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Abstract Small poly-functionalized heterocycles are frequently found in phar-

macophores and play important roles in drug discovery. Heterocyclic ketene ami-

nals (HKAs) are versatile building blocks for the synthesis of a variety of

heterocyclic compounds. In recent years, there has been significant progress in the

chemistry of HKAs. All previous work focused on the developments of HKAs in

reaction type. This review focused on the developments of HKA-based synthesis of

various heterocyclic nuclei since 2002. We believe this will give some insights and

help to bring about new ideas for further research.
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Introduction

Poly-functionalized heterocycles are frequently found in pharmacophores and play

important roles in drug discovery. Heterocyclic ketene aminals (HKAs), also

referred to as cyclic ketene N,N-acetals or cyclic 1,1-enediamines, are powerful and

versatile building blocks in synthetic organic chemistry [1]. Due to the conjugation

of the amino group and the electron-withdrawing group, the nucleophilicity of a-
carbon is highly enhanced. As the amino group can serve as the second nucleophilic

center, HKAs are often used to react with bis-electrophiles to construct various

types of heterocyclic compounds. Bis-electrophiles, such as ethyl bromoacetate [2,

3], unsaturated carbonyl compounds [4–10], keto esters [11] and active carbonyl

compounds [12], have been utilized successfully for fused heterocyclic preparation.
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In recent years, there has been significant progress in the chemistry of HKAs. All

previous work focused on the developments of HKAs in reaction type [1, 13]. This

microreview focused on the developments of HKA-based synthesis of various

heterocyclic nuclei since 2002. We believe this review will give some insights and

help to bring about new ideas for further research.

Synthesis of pyridine- or pyridone-fused 1,3-diazaheterocycles

Bicyclic pyridine or pyridone motifs are of general interest in medicinal chemistry

with therapeutic properties. When HKAs react with 1,3-biselectrophiles, such as

unsaturated carboxylic acid esters, acrylonitrile, itaconic anhydride, etc., pyridine-

or pyridone-fused 1,3-diazaheterocycles were usually produced as a result. In 2007,

our group developed a simple method for the synthesis of polyfunctionalized

pyridine-fused 1,3-diazaheterocycles 3 via reaction of HKAs 1 with bis(-

methylthio)methylene malononitrile 2 (Scheme 1) [14]. The reaction proceeded in

a cascade way following a sequence of Michael addition, elimination and annulation

by nucleophilic addition of the secondary amino group to the nitrile group. The

yields of the reactions were largely dependent on the ring size of the HKAs. Six-

membered HKAs usually gave good to excellent yields.

In 2008, a novel method for the synthesis of tetrahydropyridine-fused 1,3-

diazaheterocycles 5 was developed by our group via reaction of HKAs 1 with

Baylis–Hillman acetates 4 (Scheme 2) [15]. The reaction results were strongly

dependent on the conditions. Product 5 was obtained as the sole product when the

solvent was switched from polar tetrahydrofuran (THF) to nonpolar CH2Cl2 with

the decrease of temperature to 0 �C.
2-[3-oxoisobenzofuran-1(3H)-ylidene]malononitrile 6 was an ideal 1,3-biselec-

trophile containing an exocyclic double bond for the synthesis of spiro compounds.

An efficient route for the synthesis of polyfunctionalized spiro dihydropyridine-

fused 1,3-diazaheterocycles 7 (Scheme 3) [16] was developed by the reaction of

HKAs with compound 6.
With the emergence of high-throughput screening, multicomponent reactions

(MCRs) are gaining importance in synthetic organic chemistry, especially in

pharmaceutical chemistry. 1,3-Biselectrophiles may be in a clear form, or they can

be created in situ. In 2006, our group first reported the one-pot synthesis of

dihydropyridone-fused 1,3-diazaheterocycles 8 employing HKAs, Meldrum’s acid

and aldehyde as components (Scheme 4) [17]. The reaction started with the

NH

NH

R
O

n
xylene, reflux

NH

N

R
O

n

CN

SMe

HNn = 0, 1

SMe

SMeNC

NC

321

Scheme 1 Synthesis of pyridine-fused 1,3-diazaheterocycles
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condensation of Meldrum’s acid with the aldehyde to afford alkylidene Meldrum’s

acid, which then reacted with HKAs via an aza–ene reaction, imine–enamine

tautomerization, cyclocondensation and decarboxylation to afford the final product

8. The structures of the aldehydes had an obvious influence on the reactivity and

yields.

When acetone was used as a carbonyl component, compound 9 [18] was

produced by employing L-proline as a catalyst (Scheme 5). In the tautomerization of

amidine and enamine, most HKA derivatives adopt the enamine form according to
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their spectrum. Interestingly, due to a steric effect, compound 9 existed exclusively

as the amidine form rather than the enamine form.

Following a similar strategy, heating a mixture of HKAs with 1,3-cyclohexane-

dione derivatives and salicylaldehyde derivatives in water afforded polycyclic 1,4-

dihydropyridine derivatives 10 (Scheme 6) in high yield [19]. Alternatively, a four-

component reaction of aromatic aldehydes, diamines, nitro ketene dithioacetal and

cyclic 1,3-diones or malononitrile afforded octahydro-imidazo[1,2-a] quinolin-6-

ones 11 (Scheme 7) [20] or polyfunctionalized 1,4-dihydropyridine-fused 1,3-

diazaheterocycles 12 (Scheme 8) [21] in good yields. When HKAs were treated

with aldehydes and 2-hydroxy-1,4-naphthoquinone under solvent-free conditions,

benzo[g]imidazo[1,2-a]quinolinediones 13 were formed via Et3N-catalyzed annu-

lation (Scheme 9) [22].

Thus, refluxing a mixture of different types of HKAs, isatins and ethyl

trifluoroacetate (Scheme 10) [23] or indan-1,3-dione (Scheme 11) [24] catalyzed by

piperidine or p-toluenesulfonic acid (p-TSA) afforded structurally diverse

spirooxindoles. Alternatively, a four-component reaction of 1,n-diamines, nitro

ketene dithioacetal, isatin derivatives and malononitrile in the presence of 10 mol%

of piperidine under reflux in ethanol produced highly functionalized spirooxindole

derivatives 16 (Scheme 12) [25].

2-(2-Chloroaroyl)methyleneimidazolidines 17 represent a class of polyfunctional

scaffolds with 4 reactive sites. The halogen atom on the aromatic ring may act as

potential leaving group subjected to an intramolecular SNAr reaction. When treated

with 1 equiv of K2CO3 in dimethylformamide (DMF) at 100 �C, the three-

component condensation products 18 or 19 were subject to intramolecular

nucleophilic aryl substitution to afford tetracyclic benzo[b]imidazo[1,2,3-ij] [1, 8]

naphthyridines (Scheme 13) [26, 27].

In 2011, Li’s group reported 2-(2-chloroaroyl)methyleneimidazolidines 22 could

react with allenic esters 23 to afford imidazo(pyrido)[1,2-a]pyridines 24 [28] via

1,4-diazabicyclo[2.2.2] octane (DABCO)-catalyzed tandem annulation, and imi-

dazo(pyrido)[3,2,1-ij] [1, 8]-naphthyridines 25 (Scheme 14) were formed when

treating with 1 equiv of K2CO3 in DMF at 100 �C.
They also developed an efficient four-component protocol to synthesize

imidazo[1,2-a]pyridines 27 and imidazo[1,2,3-ij] [1, 8] naphthyridine derivatives

28 (Scheme 15) from HKAs 26, aldehydes, diketene 29, and amines via cascade

reactions [29]. Six sequential reactions including diketene ring-opening,
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Knoevenagel condensation, aza–ene reaction, imine–enamine tautomerization,

cyclocondensation and intramolecular SNAr were involved in the one-pot

preparation.

Ram [30] reported when HKAs 30 were treated with suitably functionalized 2H-

pyran-2-one 31, almost equal amounts of imidazo[1,2-a]pyridine 32 and pyranone

derivative 33 (Scheme 16) were obtained. However, when aroyl-substituted HKAs

1 were used, the bicyclic intermediate 34 underwent photocyclization to afford

tetracyclic aza-anthracenones 35 (Scheme 17) [31].

In 2010, Xu and coworkers reported dissolution of compounds 36 in acetonitrile

at room temperature led to the formation of two highly congested hexahydroim-

idazo[1,2-a]pyridine derivatives 37 and 38 (Scheme 18) formed by aza-Diels–Alder

reaction [32].

Junjappa [33] reported heating a mixture of HKAs 39 with 1,3-biselectrophiles

itaconic anhydride afforded functionalized bicyclic 1,2,3,4-tetrahydropyridones 40
(Scheme 19) in good yield. Alizadeh described an efficient synthesis of highly

substituted pyrido[1,2-a]-fused 1,3-diazaheterocycles (Schemes 20, 21) via reaction

between nitroketene aminals generated in situ from the addition of various diamines

to nitroketene dithioacetal and itaconic anhydride [34] or dibenzylideneacetone

[35]. Similar three-component reaction of diamines, nitroketene dithioacetal and

alkyl prop-2-ynoates afforded 2-oxopyridine-fused 1,3-diazaheterocycles 41
(Scheme 22) [36].

An efficient synthesis of 1,4-dihydropyridine-fused 1,3-diazaheterocycles 42
(Scheme 23) was developed by reaction of nitroketene aminals generated in situ

from the addition of various diamines to nitroketene dithioacetal and

2-iminochromenes in good yield [37].

b-Keto ester enol tosylates 43 reacted with HKAs 39 as a 1,3-biselectrophiles in

the presence of a base to afford bicyclic pyridones 44 (Scheme 24) in excellent

yields [38]. The reaction probably proceeded via a sequence of Michael addition,

elimination, imine–enamine tautomerization and cyclocondensation.

Lin’s group developed an efficient synthesis of highly substituted bicyclic

pyridines 45 (Scheme 25) by clocondensation of HKAs 39, triethoxymethane, and

ethyl trifluoroacetate under solvent-free and catalyst-free conditions in excellent

yields [39]. It was found HKA with various substituents and different ring sizes

were all good substrates for the one-pot cyclocondensation reaction.

One-pot reaction of HKAs 1, triethoxymethane and nitroalkenes 46 in the

absence of catalyst and solvent gave dihydropyridine-fused diazaheterocycles 47
(Scheme 26) in high yield [40].

n = 1, 2

KOH/DMF

O O

CN
SMe

Ar

N

NH

Ar
CN

N
H

H
N

n

O O

R

R

n
N

NH

Ar
CN

O

R

n
hv

1 3431 35

Scheme 17 Synthesis of aza-anthracenones

Recent developments in the heterocyclic ketene aminal… 5623

123



N N

NCl

O2N X
R

MeCN

N N

NCl

O2N

X

R

NO2

X

R

N

N

N

Cl

N N

NCl

O2N

X

R

NO2

X

R

N

N

N

Cl

endo exo
36 8373

Scheme 18 Synthesis of hexahydroimidazo[1,2-a]pyridine derivatives

N
H

Z R

n

n = 1, 2

N

Z R

n

O
O

O

DMF

O
HOOC

0493

°C

Scheme 19 Synthesis of bicyclic 1,2,3,4-tetrahydropyridones

NH2

NH2

n

n = 1, 2, 3

N

H
N NO2

n

O
O

O

DMF

O
HOOC

S

S NO2

H

R

R
R

R °C

Scheme 20 Synthesis of pyrido[1,2-a]-fused 1,3-diazaheterocycles

NH2
H2N

S

S NO2

H
n

O

PhPh N

N
HO2N

Ph

OH

Ph

N

N
HO2N

Ph

Ph

OH

Scheme 21 Synthesis of highly substituted pyrido[1,2-a]-fused 1,3-diazaheterocycles

THF

41

NH2
H2N

S

S NO2

H
n

N

N
HO2N

R'

n
CO2RR'

O

Scheme 22 Synthesis of 2-oxopyridine-fused 1,3-diazaheterocycles

5624 P. H. Yang

123



In 2013, they also found HKAs 1 reacted with 4-arylmethylene-2-phenyloxazol-

5(4H)-ones 48 in the presence of acetic acid to give bicyclic pyridone derivatives 49
(Scheme 27) [41]. Acid catalysts were essential for the reaction.
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In 2014, an efficient method for synthesis of pyrrolo[3,4-e]pyridine derivatives

51 (Scheme 28) was developed by reaction of HKAs 1 with 2,3-dioxopyrrolidines

50 [42]. The reaction proceeded smoothly in a short time under catalyst-free

conditions. A mechanism involving aza–ene, imine–enamine tautomerization

followed by cyclization was proposed.

Synthesis of fused pyrrole derivatives

The pyrrole nucleus is featured in many natural products and drugs. When HKAs

reacted with 1,2-bis-electrophiles, such as alkyl glyoxylate, N-alkyl maleimide, etc.,

multi-functional fused pyrroles were usually produced as a result. When HKAs 1
were treated with N-alkyl maleimide 52 in EtOH at room temperature, bicyclic

pyrrolidinone 53 was formed via aza–ene and imine–enamine tautomerization

followed by lactamization (Scheme 29) [43]. The reaction proceeded smoothly

under catalyst-free conditions. It was interesting to note ring sizes had an effect on

the outcome of the reaction and six-membered HKAs were proved to be the most

reactive.

Lin’s group reported HKAs 1 reacted with arylglyoxal monohydrates 54 and

cyclohexane-1,3-diones 55 in water–ethanol medium under catalyst-free conditions

[44]. The kinetically controlled product 56 was synthesized within 1 h (Scheme 30),

and would transform into thermodynamically controlled products 57 over an

additional 5 h (Scheme 31).

Similarly, HKAs 1 reacted with arylglyoxal monohydrates 54 and 1,3-diphenyl-

propane-1,3-dione under catalyst-free conditions [45] in ethanol to yield multi-

functional fused pyrroles 58 in high yield (Scheme 32).

Thus, refluxing a mixture of HKAs 1, arylglyoxal monohydrate 54, and indoles

59 in ethanol in the presence of acetic acid led to the formation of highly

functionalized bicyclic pyrrole derivatives 60 (Scheme 33) [46].

Yan discovered HKAs 1 reacted with acenaphthylene-1,2-dione 61 and ethyl

trifluoroacetylacetate to afford polycyclic pyrroles 62 bearing four consecutive

quaternary stereocenters (Scheme 34) [47]. Most of the products were generated

with diastereoselectivity up to 99:1. An efficient synthesis of oxa-aza[3.3.3]propel-

lanes 63 (Scheme 35) [48] were developed via one-pot four-component reaction

involving ninhydrin, malononitrile, diamines and nitroketene dithioacetal. The

reaction proceeded by an attack of nitroketene aminals generated in situ from the
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addition of various diamines to a Knoevenagel adduct of malononitrile with

ninhydrin followed by sequential cyclization.

It was found that six- or seven-membered HKAs reacted with ethyl 2,3-

diiodoacrylate or diethyl 2,3-diiodofumarate 64 to yield bicyclic pyrroles 65
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catalyzed by PdCl2 in the presence of Cs2CO3 [49]. However, when five-membered

HKAs were used as substrates, a series of bicyclic pyridones 66 were obtained under
the same conditions as above in moderate yield (Scheme 36). This may be due to

variations in the nucleophilicity of HKAs with different ring sizes. Usually, six-

membered HKAs were more reactive than other HKAs.
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Alizadeh reported three-component reaction of nitroketene dithioacetal with 1,n-

diamines in the presence of diaroylacetylene 67 or acetylenedicarboxylate 68 afforded
fully substituted 1H-pyrrolo[1,2-a]-fused 1,3-diazaheterocycles (Scheme 37) [50] or

bicyclic pyrrolidinones 69 (Scheme 38) [51] in good to excellent yields. They also

reported [52] three-component reaction of 1,n-diamines, nitroketene dithioacetal and

ninhydrin in aqueous media gave indeno[20,10:4,5]pyrrolo [1,2-a]-fused 1,3-diaza-

heterocycles 70 in good yields (Scheme 39).

Synthesis of indole derivatives

The indole skeleton is one of the most abundant and relevant heterocycles in natural

products and drugs. In 2010, Lin’s group developed an efficient synthesis of 1,3-

diazaheterocycle-fused [1,2-a] indoles 72 (Scheme 40) by refluxing a reaction

mixture of HKAs 1 and 1,4-benzoquinones 71 in the presence of acetic acid via a

Nenitzescu strategy [53]. The reaction started with an attack of HKAs at the a-
position of 1,4-benzoquinones 71, then the adduct underwent imine–enamine

tautomerization, subsequent condensation and elimination of H2O to afford the

target compound.

In 2014 it was found when HKAs 1 were treated with quinones 73 in ethanol at

room temperature, indolone derivatives 74 were produced in 30 min via an

unexpected anti-Nenitzescu strategy (Scheme 41) [54]. The reaction started with

aza–ene reaction of HKAs onto carbonyl of 1,4-benzoquinones 73, then the adduct

underwent imine–enamine tautomerization, Michael addition, keto–enol tautomer-

ization and oxidation to afford the target compound. The origin of site selectivity

was explained according to the computational results.

In 2015, they also found HKAs 1 could be treated with halogenated quinones 75
without a catalyst in acetone at room temperature to yield fused [1,2-a]indolone

derivatives 76 via a Nenitzescu strategy (Scheme 42) [55]. It should be noted ring
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sizes and the electron-withdrawing property of the halides had an obvious effect on

reaction yield. Six- and seven-membered HKAs were proved to be more reactive

than five-membered HKAs. The halides with a stronger electron-withdrawing

property usually gave higher yields.

In 2009, Zeng et al. [56] developed a convenient electrochemical approach for

the synthesis of fused indole derivatives containing active hydroxyl groups from

catechols 78 and HKAs 77 (Scheme 43).

Koca developed a convenient procedure for the preparation of isoindole

derivatives 83 (Scheme 44). Heating a mixture of HKAs 81 with 2 equiv. of

acetylenic esters 68 in the presence of 4-dimethylaminopyridine (DMAP) for

30 min led to the formation of a fused isoindole derivative 3 [57]. A possible

reaction scenario was proposed.

Synthesis of coumarin derivatives

Coumarin derivatives are a structural framework in a large number of bioactive

natural products. In 2010, Lin’s group reported HKAs 1 reacted with coumarin

derivatives 84 catalyzed by potassium hexamethyldisilazane (KHMDS) in dioxane

under microwave irradiation to yield a series of polycyclic coumarin derivatives

(Scheme 45) [58]. A mechanism involving 1,4-Michael addition, imine–enamine

tautomerization, cyclocondensation and aromatization was proposed.

A regioselective method for synthesis of fused coumarin derivatives 86 was

developed by reaction of HKAs 1 with 4-chloro-3-formylcoumarin 85 (Scheme 46)

[59]. The reaction proceeded smoothly in EtOH catalyzed by Et3N via aza–ene,

imine–enamine tautomerization, cycloaddition and dehydration to afford the

product in excellent yields.

Yan developed a facile approach for the synthesis of tetracycloisocoumarins 88
based on AcOH-catalyzed cyclocondensation and rearrangement of HKAs 1 with

2,2-dihydroxy-2H-indene-1,3-dione 87 (Scheme 47) [60].

Synthesis of miscellaneous heterocycles

Zhu’s group found that fluoroalkanesulfonyl azide 89 reacted readily with HKAs 1
at room temperature, and developed an quantitative synthesis of 1,3-diazahetero-

cycle-fused 1,2,3-triazoles 90 by 1,3-dipolar cycloaddition of HKAs with

fluoroalkanesulfonyl azide 89 (Scheme 48) [61]. This method was applicable to
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various HKAs and fluoroalkanesulfonyl azides and is suitable for combinatorial and

parallel synthesis in new drug discovery.

Xu reported five-membered HKAs 1 reacted with ethyl 2-(bromomethyl)ben-

zoate 91 in refluxing acetonitrile to afford the C-benzylated products 92 which

underwent intramolecular cyclization under alkaline conditions to produce fused

benzazepinones 93 (Scheme 49) [62].

Lin’s group developed a concise and efficient route for the synthesis of highly

substituted imidazopyrroloquinoline derivatives 96 by simply refluxing a reaction

mixture of different types of isatins 94 and HKAs 95 under catalysis of acetic acid

(Scheme 50) [63]. A library of highly substituted imidazopyrroloquinoline deriva-

tives was rapidly constructed as a result. A mechanism of the cascade reaction was

proposed.

In 2013, Zhang discovered heating a mixture of HKAs 1 with 2-chloroquinoline-

3-carbaldehydes 97 under the catalysis of piperidine at 75 �C afforded 1,3-

diazaheterocycle-fused[1,2-a] [1, 8] naphthyridine derivatives 98 (Scheme 51) [64].

The reaction was studied via a joint experimental–computational approach.

Yan reported HKAs 39 underwent substitution–cyclization reaction with

polyhalo isophthalonitrile 99 in the presence of t-BuOK to afford 1,3-diazahete-

rocycle-fused [1,2-b]isoquinolin-1(2H)-imines 100, which could be hydrolyzed to

give highly functional polyhalo 1,3-diazaheterocycle-fused [1,2-b]isoquinolin-

1(2H)-ones 101 (Scheme 52) [65].

Yaqub [66] developed a novel method for the synthesis of tetracyclic fused-ring

heterocycles 103 (Scheme 53), which are closely related to circumdatin alkaloids,

via the reaction of substituted 3-formylchromone 102 with HKAs. The solvent

polarity was found to play an important role on the yield of tetracyclic fused-ring

heterocycles.

Alizadeh [67] developed a concise and efficient method for the synthesis of

pyrimido[1,6-a]pyrimidine and imidazo[1,2-c]pyrimidine derivatives 105 by simply
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refluxing a reaction mixture of HKAs 1, or generated HKAs in situ from the addition

of various diamines to nitroketene dithioacetal and N,N0-bis(arylmethylidene)aryl-

methane 104 (Scheme 54).
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Yan developed an efficient one-pot synthesis of novel 1H-pyrazol-5(4H)-one-

based heterocyclic ketene aminal 107 by refluxing a mixture of HKAs 1, 1-phenyl-
1H-pyrazol-5(4H)-ones 106 and triethoxymethane under solvent-free and catalyst-

free conditions (Scheme 55) [68].

A series of 2-benzenesulfonothiol-HKAs 109 (Scheme 56) were prepared via a

silver(I)-mediated direct sulfenylation of HKAs with benzenesulfonic thioanhydride

108 [69]. The preparation method was efficient and convenient.

Conclusions

Possessing three reactive sites including a-carbon, nitrogen and oxygen in one

molecule, HKAs could react with a variety of biselectrophiles, even 1,3-dipoles, to

produce novel heterocyclic compounds hardly accessible by other methods. Recent

developments in the preparation of various heterocyclic nuclei by reactions of

HKAs were reviewed. From a chemist’s point of view, MCRs closely approach the

concept of ideal synthesis. Considering the importance of chirality, MCRs and

synthesis of chiral HKAs and their asymmetric reactions will draw the attention

from more and more chemists; on the other hand, as people are more aware of

environmental protection, green HKA chemistry will have a bright future.
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