

Photo-generated conduction-band and shallow-trap electrons from UV irradiation on ethanol-adsorbed TiO₂ and N-TiO₂: an in situ infrared study

Jiawei Liu¹ · Long Zhang¹ · Xuesi Yao¹ · Steven S. C. Chuang¹

Received: 15 April 2017/Accepted: 16 May 2017/Published online: 19 July 2017 © Springer Science+Business Media B.V. 2017

Abstract The dynamic behaviors of conduction-band electrons (e_{CB}^{-}) and shallow-trap electrons (e_{ST}^{-}) generated from UV irradiation on ethanol-adsorbed TiO₂ and N-TiO₂ have been studied by in situ Fourier transform infrared spectroscopy (FTIR) in a diffuse reflectance mode at 300 K and 0.1 MPa. UV irradiation on ethanol-adsorbed TiO₂ resulted in the breaking of C-H bond of ethanol, the transfer of electrons from ethanol to the photo-generated holes on TiO₂ and N-TiO₂, the accumulation of e_{CB}^- and e_{ST}^- , and the formation of acetate on TiO_2 and the formation of acetate, formate, and formaldehyde on N-TiO₂. Accumulated e_{CB}^{-} and e_{ST}^{-} are manifested by broad and featureless IR absorbance spectra, which can be fitted into two models for estimation of their relative concentrations. N-doping onto TiO₂ produced a higher population of e_{ST} and generated e_{ST}^- and e_{CB}^- at a lower rate than TiO₂. The average energy level of e_{ST}^- was determined to be 0.30 eV for TiO₂ and 0.26 eV for N-TiO₂ below the conduction band. Upon terminating UV irradiation, the IR intensity of accumulated e_{CB}^- and e_{ST}^- showed a gradual decay in a time scale of minutes. This study demonstrated that the recombination of photo-generated electrons and holes can be a slow process on TiO_2 and N-TiO₂ in the presence of adsorbed ethanol under ambient conditions.

Special Issue of the 1st International Symposium on Photocatalysis at Fuzhou University.

Steven S. C. Chuang chuang@uakron.edu

¹ Department of Polymer Science, The University of Akron, Akron, OH 44325-3909, USA

Graphical Abstract

Keywords $TiO_2 \cdot N$ -doped $TiO_2 \cdot Conduction$ -band electrons \cdot Shallow-trap electrons \cdot Adsorbed ethanol \cdot FTIR \cdot Photocatalysis

Introduction

Photocatalysis involves light-induced generation of electron-hole pairs and transfer of electrons and holes to adsorbed species on the semiconductor catalyst surface [1-4]. The overall quantum efficiency of a photocatalysis process is governed by the rates of charge separation, interfacial charge transfer, trapping, and recombination [5-7]. Photo-generated electrons and holes must reach the catalyst surface sites to initiate the charge transfer reaction for converting the adsorbed reactants to products. Many photocatalytic reactions are limited by the rapid recombination of electrons and holes.

Although the time scales of photocatalytic steps range from femtoseconds to nanoseconds [8], the photo-generated electrons produced from adsorbed species can persist in TiO_2 for a long period of time at a scale of minutes to hours after terminating UV irradiation [9]. These long-life electrons, which do not get involved in either recombination with holes or transfer to the catalytic site, could stay in the conduction band and in the shallow/deep traps. The trapped electrons have been associated with Ti^{3+} of which optical and electrical properties are affected by its surrounding lattice [10].

Many studies on the generation and consumption of photo-generated electrons have been conducted at temperatures below 273 K and under vacuum [11–13], e.g., 90 K and 10^{-3} Pa vacuum which are not directly relevant to the working state of the photocatalyst. Thus, we have attempted to characterize the relative concentration of photo-generated electrons, conduction-band electrons, and shallow-trap electrons on TiO₂ and N-TiO₂ in the presence of adsorbed ethanol. Adsorbed ethanol is selected for this study because it possesses a high electron-donating potential and the structure of its adsorbed products has been well characterized [14]. N-TiO₂ is worthy of the investigation because of its visible light photocatalytic activity [15].

The objective of this study is to compare the rate of the generation and consumption as well as the relative concentration of e_{CB}^- and e_{ST}^- on TiO₂ and N-TiO₂ particles under typical conditions of photocatalysis (300 K, 0.1 MPa) using in situ IR spectroscopy. Experimental IR spectra, which were obtained as a function of time during UV irradiation, were fitted into two models, to obtain simulated IR intensities of e_{CB}^- and e_{ST}^- . N-doping onto TiO₂ increased the population of e_{ST}^- and decreased the rate of the generation of photo-generated electrons. The direct observation of the IR intensity of e_{CB}^- and e_{ST}^- under working state of photocatalysts will provide an in-depth insight into the role of various photo-generated charge carriers in photocatalysts.

Experimental

Materials preparation

P25 TiO₂ (Degussa), ammonia (NH₃, >99.98%, Praxair), and ethanol (99.5%, Fisher Scientific) were used as received. Nitrogen-doped TiO₂ (N-TiO₂) was prepared by treating P25 TiO₂ particles with ammonia (flow rate = $60 \text{ cm}^3/\text{min}$) at 723 K for 3 h.

Material characterization

Table 1 shows the characterization results of TiO₂ and N-TiO₂ catalysts. The nitrogen content of the N-TiO₂ catalyst was determined to be 5.4% (atomic ratio of N/Ti) by X-ray photoelectron spectroscopy (XPS) using PHI Versaprobe II scanning XPS microphobe with SmartSoft control package. The specific surface areas of P25 TiO₂ and N-TiO₂, measured by Micromeritics ASAP 2020 physisorption analyzer, were in the 40–50 m²/g range. UV–Vis spectroscopic analysis (Hitachi U-3900 research grade UV–Vis spectrophotometer) gave the band-gap energy of TiO₂ and N-TiO₂ at 3.20 and 2.48 eV, respectively, which is consistent with literature values [16]. The last three columns show the fitting parameters used in this study, which will be discussed later.

	N/Ti ratio	Band- gap (eV)	BET surface area (m ² /g)	Ethanol coverage (μmol/mg)	Fitting parameters of Eq. 2	Optical ionization energy of e_{ST}^- (eV)
					$ \frac{E_{\rm DI}}{(\rm eV)} = \frac{E_{\rm OP}}{E_{\rm OP}} (\rm eV) $	
TiO ₂	N/A	3.20	49.7	820	0.06 0.12-0.35	0.30
N- TiO ₂	5.4%	2.48	42.3	3780	0.06 0.12–0.35	0.26

Table 1 Properties of TiO₂ and N-TiO₂ photocatalysts

In situ FTIR study

The experimental apparatus for in situ IR study is illustrated in Fig. 1 and consists of (1) a mass-flow controller (Brooks Instrument 5850), (2) a FTIR spectrometer equipped with a MCT detector (Nicolet 6700, Thermo Scientific), which accommodates a diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) cell (Harrick Scientific), and (3) a Hg lamp as UV light source (Oriel 6286) the intensity of which was set to 25 mW/cm². For each in situ IR study, 20 mg sample of TiO₂ or N-TiO₂ was loaded in a sample holder with 0.7 cm diameter and 0.2 cm depth, as shown in Fig. 1. The DRIFTS cell was capped by a three-window dome. Two of the windows in the IR beam path were ZnSe which is IR-transparent, while the third one was made of CaF₂ to allow the UV irradiation to pass through. TiO₂ and N-TiO₂ were exposed to an Ar/ethanol flow at a flow rate of 60 cm³/min which was obtained by passing Ar flow through an ethanol saturator. Excess gaseous ethanol was purged out from the DRIFTS cell by flowing Ar for 20 min before the cell was switched to batch mode. IR spectra of the catalyst with adsorbed ethanol during UV irradiation were recorded as a function of time at a resolution of 4 cm^{-1} with four co-added scans. The IR spectra collected were presented in two forms: (1) the single beam (SB) spectrum, corresponding to a transmission spectrum, which was obtained by the Fourier transform of the IR interferogram; (2) absorbance (A) spectrum which was obtained by $A = -\log (I_t/I_0)$, where I_0 is the intensity of the background IR single beam spectrum of air and I_t is the intensity of the single beam spectrum collected at a specific time during UV irradiation.

Fig. 1 Experimental setup for in situ IR study

Results and discussion

Simulated IR spectra of conduction-band and shallow-trap electrons produced from UV irradiation on ethanol-adsorbed TiO₂

Figure 2a presents single beam spectra obtained from pristine TiO_2 and TiO_2 with adsorbed ethanol before, during, and after UV irradiation; Fig. 2b shows the

Fig. 2 a IR single beam spectra, **b** absorbance spectra of pristine TiO₂ sample and ethanol-adsorbed TiO₂ before, with, and after UV irradiation, and **c** simulated e_{CB}^- (*purple*), e_{ST}^- (*blue*), and IR (*black*) curves of the difference spectrum $A_4 - A_2$ (*red*). *Insets* (*i*) surface hydroxyls of pristine TiO₂; (*ii*) surface adsorbed species before and after UV irradiation; (*iii*) difference spectrum obtained from $A_3 - A_2$. (Color figure online)

2 Springer

corresponding absorbance spectra. The pristine TiO₂ sample gives a broad H₂O stretching at 3200–3700 cm⁻¹ and a bending band at 1640 cm⁻¹. The insets in Fig. 2b show the surface hydroxyl groups of pristine TiO₂ sample and the adsorbed ethanol before and after the reaction, as well as the difference spectra between before and after UV irradiation. The assignments [14] of these various bands are listed in Table 2. The major IR-observable product generated after the UV irradiation is acetate at 1438 cm⁻¹. UV irradiation of TiO₂ with adsorbed ethanol resulted in an increase in the IR absorption which shows a nearly flat single beam spectrum in Fig. 2a and a featureless absorption spectrum in Fig. 2b. The featureless absorption spectrum is a result of the interactions of IR irradiation with shallow-trap electrons (e_{ST}) and conduction-band electrons (e_{CB}).

The specific effect of UV irradiation can be further highlighted by the difference spectrum $A_4 - A_2$ in Fig. 2c. To determine the contribution of e_{ST}^- and e_{CB}^- to the featureless difference spectra, we have adopted the following elaborated procedure [13] to obtain simulated e_{ST}^- and e_{CB}^- spectra using MATLAB.

- (1) Smoothing the experimental IR spectrum with the Huber function to eliminate the outlying points in a curve. For example, the spikes and minor peaks are removed in this step for the following data fitting process.
- (2) Obtaining the simulated e_{CB}^{-} spectrum by Eq. 1. The IR absorbance produced by the conduction-band electrons, ΔA_{CB} , can be described by the following:

$$\Delta A_{\rm CB} = A \tilde{\nu}^{-p} \tag{1}$$

where \tilde{v} is the wavenumber, and *p*: is the scattering factor. The value of *p* for IR absorbance ranges from 1.5 to 1.7 [17]. *p* = 1.7 was found to give the best fit and was used to generate all simulated e_{CB}^- spectra.

(3) The simulated IR absorbance generated by e_{ST}^- , ΔA_{ST} , were obtained by Eq. 2 [13]:

Wavenumber (cm ⁻¹)	Species	Vibrational mode
1380	C ₂ H ₅ O _{ad}	$\delta_{\rm s}({\rm CH_2})$
1438	CH ₃ COO ⁻ _{ad}	$v_{\rm s}({\rm COO})$
1449	C ₂ H ₅ O _{ad}	$\delta_{as}(CH_2)$
1549	CH_3COO^{ad}	$v_{\rm as}({\rm COO})$
1577	HCOO _{ad}	$v_{\rm as}({\rm COO})$
1618	HCHO _{ad}	v(C=O)
1640	H_2O_{ad}	$\delta(OH)$
3633	Ti-OH (triple-bonded)	<i>v</i> (OH)
3663	Ti-OH (double-bonded)	v(OH)
3696	Ti-OH (linear)	<i>v</i> (OH)

Table 2	Band assignments of
adsorbed	surface species on
TiO_2 and	N-TiO ₂

$$\Delta A_{\rm ST} = A_0 \sum_{i=1}^{24} \alpha_i \frac{(E - E_{\rm OP}^i)^{1.5}}{E(E - E_{\rm OP}^i + E_{\rm DI})^4}$$
(2)

where α : a weighting factor defining the contributions of the IR absorbance resulted from the shallow-trap electrons with different optical ionization energies, E_{OP}^i . E_{OP}^i : the optical ionization energy (i.e., the photon energy required to excite an electron from a trap). E_{DI} : the donor ionization energy (i.e., the thermal energy required to generate a carrier).

A set of values for these parameters in Table 1 were selected to obtain the best fit simulated IR absorbance curve. The *Eop* value, which corresponds to the energy level of the trapped electron, can be obtained from the maximum point of the simulated e_{ST}^{-} curve.

The simulated IR spectrum which was obtained from the summation of simulated e_{ST}^- and e_{CB}^- curves (shown in Fig. 2c), is a perfect match with experimental IR spectrum in the region of 1300–3300 cm⁻¹, which is the range of energy with most optical ionization.

Figure 3 shows the difference spectra of TiO_2 with adsorbed ethanol collected as a function of time upon UV irradiation. The difference spectrum at t = 60 s corresponds to A_4 in Fig. 2c.

Figure 3b, c show the evolution of the simulated e_{CB}^- and e_{ST}^- spectra resolved from difference spectra in Fig. 3a using Eqs. 1 and 2. The intensities of e_{CB}^- and $e_{ST}^$ absorption curves dramatically increased upon UV irradiation. The rate of increase slowed down after t = 3 s and then reached a plateau after around 12 s. These variations are plotted in Fig. 5 for comparison between TiO₂ and N-TiO₂.

The monotonic increase at the lower wavenumber region in e_{CB}^- spectra in Fig. 3b results from the Drude absorption of free electrons at the conduction band, which can be attributed to the intraband and interband transitions of the accumulated electrons [18, 19]. The peak (i.e., maxima) of the e_{ST}^- curves shifted from low to high wavenumber as their intensities grew, as shown in Fig. 3c. Higher wavenumbers of the peaks of e_{ST}^- curves correspond to higher IR photon energies which required to excite electrons from the shallow trap to conduction band.

Simulated IR spectra of conduction-band and shallow-trap electrons produced from UV irradiation on ethanol-adsorbed N-TiO₂

Figure 4 shows the IR spectra obtained from ethanol-adsorbed N-TiO₂ under UV irradiation. The spectra of pristine TiO₂ and N-TiO₂ in the region between 3550 and 3750 cm⁻¹, shown in Figs. 2b and 4b, were attributed to surface hydroxyl (–OH) groups: linear –OH at 3693 cm⁻¹, bridged (double-bonded) –OH at 3663 cm⁻¹, and triple-bonded –OH at 3633 cm⁻¹ [6]. Table 3 compares the intensities of these bands in Figs. 2b and 4b and revealed that the N-doping increased the population of double- and triple-bonded OH, which may serve as the sites where ethanol adsorbed [20]. The IR features of these OH groups vanished upon ethanol adsorption. Comparison between the IR spectra of TiO₂ and N-TiO₂ shows that N-TiO₂ had a

Fig. 3 a Difference spectra, **b** e_{CB}^- and **c** e_{ST}^- simulated absorption curves of ethanol-adsorbed TiO₂ during UV irradiation process

Fig. 4 a IR single beam spectra, **b** absorbance spectra of pristine N-TiO₂ sample and ethanol-adsorbed N-TiO₂ before, with, and after UV irradiation, and **c** simulated e_{CB}^- (*purple*), e_{ST}^- (*blue*), and IR (*black*) curves of the difference spectrum $A'_4 - A'_2$ (*red*). *Insets* (*i*) surface hydroxyls of pristine N-TiO₂; (*ii*) surface adsorbed species before and after UV irradiation; (*iii*) difference spectrum obtained from $A'_3 - A'_2$. (Color figure online)

higher intensity of C–H bonding in the range of $2800-3000 \text{ cm}^{-1}$, suggesting the presence of a higher coverage of ethanol on N-TiO₂. By calculating the ratio of the C–H peak areas of the two catalysts and comparing with the calibration results from our previous work [21], the ethanol coverage at room temperature was estimated to be 820 µmol/mg on TiO₂ and 3780 µmol/mg on N-TiO₂.

	Linear –OH (3693 cm ⁻¹) (%)	Double-bonded –OH (3663 cm ⁻¹) (%)	Triple-bonded –OH (3633 cm ⁻¹) (%)	
TiO ₂	54.3	19.6	26.1	
N-TiO ₂	31.0	33.3	39.7	

Table 3 Hydroxyl groups distribution on TiO₂ and N-TiO₂ samples

Adsorbed ethanol on the surface of the photocatalysts at room temperature formed both molecularly adsorbed $CH_3CH_2OH_{ad}$ and dissociatively adsorbed $CH_3CH_2O_{ad}$ [22]. Although $CH_3CH_2OH_{ad}$ and $CH_3CH_2O_{ad}$ exhibited similar bands of C–H stretching vibrations at 2971 and 2931 cm⁻¹, their IR spectra in the region of 1000–1600 cm⁻¹ exhibited different features. The most significant difference between TiO₂ and N-TiO₂ is that TiO₂ produced $CH_3COO_{ad}^-$ while N-TiO₂ produced three products, $CH_3COO_{ad}^-$, $HCOO_{ad}^-$, and $HCHO_{ad}$. The formation of $CH_3COO_{ad}^-$ from adsorbed ethanol can be considered as a key step for the injection of electrons from adsorbed ethanol to TiO₂/N-TiO₂, resulting in the accumulation of e_{CB}^- and e_{ST}^- .

$$CH_3CH_2OH_{ad} + nTiO_2 \rightarrow CH_3COO_{ad}^- + 3H^+ + 2e^- + nTiO_{(2-1/n)}$$
(3)

The formation of proton has been verified by photo-oxidative degradation study of organics under aqueous condition [23]. $CH_3COO_{ad}^-$ may undergo further reactions to produce $HCOO_{ad}^-$ and $HCHO_{ad}$ as shown in our earlier studies [14].

Figure 5 shows the experimental IR absorbance, e_{ST}^- and e_{CB}^- 's intensity profiles over time and the relative distribution of e_{ST}^- and e_{CB}^- for TiO₂ and N-TiO₂. The experimental and simulated IR intensity profiles were taken at the IR intensity at 2000 cm⁻¹, which has been used as an index for the population of photo-generated electrons because they are usually not influenced by other bands related to ethanol [22]. High intensity ratio of e_{ST}^-/e_{CB}^- on N-TiO₂ suggests that our N-TiO₂ may contain more oxygen vacancies than TiO₂ because the shallow-trap band is known to be closely related to the oxygen vacancies in the TiO₂ structure [24].

The change of e_{CB}^- intensity led that of e_{ST}^- on both TiO₂ and N-TiO₂, supporting the previous proposed steps [25].

step (1)
$$\text{TiO}_2 + hv \rightarrow e_{CB}^- + h_{VB}^+$$

- step (2) $e_{CB}^- \rightarrow e_{\text{shallow trap with low } Eop}^-$
- step (3) $e_{CB}^- \rightarrow e_{\text{shallow trap with high } Eop}^-$
- step (4) $e_{tran}^- + h^+ \rightarrow \text{annihilation} + \text{heat}$

 e_{CB}^{-} produced from UV irradiation was transferred to shallow trap sites, shown in step (2). Step (2) occurred at the first second after UV irradiation. After the first

Fig. 5 The intensity of I_{2000} , e_{CB}^{-} and e_{ST}^{-} as a function of UV irradiation time for ethanol-adsorbed TiO₂ and N-TiO₂ (*insets* show the normalized rate of change in the first 6 s)

second, the step (3) began dominating as indicated by the shifting of the peak of the e_{ST}^- curves to high wavenumber (i.e., high optical ionization energy). The optical ionization energy for both TiO₂ and N-TiO₂ are plotted in Fig. 6 for comparison [25]. Termination of UV irradiation led to the decay of e_{CB}^- and e_{ST}^- curves, indicating the rate of charge carrier (e⁻ and h⁺) recombination is higher than their generation. The decay curves levelled off after 120 s and did not return to the base line, indicating the accumulation of e_{CB}^- and e_{ST}^- and the long lifetime of electrons in the existence of ethanol.

Table 4 summarizes a number of related studies that were carried out under vacuum or aqueous conditions. These results showed accumulated e_{CB}^- and e_{ST}^- can persist for a long period of time. Our studies showed the accumulated e_{CB}^- and e_{ST}^- can co-exist with adsorbed ethanol and their products for a long period of time at 0.1 MPa and 300 K. The negative charges of accumulated e_{CB}^- and e_{ST}^- could be

Fig. 6 The optical ionization energy of e_{ST}^- as a function of UV irradiation time

Technique	Sample	Condition	Comments
Thermoluminescence and thermally stimulated currents	TiO ₂ crystal (1 mm thickness)	90–160 K	Filling of traps increased lifetime of electrons [12]
Electron paramagnetic resonance (EPR)	TiO ₂ particle	90 K, 10 ⁻³ Pa	Trapped electrons persist longer than 5 h at 90 K; major fraction of photo-excited electrons remain in the conduction band [11]
Attenuated total reflectance (ATR)	TiO ₂ film (1 μm thickness)	Aqueous	e_{ST}^- and e_{CB}^- persist for hours [26]
Transmission-IR	TiO ₂ particle	77 K, 10 ⁻⁶ Pa	Organic hole scavenger increases the lifetime of photo generated electrons to hours [13]
DRIFTS (this work)	Photocatalysts in various forms, including particle, film, liquid, etc.	Ambient or any desired conditions	e_{ST}^- has shorter lifetime than e_{CB}^-

Table 4 Comparison of experimental techniques and conditions used in this field

balanced by protons on TiO₂ and N-TiO₂ of which sites for combination of H⁺ and e_{CB}^{-}/e_{ST}^{-} may be blocked by adsorbed ethanol and its products.

The rise and fall of the IR intensity of e_{CB}^- and e_{ST}^- reflect their relative generation and consumption rates. The presence of high coverage of H₂O inhibited accumulation of both e_{CB}^- and e_{ST}^- on adsorbed ethanol on TiO₂ [14]. H₂O could shift the oxidation of adsorbed ethanol from a hole-initiated reaction to an electroninitiated reaction, resulting in a high rate of consumption of photo-generated electrons. These photo-generated electrons can be consumed by exposing to oxygen at a high rate, evidenced by a sharp decrease in their IR intensity [9]. The results of these studies suggest that photo-generated electrons are readily accessible to specific reactants. The key fundamental issue for the future study is identification of active sites where the transfer of e_{CB}^- and e_{ST}^- to adsorbed reactants occur.

Conclusions

Dynamic behaviors of photo-generated e_{CB}^- and e_{ST}^- on TiO₂ and N-TiO₂ have been studied by fitting experimental IR spectra to simulated IR curves of e_{CR}^- and e_{ST}^- at 300 K and 0.1 MPa. N-doping on TiO₂ produced a higher population of e_{ST}^{-} and generated e_{ST}^- and e_{CB}^- at a lower rate than TiO₂. The rise of e_{CB}^- curve leads that of e_{ST}^- , indicating e_{CB}^- is produced prior to e_{ST}^- . This observation further suggests that the trapped electrons were produced by the injection of e_{CB}^{-} to the trapped sites. Upon UV irradiation, e_{CB}^{-} filled in the trap sites of which energy levels are closer to the conduction band first and then fill in those farther away. Under constant UV irradiation, the average energy level of e_{sT}^{-} was determined to be 0.30 eV for TiO₂ and 0.26 eV for N-TiO₂ below conduction band. Upon terminating UV irradiation, the IR intensity of accumulated e_{CB}^{-} and e_{ST}^{-} at trap sites showed a gradual decay in a time scale of minutes. This study showed that the photo-generated electrons and holes can exist at a time scale of minutes in TiO₂ and N-TiO₂ in the presence of adsorbed ethanol under ambient conditions. To expand the practical applications of TiO₂-based materials, the investigations on the specific roles of e_{CR}^{-} and e_{ST}^{-} in photocatalysis are warranted.

Acknowledgements This work was supported by the University of Akron Polymer Science Faculty Initiation Fund. The authors thank Ms. Jie Yu and Mr. P. Patanapaniswa for valuable discussions.

References

- J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO₂ photocatalysis: mechanisms and materials. Chem. Rev. **114**(19), 9919–9986 (2014)
- M. Anpo, Photocatalysis on small particle TiO₂ catalysts. reaction intermediates and reaction mechanisms. Res. Chem. Intermed. 11(1), 67 (1989)
- M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96 (1995)
- A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO₂ surfaces: principles, mechanisms, and selected results. Chem. Rev. 95(3), 735–758 (1995)
- 5. M. Anpo, Utilization of TiO_2 photocatalysts in green chemistry. Pure Appl. Chem. 72, 1265 (2000)
- 6. R. Daghrir, P. Drogui, D. Robert, Modified TiO_2 for environmental photocatalytic applications: a review. Ind. Eng. Chem. Res. **52**(10), 3581–3599 (2013)
- M. Yan, F. Chen, J. Zhang, M. Anpo, Preparation of controllable crystalline titania and study on the photocatalytic properties. J. Phys. Chem. B 109(18), 8673–8678 (2005)
- A. Yamakata, T. Ishibashi, H. Onishi, Kinetics of the photocatalytic water-splitting reaction on TiO₂ and Pt/TiO₂ studied by time-resolved infrared absorption spectroscopy. J. Mol. Catal. A Chem. 199(1–2), 85–94 (2003)
- 9. F. Guzman, S.S.C. Chuang, Tracing the reaction steps involving oxygen and IR observable species in ethanol photocatalytic oxidation on TiO₂. J. Am. Chem. Soc. **132**(5), 1502–1503 (2010)

- F. Amano, M. Nakata, A. Yamamoto, T. Tanaka, Effect of Ti³⁺ ions and conduction band electrons on photocatalytic and photoelectrochemical activity of rutile titania for water oxidation. J. Phys. Chem. C 120(12), 6467–6474 (2016)
- T. Berger, M. Sterrer, O. Diwald, E. Knoezinger, D. Panayotov, T.L. Thompson, J.T. Yates Jr., Lightinduced charge separation in anatase TiO₂ particles. J. Phys. Chem. B 109(13), 6061–6068 (2005)
- 12. A.K. Ghosh, F.G. Wakim, R.R. Addiss, Photoelectronic processes in rutile. Phys. Rev. 184(3), 979–988 (1969)
- D.A. Panayotov, S.P. Burrows, J.R. Morris, Infrared spectroscopic studies of conduction band and trapped electrons in UV-photoexcited, H-atom n-doped, and thermally reduced TiO₂. J. Phys. Chem. C 116(7), 4535–4544 (2012)
- Z. Yu, S.S.C. Chuang, In situ IR study of adsorbed species and photogenerated electrons during photocatalytic oxidation of ethanol on TiO₂. J. Catal. 246(1), 118–126 (2007)
- Y. Cong, J. Zhang, F. Chen, M. Anpo, Synthesis and characterization of nitrogen-doped TiO₂ nanophotocatalyst with high visible light activity. J. Phys. Chem. C 111(19), 6976–6982 (2007)
- A. Samokhvalov, Hydrogen by photocatalysis with nitrogen codoped titanium dioxide. Renew. Sustain. Energy Rev. 72, 981–1000 (2017)
- H. Zhao, Q. Zhang, Y.-X. Weng, Deep Surface trap filling by photoinduced carriers and interparticle electron transport observed in TiO₂ nanocrystalline film with time-resolved visible and mid-IR transient spectroscopies. J. Phys. Chem. C **111**(9), 3762–3769 (2007)
- T. Berger, J.A. Anta, V. Morales-Flórez, Electrons in the band gap: spectroscopic characterization of anatase TiO₂ nanocrystal electrodes under fermi level control. J. Phys. Chem. C 116(21), 11444–11455 (2012)
- G. Boschloo, D. Fitzmaurice, Electron accumulation in nanostructured TiO₂ (anatase) electrodes. J. Phys. Chem. B 103(37), 7860–7868 (1999)
- H. Lin, J. Long, Q. Gu, W. Zhang, R. Ruan, Z. Li, X. Wang, In situ IR study of surface hydroxyl species of dehydrated TiO₂: towards understanding pivotal surface processes of TiO₂ photocatalytic oxidation of toluene. Phys. Chem. Chem. Phys. **14**(26), 9468–9474 (2012)
- M. Ghosh, M. Lohrasbi, S.S.C. Chuang, S.C. Jana, Mesoporous titanium dioxide nanofibers with a significantly enhanced photocatalytic activity. ChemCatChem 8(15), 2525–2535 (2016)
- A. Rismanchian, Y.-W. Chen, S.S.C. Chuang, In situ infrared study of photoreaction of ethanol on Au and Ag/TiO₂. Catal. Today 264, 16–22 (2016)
- E. Pelizzetti, C. Minero, Mechanism of the photo-oxidative degradation of organic pollutants over TiO₂ particles. Electrochim. Acta 38(1), 47–55 (1993)
- 24. G. Mattioli, F. Filippone, P. Alippi, A. Amore Bonapasta, Ab initio study of the electronic states induced by oxygen vacancies in rutile and anatase TiO₂. Phys. Rev. B 78(24), 241201 (2008)
- S.H. Szczepankiewicz, J.A. Moss, M.R. Hoffmann, Electron traps and the stark effect on hydroxylated titania photocatalysts. J. Phys. Chem. B 106(31), 7654–7658 (2002)
- D.M. Savory, A.J. McQuillan, IR spectroscopic behavior of polaronic trapped electrons in TiO₂ under aqueous photocatalytic conditions. J. Phys. Chem. C 118(25), 13680–13692 (2014)