevenagel condensation is an important reaction used to install C=C bonds in organic compounds. The reaction occurs via nucleophilic attack of an active methylene group to an aldehyde followed by dehydration [\[59](#page-16-0)]. This method is suitable for the preparation of structurally diverse alkene compounds which can be utilized as intermediates for numerous reactions [[60\]](#page-16-0). Generally, benzylidenemalononitriles (BMNs) are synthesized by the Knoevenagel condensation of aromatic aldehydes and malononitrile. BMN derivatives have been widely used in biological and pharmaceutical studies. They exhibit various properties including anti-inflammatory, anticonvulsant, antioxidant and anticancer activity [[61](#page-16-0), [62\]](#page-16-0). Several useful procedures have been reported for synthesis of BMN derivatives [\[63](#page-16-0)[–80](#page-17-0)]. Although most of the reported methods have their own merits, however, they generally suffer from disadvantages such as the use of expensive organic solvents or catalysts, harsh reaction conditions, prolonged reaction times, undesirable yields and tedious work-up procedures. Therefore, further efforts are needed towards the development and introduction of easy protocols which use effective catalysts under mild and green reaction conditions is still demanded.

In this study, we wish to introduce $Fe₃O₄@SiO₂@CuO-Fe₂O₃$, a new type of magnetic mixed metal oxide that can be successfully utilized for the Knoevenagel

condensation of diverse aromatic aldehydes with malononitrile to afford benzylidenemalononitrile products in high to excellent yields. All reactions were carried out in refluxing H_2O (Scheme 1).

Results and discussion

Synthesis and characterizations of the nanocatalyst

Magnetic nanoparticles of Fe₃O₄@SiO₂@CuO–Fe₂O₃ were synthesized through a three-step procedure: (1) the preparation of magnetite nanoparticles by a chemical co-precipitation of $FeCl_2 \cdot 4H_2O$ and $FeCl_3 \cdot 6H_2O$ in an aqueous solution of ammonia, (2) coating of $SiO₂$ on the surface of magnetite-cores by tetraethyl orthosilicate (TEOS) at room temperature, and (3) the use of an in situ growth method to immobilize Cu^{2+} and Fe^{3+} salts on the core of silica-layered magnetite followed by calcinations at 150 °C to prepare magnetic nanoparticles of Fe₃O₄^{ω} $SiO₂@CuO–Fe₂O₃ MNPs$ $SiO₂@CuO–Fe₂O₃ MNPs$ $SiO₂@CuO–Fe₂O₃ MNPs$ (Scheme 2).

Nanocatalyst characterization

Fourier-transform infrared spectroscopy (FTIR)

FTIR spectroscopy is a useful technique for the structural elucidation of compounds. In this context, the FTIR spectrum of nano $Fe₃O₄$ (Fig. [1](#page-3-0)a) exhibits a strong absorption peak at 575 cm $^{-1}$ corresponding to vibration of Fe–O bonds. The absorption peaks at 3400 and 1625 cm^{-1} are attributed to O–H stretching and deforming vibrations of adsorbed water, respectively. FTIR spectrum of $Fe₃O₄@$ $SiO₂$ MNPs is also illustrated in Fig. [1b](#page-3-0). The spectrum shows additional peaks at 796 and 1094 cm^{-1} that are assigned to the symmetrical and asymmetrical Si-O–Si stretching vibrations. These results confirm the successful layering of $SiO₂$ on the cores–surface of magnetite. The FTIR spectrum of $Fe₃O₄@SiO₂@CuO–Fe₂O₃$
MNPs (Fig. 1c) exhibits a wide and strong absorption band around $MNPs$ (Fig. [1](#page-3-0)c) exhibits a wide and strong $3200-3600$ cm^{-1} that corresponds to superimposed hydroxyl stretching bands arising from the O–H bond of water within the layers. An additional absorption band around 1600 cm^{-1} can be attributed to the deforming mode of water molecules. In addition, the absorption peaks around 400–600 cm^{-1} are attributed to the vibration modes of Fe–O and Cu–O bonds, which confirms the formation of mixed CuO– $Fe₂O₃$ on the cores–surface of $Fe₃O₄@SiO₂$.

 $R = H$, Me, OMe, NO₂, OH, Cl, CHO

Scheme 1 Synthesis of benzylidenemalononitriles by $Fe₃O₄@SiO₂@CuO–Fe₂O₃ MNPs$

Scheme 2 Synthesis of Fe₃O₄@SiO₂@CuO–Fe₂O₃ MNPs

Scanning electron microscopy (SEM)

SEM is commonly used to determine the size distribution and morphology of the synthesized particles. SEM images of Fe₃O₄, Fe₃O₄@SiO₂ and Fe₃O₄@SiO₂@ $CuO-Fe₂O₃$ MNPs are illustrated in Fig. [2.](#page-4-0) The images indicate that the immobilized $CuO-Fe₂O₃$ on silica-layered magnetite was constructed from roughly spherical and granule particles. In addition, particles of $Fe₃O₄, Fe₃O₄@SiO₂$ and Fe₃O₄@SiO₂@CuO–Fe₂O₃ MNPs are distributed in the range of 23–43 nm (Fig. [2](#page-4-0)a), 22–30 nm (Fig. [2b](#page-4-0)) and 27–29 nm (Fig. [2](#page-4-0)c–f), respectively. The mesoporous structure of $Fe_3O_4@SiO_2@CuO-Fe_2O_3$ MNPs is determined based on the size of the nanoparticles.

Energy-dispersive X-ray spectroscopy (EDX)

The elemental composition of a material can be determined by electron dispersive X-ray spectroscopy (EDX–SEM). Figure [3](#page-4-0) shows the elemental analysis and EDX spectrum of Fe₃O₄@SiO₂@CuO–Fe₂O₃ MNPs. The analysis shows that Fe, Cu, Si and O are present in the nanocomposite. Therefore, the copper–iron oxide layer was successfully coated on the cores–surface of $Fe₃O₄@SiO₂ MNPs.$

Fig. 2 FE-SEM image of a Fe₃O₄, b Fe₃O₄@SiO₂ and c-f Fe₃O₄@SiO₂@CuO-Fe₂O₃ MNPs

Fig. 3 EDX spectrum of $Fe₃O₄@SiO₂@CuO–Fe₂O₃ MNPs$

X-ray diffraction (XRD)

The crystalline structure of Fe₃O₄, Fe₃O₄@SiO₂ and Fe₃O₄@SiO₂@CuO–Fe₂O₃ MNPs was also analyzed by X-ray diffraction (XRD). Figure [4](#page-5-0)a shows the diffraction peaks at $2\theta = 30.2^{\circ}$, 35.5° , 43.3° , 53.7° , 57.2° and 62.9° corresponding to (220), (311), (400), (422), (511) and (440) crystal planes of nano $Fe₃O₄$. Based on Fig. 4 XRD pattern of a Fe₃O₄, **b** Fe₃O₄ $@SiO$ ₂ and c Fe₃O₄@SiO₂@CuO–Fe₂O₃ MNPs

this pattern, the prepared laboratory sample of magnetite has a crystalline cubic spinel structure analogous to the standard structure of $Fe₃O₄$ (JCPDS 65-3107) [\[81](#page-17-0), [82\]](#page-17-0). The XRD pattern of $Fe₃O₄@SiO₂$ MNPs is illustrated in Fig. 4b. Analysis of this spectrum shows that the pattern is identical to that of $Fe₃O₄$, while the intensity of the peaks decreased to some extent. This is attributed to crystalline phase-intact of Fe₃O₄ through layering of $SiO₂$ on the cores of Fe₃O₄. In the XRD pattern of $Fe₃O₄@SiO₂@CuO–Fe₂O₃ MNPs$, all characteristic peaks of $Fe₃O₄$ are also observable. Furthermore, the peaks at $2\theta = 32.5^{\circ}$, 35.5° , 38.7° , 48.7° , 58.3° , 61.5°, 66.2°, 68.1° and 75.2° corresponded to (110), (-111), (111), (-202), (202), (-113), (-311), (220) and (-222) crystal planes, which proves the monoclinic crystalline structure of Fe₃O₄@SiO₂@CuO–Fe₂O₃ MNPs. It is in agreement with the documented-crystalline structure of copper oxide in JCPDS 80-1916 [[83\]](#page-17-0). Through the Debye–Scherrer equation ($D = k\lambda/\beta\cos\theta$), the mean particle size of Fe₃O₄@SiO₂@CuO–Fe₂O₃ MNPs was calculated to be 9.67 nm. In this equation, β is the full width at half maximum intensity (FWHM) and is equal to 0.91° (0.016 rad) at $\theta = 19.50^{\circ}$.

Brunauer–Emmett–Teller (BET)

The nitrogen adsorption and desorption isotherms of the synthesized $Fe₃O₄@$ $SiO_2@CuO-Fe_2O_3$ MNPs is illustrated in Fig. [5](#page-6-0). The surface area and pore size distribution of the nanocatalysts were examined by BET and BJH methods. The calculated BET specific surface area (S_{BET}) is 128.03 m² g⁻¹ and the pore volume (V_p) is 0.279 cm³ g⁻¹. The obtained results suggest a high specific surface area to volume ratio for the nanocatalyst, leading to a dramatic increase in its catalytic activity. Through the Barrett–Joyner–Halenda (BJH) method, the

average pore size of the nanocomposite was determined to be 8.716 nm, confirming the mesoporous structure of $Fe₃O₄@SiO₂@CuO–Fe₂O₃ MNPs.$

Thermogravimetric analysis (TGA)

The thermal behavior, possible thermal stability and degradation processes of the synthesized MNPs were examined by thermogravimetric analysis (TGA). The located contents on the surface of MNPs can be generally determined by TGA analysis. Figure 6a shows TGA-thermograph of $Fe₃O₄$, which demonstrates the high thermal stability of magnetite at elevated temperature. Figures 6b and [7](#page-7-0)a represent TGA and DTG thermographs of $Fe₃O₄ @ SiO₂ MNPs with two thermal degradation$ steps. The 2.18% loss of mass in the range of 30–158 \degree C (first decomposition step)

Fig. 6 TGA thermogram of a Fe₃O₄, b Fe₃O₄@SiO₂ and c Fe₃O₄@SiO₂@CuO–Fe₂O₃ MNPs

Fig. 7 TGA and DTG of a Fe₃O₄@SiO₂ and b Fe₃O₄@SiO₂@CuO–Fe₂O₃ MNPs

corresponds to the evaporation of adsorbed solvent or water. The second degradation step (loss of 3.28% mass) is observed at 474–616 °C and it is attributed to the degradation of the $SiO₂$ layer. Figures [6](#page-6-0)c and 7b illustrate TGA and DTG thermographs of $Fe_3O_4@SiO_2@CuO-Fe_2O_3$ MNPs with two thermal degradation steps. The first loss of mass is identified in the range of $26-127$ °C (loss of 3.62% mass) and is attributed to the elimination of adsorbed water at the surface. The second loss of mass in the range of 193–384 \degree C (loss of 5.66% mass) corresponds to the degradation of the CuO–Fe₂O₃ or SiO₂ layers.

Vibration sample magnetometer (VSM)

Magnetic characterization of the prepared nanoparticles by vibrating sample magnetometer analysis is illustrated in Fig. [8](#page-8-0). The curves represent the super paramagnetic behavior of MNPs appearing in reversible and nonlinear platforms. The saturation magnetization (Ms) values of Fe₃O₄ (Fig. [8a](#page-8-0)), Fe₃O₄ @SiO₂ (Fig. [8](#page-8-0)b) and $Fe₃O₄@SiO₂@CuO–Fe₂O₃$ (Fig. [8](#page-8-0)c) MNPs were found to be 70, 30 and 4 emu g^{-1} , respectively. The graphs depict a decrease in the saturation

magnetization (Ms) of Fe₃O₄-cores caused by encapsulation with $SiO₂$ or CuO– $Fe₂O₃$ layers.

Transmission electron microscopy (TEM)

The obtained transmission electron microscope (TEM) images of $Fe₃O₄@SiO₂@$ $CuO-Fe₂O₃$ MNPs (Fig. 9) show that the nanocatalyst has the core–shell nanostructure platform.

Inductively coupled plasma optical emission spectroscopy (ICP-OES)

The ICP-OES technique is generally utilized to determine the exact elemental composition of a compound. Through this analysis, the quantities of Fe and Cu in $Fe₃O₄@SiO₂@CuO–Fe₂O₃$ MNPs were determined to be 28.38, and 45.61%, respectively.

Fig. 9 TEM images of $Fe₃O₄@SiO₂@CuO-Fe₂O₃ MNPs$

Synthesis of benzylidenemalononitrile derivatives

After the successful synthesis of $Fe_3O_4@SiO_2@CuO-Fe_2O_3$ MNPs, the catalytic activity of the heterogeneous nanocatalyst towards the Knoevenagel condensation of aromatic aldehydes with malononitrile in H_2O as a green and eco-friendly solvent was studied. The reaction conditions were optimized by performing the condensation reaction of benzaldehyde and malononitrile in the presence and absence of the nanocatalyst as well varying the amount of catalyst, temperature and solvent employed in the reaction (Table 1). The use of $Fe₃O₄@SiO₂@CuO–Fe₂O₃ MNPs$ was found to be crucial for reaction efficiency. Moreover, the influence of temperature is noteworthy: when the model reaction is performed in H_2O at ambient temperature, low conversion is observed after 40 min. However, running the reaction at reflux dramatically influences the progress of the model reaction after 4 min. Entry 11 shows that conducting the reaction of benzaldehyde (1 mmol) and malononitrile (1.1 mmol) in the presence of $Fe_3O_4@SiO_2@CuO-Fe_2O_3$ MNPs (30 mg) in refluxing H_2O provided satisfactory results.

Next, to pinpoint the main catalytic center of $Fe₃O₄@SiO₂@CuO–Fe₂O₃$, the activity of SiO_2 , Fe₃O₄, Fe₃O₄@SiO₂, CuO–Fe₂O₃ and SiO₂@CuO–Fe₂O₃ NPs in the Knoevenagel condensation of benzaldehyde with malononitrile was investigated under the optimized reaction conditions (Table [2](#page-10-0)). Among the examined NPs, the immobilized $CuO-Fe₂O₃$ on silica-layered magnetite exhibited extraordinary

$Fe_3O_4@SiO_2@CuO-Fe_2O_3(g)$ T (°C) Time (min) Entry Solvent Conversion $(\%)$ 1 Solvent-free 80 60 Trace $\overline{2}$ Reflux H ₂ O Trace 60	
3 Solvent-free 0.03 80 40 90	
0.03 Solvent-free 40 60 $\overline{4}$ r.t.	
5 0.03 H ₂ O 40 50 r.t.	
0.03 40 H ₂ O 70 60 6	
0.03 EtOH/H ₂ O 40 7 70 70	
8 0.03 EtOH 40 20 70	
0.03 9 MeOH 70 70 40	
0.03 THF 20 10 70 40	
0.03 Reflux H_2O $\overline{4}$ 100 11	
3 Reflux 0.04 H ₂ O 100 12	
0.02 Reflux 13 H ₂ O 15 90	

Table 1 Optimization experiments for the Knoevenagel condensation of benzaldehyde and malononitrile using Fe₃O₄@SiO₂@CuO–Fe₂O₃MNPs

All reactions were carried out with 1 mmol of benzaldehyde and 1.1 mmol of malononitrile in 2 mL of solvent

Entry	Catalyst	Time (min)	Conversion $(\%)$
1	SiO ₂	30	45
2	Fe ₃ O ₄	30	80
3	$Fe3O4 @ SiO2$	30	50
$\overline{4}$	$CuO-Fe2O3$	15	95
5	$SiO2@CuO-Fe2O3$	15	98
6	$Fe_3O_4@SiO_2@CuO-Fe_2O_3$	4	100

Table 2 Comparison of the influence of Fe, Si and Cu oxides on the Knoevenagel condensation of benzaldehyde with malononitrile

All reactions were carried out with 1 mmol of benzaldehyde, 1.1 mmol of malononitrile and 0.03 g of catalyst in $H₂O$ (2 mL) at reflux

activity in comparison to the singular species, due to the synergistic effect of all compartments (Table 2, entry 6).

The utility of $Fe_3O_4@SiO_2@CuO-Fe_2O_3$ MNPs in the Knoevenagel condensation of structurally diverse aromatic aldehydes with malononitrile was further studied under the optimized reaction conditions. The results of this investigation are summarized in Table [3.](#page-11-0) All reactions were carried out successfully in refluxing H_2O using the aldehyde (1 mmol), malononitrile (1.1 mmol) and $Fe₃O₄@SiO₂@CuO Fe₂O₃$ MNPs (30 mg). The corresponding benzylidenemalononitriles were obtained in high to excellent yields within 2–70 min. In the case of terephthalaldehyde and isophthalaldehyde, which possess two formyl groups, the condensation reaction required additional malononitrile (2.2 mmol) and afforded bis-substituted benzylidenemalononitriles in 91–93% yields (Table [3](#page-11-0), entries 12 and 13). The calculation shows that 0.03 g of the nanocatalyst contains 0.0171 g CuO (0.00022 mol). Therefore, on the basis of CuO being a main component of the nanocatalyst, TON and TOF values were calculated and the indexed data is presented in Table [3](#page-11-0) [[84\]](#page-17-0).

The suitability of this synthetic protocol was highlighted by comparison of the Knoevenagel condensation of benzaldehyde and malononitrile with $Fe₃O₄@$ $SiO₂\&CuO–Fe₂O₃$ MNPs and other reported reagents (Table [4](#page-12-0)). The current protocol includes the advantageous in terms of its cost (0.09 USD per 30 mg of the nanocatalyst) and reusability, as well as acceptable yields in shorter reaction times.

A plausible mechanism for the Knoevenagel condensation of aromatic aldehydes and malononitrile catalyzed by $Fe₃O₄@SiO₂@CuO-Fe₂O₃ MNPs$ is shown in Scheme [3.](#page-12-0) Activation of the aromatic aldehyde by the nanocatalyst triggers nucleophilic attack of the methylene group of malononitrile to the activated aldehyde, leading to C–C bond formation. Finally, dehydration of the intermediate gives rise to the benzylidenemalononitrile product.

Recycling of $Fe_3O_4@SiO_2@CuO-Fe_2O_3$ MNPs

The recoverability of $Fe₃O₄@SiO₂@CuO–Fe₂O₃ MNPs$ following the Knoevenagel condensation of benzaldehyde and malononitrile under the optimized reaction

Entry	Substrate	Product	Time (min)	Yield $(\%)^a$	TON ^{b,d}	TOF ^{c,d}	Mp (°C) Found Reported [Ref]
$\mathbf{1}$	CHO	CN. ĊN	$\overline{4}$	90	4091	61364	81-83 82-84 [64]
$\overline{2}$	OMe CHO	OMe CN. ĊN	15	93	4227	16909	77-79 80 [68]
3	CHO MeO	CN CN Me _O	20	95	4318	12955	113-115 112-114 [67]
$\overline{4}$	CHO Me	CN ĊN Me	10	91	4136	24818	137-139 137-138 [68]
5	CI. CHO	CI CN ĊN	5	90	4091	49091	89-91 93-94 [78]
6	CHO CI ⁻	CN. CN CI.	τ	91	4136	35455	160-162 161-162 [78]
$\overline{7}$	O_2N CHO	O_2N CN C _N	50	95	4318	5182	102-104 103-105 [78]
$\,$ 8 $\,$	CHO O_2N	CN. ĊN O_2N	40	93	4227	6341	155-157 157-160 [67]
9	O_2N CHO CI ⁻	O_2N CN ĊN Cl^*	70	96	4364	3740	137-139 $\overline{}$
10	Cl CHO CI ⁻	Cl CN ĊN CI.	5	90	4091	49091	141-143
11	CHO MeO HO	MeO CN ĊN HO	15	97	4409	17636	135-137 134-136 [71]
12	OHC CHO	NC. CN ĊN ĊΝ	5	93	4227	50727	175-177 $\overline{}$
13	CHO OHC	CN ÇΝ ĊN NC	2	91	4136	124091	260-262 295-297 [63]

Table 3 The Knoevenagel condensation of aromatic aldehydes and malononitrile by Fe₃O₄@SiO₂@ CuO–Fe₂O₃ MNPs

All reactions were carried out with the reaction of aromatic aldehyde (1 mmol), malononitrile (1.1 mmol) and Fe₃O₄@SiO₂@CuO–Fe₂O₃ (30 mg) in refluxing H₂O (2 mL). In entries 12 and 13: malononitrile (2.2 mmol) was used

^aYields refer to isolated pure products

^bTON (turnover number): mmol of product per mmol of catalyst

c TOF (turnover frequency): mmol of product per mmol of catalyst per hour

^dTON and TOF values were calculated on the basis of CuO (30 mg of the nanocatalyst contain 0.00022 mol CuO)

.CN CHO Catalyst NC. $\ddot{}$ CN							
Entry	Catalyst	Condition/solvent	Time (min)	Yield $(\%)$	Reusability (times)	Refs.	
1	$Fe3O4@SiO2@CuO-$ $Fe2O3$ (30 mg)	reflux/ H_2O	$\overline{4}$	90	5		
$\overline{2}$	Taurine (25 mg)	reflux/ H_2O	14	86	6	[63]	
3	$PAN_{TT}F(81 mg)$	20 °C/H ₂ O	90	99	21	[66]	
$\overline{4}$	CSC-Star-Glu-IL2 (200 mg)	r.t./H ₂ O	120	94	5	[67]	
5	$[C_4$ dabco][BF ₄] (19 mg)	r.t./ H_2O	1	100	7	$\lceil 74 \rceil$	
6	$MP(DNP)$ (14 mg)	r.t./EtOH	3	96	5	[76]	
7	ZnO(100 mg)	r.t./solvent-free	80	92		[69]	

Table 4 Comparison of the promoter activity of $Fe₃O₄@SiO₂@CuO-Fe₂O₃ MNPs with other reported$ reagents

Fe₃O₄@SiO₂@CuO-Fe₂O₃ MNPs

Scheme 3 A plausible mechanism for the Knoevenagel condensation catalyzed by $Fe₃O₄@SiO₂@CuO–$ Fe₂O₃ MNPs

conditions was also studied. After completion of the reaction, the nanocatalyst was separated from the reaction mixture by an external magnetic field, washed with EtOH, and then dried in an oven for subsequent use. The magnetic mixed metal oxide catalyst was able to be reused for five consecutive cycles without significant loss of catalytic activity. The results of this investigation are summarized in Fig. [10.](#page-13-0)

Experimental

General

All chemicals were purchased from Merck Chemical Company and used without further purification. ${}^{1}H$, ${}^{13}C$ NMR and FTIR spectra were recorded on a Bruker Avance spectrometer (300 MHz) and a Thermo Nicolet Nexus 670, respectively. Melting points were obtained in open capillary tubes with a melting point apparatus (Electrothermal) and were uncorrected. Thin-layer chromatography (TLC) on silica gel 60 F_{254} aluminum sheets was used to determine the purity of the substrates and products and to monitor reactions. Powder XRD was obtained by a PANalytical X'Pert Pro (Netherlands) diffractometer at 40 kV and 30 mA with CuKa radiation $(\lambda = 1.5418 \text{ Å})$, and the diffraction patterns were recorded in the 2 θ range (5–80°). The morphology of the nanoparticles was examined by measuring SEM Images using FESEM-TESCAN. The chemical composition of the nanocatalyst was determined by EDX analysis. The N_2 adsorption–desorption isotherms were analyzed on a BELSORP-mini (BET Japan). The specific surface area of the sample was measured by the Brunauer–Emmett–Teller (BET) technique. The pore volume and pore size distribution were derived from the desorption profiles of the isotherms using the Barrett–Joyner–Halenda (BJH) method. The magnetic properties of the samples were obtained using a vibration sample magnetometer VSM (Meghnatis Daghigh Kavir Co., Iran) under magnetic fields of up to 20 kOe. Thermogravimetric analyses (TGA) were recorded on a simultaneous thermal analyzer (STA; Rheometric Scientific Inc.). Transmission electron microscope (TEM) images were obtained using an accelerating voltage of 100 kV on a Zeiss EM10C transmission electron microscope. Inductively coupled plasma optical emission spectrometry (ICP-OES) was utilized for the detection of chemical elements.

Preparation of magnetic $Fe₃O₄$ NPs

Nanoparticles of $Fe₃O₄$ were prepared by a chemical co-precipitation of chloride salts of Fe²⁺ and Fe³⁺ [\[85](#page-17-0)]. In general, a solution of FeCl₂-4H₂O (2.147 g, 0.0108 mol) and FeCl₃.6H₂O (5.838 g, 0.0216 mol) in deionized H₂O (100 mL)

was prepared and then the solution was stirred for 10 min at 85 °C under an N_2 atmosphere. Upon addition of ammonia (25 wt%, 10 mL), the black nanoparticles of Fe₃O₄ precipitated. The resulting mixture was again stirred at 85 °C for 30 min under an $N₂$ atmosphere. The mixture was cooled to room temperature, and the magnetic nanoparticles of $Fe₃O₄$ were separated by an external magnetic field. Washing the prepared nanoparticles twice with an aqueous solution of NaCl (0.02 M) and deionized H_2O afforded the pure Fe_3O_4 NPs, which were dried under an air atmosphere.

Preparation of $Fe₃O₄@SiO₂ NPs$

Nanoparticles of Fe₃O₄ were coated by a silica layer according to the reported procedure [\[86](#page-17-0)]. A suspension of Fe₃O₄ MNPs (1.5 g) in deionized H₂O (20 mL) was prepared. Next, 2-propanol (200 mL) was added and the resulting mixture was irradiated by ultrasound for 30 min. While the mixture was stirred, PEG (5.36 g), deionized H_2O (20 mL), ammonia (28 wt%, 10 ml) and TEOS (2 mL) were added sequentially. The reaction mixture was then stirred for 28 h at room temperature. Finally, the magnetic nanoparticles of $Fe₃O₄@SiO₂$ were separated by an external magnetic field and washed twice with deionized H_2O and EtOH.

Preparation of $Fe_3O_4@SiO_2@CuO-Fe_2O_3$ MNPs

Individually in three beakers (200 mL), a suspension of $Fe₃O₄@SiO₂$ (0.1 g) MNPs in deionized H₂O (50 mL), a solution of Na₂CO₃ (1.589 g, 0.015 mol) and NaOH $(0.200 \text{ g}, 0.005 \text{ mol})$ in deionized H₂O (50 mL), and a solution of FeCl₃·6H₂O $(1.352 \text{ g}, 0.005 \text{ mol})$ and $Cu(NO₃)₂·3H₂O$ (3.624 g, 0.015 mol) in deionized H₂O (50 mL) was prepared. The resulting suspension and solutions were irradiated under ultrasound for 30 min. The prepared solutions of $FeCl_3·6H_2O/Cu(NO_3)_2·3H_2O$ and $Na₂CO₃/NaOH$ were then simultaneously added dropwise to the suspension of $Fe₃O₄ @SiO₂$, and the resulting mixture was stirred vigorously. During the course of the reaction, the pH was kept at 10–11 by the addition of an appropriate volume of aqueous NaOH and HCl. The resulting slurry was left for 24 h at 80 $^{\circ}$ C without stirring. The resulting mixture was cooled to room temperature and washed with deionized H₂O and EtOH. Calcination at 150 °C for 2 h afforded magnetic nanoparticles of Fe₃O₄@SiO₂@CuO–Fe₂O₃ (total weight: 2.091 g; Fe₃O₄@SiO₂: 0.1 g, 4.78%; CuO: 1.193 g, 57.05% and Fe₂O₃: 0.798 g, 38.16%).

General procedure for the Knoevenagel condensation of benzaldehyde and malononitrile

In a round-bottom flask (10 mL) equipped with a magnetic stirrer, a mixture of benzaldehyde (0.106 g, 1 mmol), malononitrile (0.073 g, 1.1 mmol) and H_2O (2 mL) was well mixed at room temperature. $Fe₃O₄@SiO₂@CuO–Fe₂O₃$ (30 mg) was then added and the resulting mixture was stirred for 4 min at reflux. The progress of the reaction was monitored by TLC (eluent: EtOAc/n-hexane: 2/4). After completion of the reaction, the catalyst was separated by an external magnet and the reaction mixture was extracted with EtOAc $(2 \times 5 \text{ mL})$. The organic solution was then dried over anhydrous $Na₂SO₄$. Evaporation of the solvent afforded the pure benzylidenemalononitrile in 90% yield (0.139 g, Table [3,](#page-11-0) entry 1).

Conclusions

In this study, magnetic nanoparticles of immobilized $CuO-Fe₂O₃$ on silica-layered magnetite were synthesized. The magnetite mixed metal oxide was then characterized using FTIR, SEM, EDX, XRD, BET, TGA, DTG, VSM, TEM and ICP-OES analyses. The prepared $Fe_3O_4@SiO_2@CuO-Fe_2O_3$ MNPs were successfully utilized in the Knoevenagel condensation of structurally diverse aromatic aldehydes and malononitrile in refluxing H_2O . The corresponding benzylidenemalononitriles were obtained in high to excellent yields within 2–70 min. This method has several advantages, including high yields, short reaction times, mild reaction conditions, a simple separation and work-up procedure, and the use of H_2O as a green and economical solvent. The catalyst can be reused for at least five consecutive cycles without significant loss of catalytic activity.

Acknowledgements The authors gratefully acknowledged the financial support of this work by the research council of Urmia University.

References

- 1. B. Aday, Y. Yildiz, R. Ulus, S. Eris, F. Sen, M. Kaya, New J. Chem. 40, 748 (2016)
- 2. H. Goksu, Y. Yildiz, B. Celik, M. Yazici, B. Kilbas, F. Sen, Catal. Sci. Technol. 6, 2318 (2016)
- 3. F. Sen, G. Gokagac, S. Sen, J. Nanopart. Res. 15, 1979 (2013)
- 4. B. Aday, H. Pamuk, M. Kaya, F. Sen, J. Nanosci. Nanotechnol. 16, 6498 (2016)
- 5. Y. Yildiz, E. Erken, H. Pamuk, H. Sert, F. Sen, J. Nanosci. Nanotechnol. 16, 5951 (2016)
- 6. O. Karatepe, Y. Yildiz, H. Pamuk, S. Eris, Z. Dasdelen, F. Sen, RSC Adv. 6, 50851 (2016)
- 7. Y. Yildiz, S. Kuzu, B. Sen, A. Savk, S. Akocak, F. Sen, Int. J. Hydrogen Energy 42, 13061 (2017)
- 8. E. Erken, Y. Yildiz, B. Kilbas, F. Sen, J. Nanosci. Nanotechnol. 16, 5944 (2016)
- 9. Y. Yildiz, T. Onal Okyay, B. Sen, B. Gezer, S. Kuzu, A. Savk, E. Demir, Z. Dasdelen, H. Sert, F. Sen, ChemistrySelect 2, 697 (2017)
- 10. S. Akocak, B. Sen, N. Lolak, A. Savk, M. Koca, S. Kuzu, F. Sen, Nano Struct. Nano Objects 11, 25 (2017)
- 11. H. Goksu, B. Celik, Y. Yildiz, F. Sen, B. Kilbas, ChemistrySelect 1, 2366 (2016)
- 12. B. Sen, S. Kuzu, E. Demir, T.O. Okyay, F. Sen, Int. J. Hydrogen Energy 42, 23299 (2017)
- 13. Z. Dasdelen, Y. Yildiz, S. Eris, F. Sen, Appl. Catal. B Environ. 219, 511 (2017)
- 14. B. Sena, E. Hazal Akdere, A. Savk, E. Gultekin, O. Parali, H. Goksu, F. Sen, Appl. Catal. B Environ. 225, 148 (2018)
- 15. I. Esirden, E. Erken, M. Kaya, F. Sen, Catal. Sci. Technol. 5, 4452 (2015)
- 16. B. Celik, Y. Yildiz, H. Sert, E. Erken, Y. Koskun, F. Sen, RSC Adv. 6, 24097 (2016)
- 17. B. Celik, E. Erken, S. Eris, Y. Yildiz, B. Sahin, H. Pamuk, F. Sen, Catal. Sci. Technol. 6, 1685 (2016)
- 18. E. Erken, I. Esirden, M. Kaya, F. Sen, RSC Adv. 5, 68558 (2015)
- 19. Y. Yildiz, H. Pamuk, O. Karatepe, Z. Dasdelen, F. Sen, RSC Adv. 6, 32858 (2016)
- 20. H. Goksu, Y. Yildiz, B. Celik, M. Yazici, B. Kilbas, F. Sen, ChemistrySelect 1, 953 (2016)
- 21. M. Gilanizadeh, B. Zeynizadeh, New J. Chem. (2018). <https://doi.org/10.1039/C8NJ00788H>
- 22. S.U. Sonavane, M.B. Gawande, S.S. Deshpande, A. Venkataraman, R.V. Jayaram, Catal. Commun. 8, 1803 (2007)
- 23. Y. Izumi, N. Natsume, H. Takamine, I. Tamaoki, K. Urabe, Bull. Chem. Soc. Jpn. 62, 2159 (1989)
- 24. K. Tanabe, W.F. Holderich, Appl. Catal. A 181, 399 (1999)
- 25. B.M. Reddy, A. Khan, Catal. Rev. Sci. Eng. 47, 257 (2005)
- 26. S. Ajaikumar, A. Pandurangan, Appl. Catal. A 357, 184 (2009)
- 27. W.C. Sheets, E.S. Stampler, H. Kabbour, M.I. Bertoni, L. Cario, T.O. Mason, T.J. Marks, K.R. Poeppelmeier, Inorg. Chem. 46, 10741 (2007)
- 28. A. Tang, H. Yang, X. Zhang, Int. J. Phys. Sci. 1, 102 (2006)
- 29. V.V. Zyryanov, Inorg. Mater. 39, 1163 (2003)
- 30. H. Cui, M. Zayat, D. Levy, J. Sol-Gel Sci. Technol. 35, 175 (2005)
- 31. A. Elia, P.M. Aispuro, N. Quaranta, J.M. Martın-Martınez, P. Vazquez, Macromol. Symp. 301, 136 (2011)
- 32. Y.J. Kim, S.B. Rawal, S.D. Sung, W.I. Lee, Bull. Korean Chem. Soc. 32, 141 (2011)
- 33. P.F. Fulvio, S. Pikus, M. Jaroniec, A.C.S. Appl. Mater. Interfaces 2, 134 (2010)
- 34. D. Jiang, L. Su, L. Ma, N. Yao, X. Xu, H. Tang, X. Li, Appl. Surf. Sci. 256, 3216 (2010)
- 35. B.M. Reddy, I. Ganesh, J. Mol. Catal. A Chem. 169, 207 (2001)
- 36. B.M. Reddy, B. Chowdhury, P.G. Smirniotis, Appl. Catal. A 211, 19 (2001)
- 37. G. Sankar, C.N.R. Rao, T. Rayment, J. Mater. Chem. 1, 299 (1991)
- 38. A.S. Kulkarni, R.V. Jayaram, J. Mol. Catal. A Chem. 223, 107 (2004)
- 39. Y.C. Chang, S.W. Chang, D.H. Chen, React. Funct. Polym. 66, 335 (2006)
- 40. V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.M. Basset, Chem. Rev. 111, 3036 (2011)
- 41. R. Abu-Reziq, H. Alper, D. Wang, M.L. Post, J. Am. Chem. Soc. 128, 5279 (2006)
- 42. M. Shokouhimehr, Y. Piao, J. Kim, Y. Jang, T. Hyeon, Angew. Chem. Int. Ed. 46, 7039 (2007)
- 43. D.H. Zhang, G.D. Li, J.X. Li, J.S. Chen, Chem. Commun. 3414 (2008)
- 44. A.H. Lu, E.L. Salabas, F. Schuth, Angew. Chem. Int. Ed. 46, 1222 (2007)
- 45. M.B. Gawande, P.S. Branco, R.S. Varma, Chem. Soc. Rev. 42, 3371 (2013)
- 46. S. Shylesh, V. Schünemann, W.R. Thiel, Angew. Chem. Int. Ed. 49, 3428 (2010)
- 47. S.M. Baghbanian, M. Farhang, Synth. Commun. 44, 697 (2014)
- 48. A.P. Amrute, A. Bordoloi, N. Lucas, K. Palraj, S.B. Halligudi, Catal. Lett. 126, 286 (2008)
- 49. S.J. Singh, R.V. Jayaram, Tetrahedron Lett. 49, 4249 (2008)
- 50. Q. Shi, R. Lu, L. Lu, X. Fu, D. Zhao, Adv. Synth. Catal. 349, 1877 (2007)
- 51. M. Kang, E.D. Park, J.M. Kim, J.E. Yie, Catal. Today 111, 236 (2006)
- 52. N. Li, C. Descorme, M. Besson, Appl. Catal. B 76, 92 (2007)
- 53. S.S. Deshpande, R.V. Jayaram, Catal. Commun. 9, 186 (2008)
- 54. Q. Zhuang, J.M. Miller, Appl. Catal. A 209, L1 (2001)
- 55. M. Crivello, C. Pe'rez, E. Herrero, G. Ghione, S. Casuscelli, E. Rodrıguez-Castellon, Catal. Today 107–108, 215 (2005)
- 56. A.K. Singh, S.D. Fernando, Energy Fuels 23, 5160 (2009)
- 57. G. Centi, S. Perathoner, Catal. Rev. Sci. Eng. 40, 175 (1998)
- 58. M.A. Carreon, V.V. Guliants, Eur. J. Inorg. Chem. 2005, 27 (2005)
- 59. L.F. Tietze, U. Beifuss, Comprehensive Organic Synthesis, vol. 2 (Pergamon Press, Oxford, 1991), p. 341
- 60. F. Freeman, Chem. Rev. 69, 591 (1969)
- 61. R.K.G. Panicker, S. Krishnapillai, Tetrahedron Lett. 55, 2352 (2014)
- 62. M. Almasi, V. Zelenak, M. Opanasenko, J. Cejka, Dalton Trans. 43, 3730 (2014)
- 63. F. Shirini, N. Daneshvar, RSC Adv. 6, 110190 (2016)
- 64. S. Wang, Z. Ren, W. Cao, W. Tong, Synth. Commun. 31, 673 (2001)
- 65. J. Zhang, T. Jiang, B. Han, A. Zhu, X. Ma, Synth. Commun. 36, 3305 (2006)
- 66. G. Li, J. Xiao, W. Zhang, Green Chem. 14, 2234 (2012)
- 67. P. Gupta, M. Kour, S. Paul, J.H. Clark, RSC Adv. 4, 7461 (2014)
- 68. M.M. Heravi, K. Bakhtiari, S. Taheri, H.A. Oskooi, J. Chin. Chem. Soc. 54, 1557 (2007)
- 69. M. Basude, P. Sunkara, V.S. Puppala, J. Chem. Pharm. Res. 5, 46 (2013)
- 70. M.A. Pasha, K. Manjula, V.P. Jayashankara, Indian J. Chem. 49, 1428 (2010)
- 71. R. Pal, Int. J. Adv. Chem. 2, 27 (2014)
- 72. R. Gupta, M. Gupta, S. Paul, R. Gupta, Bull. Korean Chem. Soc. 30, 2419 (2009)
- 73. W.X. Zuo, R. Hua, X. Qiu, Synth. Commun. 34, 3219 (2004)
- 74. D.Z. Xu, Y. Liu, S. Shi, Y. Wang, Green Chem. 12, 514 (2010)
- 75. A. Rostami, B. Atashkar, H. Gholami, Catal. Commun. 37, 69 (2013)
- 76. S.K. Panja, N. Dwivedi, S. Saha, RSC Adv. 5, 65526 (2015)
- 77. R. Vaid, M. Gupta, Monatshefte Chem. 146, 645 (2015)
- 78. S.L. Khillare, A.O. Dhokte, M.K. Lande, B.R. Arbad, Int. J. Chem. Pharm. Sci. 5, 96 (2014)
- 79. M. Gupta, R. Gupta, M. Anand, Beilstein J. Org. Chem. 5, 68 (2009)
- 80. C. Zhuo, D. Xian, W. Jian-wei, X. Hui, ISRN Org. Chem. 676789 (2011)
- 81. G.Y. Li, Y.R. Jiang, K.L. Huang, P. Ding, L.L. Yao, Colloids Surf. A Physicochem. Eng. Asp. 320, 11 (2008)
- 82. J.A. Lopez, F. González, F.A. Bonilla, G. Zambrano, M.E. Gómez, Rev. LatinAm. Metal. Mater. 30, 60 (2010)
- 83. A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Int. J. Nanomed. 7, 6003 (2012)
- 84. J.J. Boruah, S.P. Das, S.R. Ankireddy, S.R. Gogoi, N.S. Islam, Green Chem. 15, 2944 (2013)
- 85. X. Liu, Z. Ma, J. Xing, H. Liu, J. Magn. Magn. Mater. 270, 1 (2004)
- 86. Y. Zhang, G.M. Zeng, L. Tang, D.L. Huang, X.Y. Jiang, Y.N. Chen, Biosens. Bioelectron. 22, 2121 (2007)