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Abstract Density functional theory (DFT) calculations and atomistic Monte Carlo
simulations were performed on hexahydro-1,3,5-triphenyl-s-triazine (Inhl), hex-
ahydro-1,3,5-p-tolyl-s-triazine (Inh2), hexahydro-1,3,5-p-methoxyphenyl-s-triazine
(Inh3), hexahydro-1,3,5-p-aminophenyl-s-triazine (Inh4), hexahydro-1,3,5-p-nitro-
phenyl-s-triazine (Inh5) molecules in order to study their reactivity and adsorption
behaviour towards steel corrosion. DFT results indicate that the active sites of the
molecules were mainly located on the N atoms of the triazine ring and on the
aromatic rings containing substituted polar groups. Monte Carlo simulations were
applied to search for the most stable configuration for the adsorption of the inhibitor
molecules on Fe(110) surface both in vacuum and in aqueous solution. The
investigated molecules exhibited strong interactions with iron surface. In aqueous
solution all the investigated molecules displaced water molecules and were strongly
attracted to the Fe surface as evident in their large negative adsorption energies
compared to that in vacuum. The DFT reactivity indicators as well as the adsorption
strength from the outputs of Monte Carlo simulations of the studied molecules on
Fe(110) surface in vacuum and in the presence of water follow the trend:
Inh4 > Inh3 > Inh2 > Inhl > InhS5. The theoretical data obtained are in good
agreement with the experimental inhibition efficiency results earlier reported.
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Introduction

Corrosion is defined as the progressively destruction of especially metals by
chemical reaction with various molecules in their environment. The control of this
undesired process can be achieved with the use of various methods. One of the most
effective alternatives for the protection of metallic surfaces against corrosion is to
use the organic inhibitors containing nitrogen, oxygen, sulphur and aromatic ring in
their molecular structure [1, 2].

Experimental methods are useful in understanding of inhibition mechanism but it
should be stated that they are generally expensive, time-consuming and are deficient
in studying inhibition mechanism at 3-dimensional atomic level. With the
improvement of hardware and software, in recent times, density functional theory
(DFT) and molecular simulation methods became fast and powerful tools to predict
the corrosion inhibition efficiencies of complex molecules against corrosion of
metal surfaces [3—12]. It is important to note that many corrosion publications
contain quantum chemical calculations. Through such calculations, the corrosion
inhibition efficiencies of molecules are associated with quantum chemical
parameters such as the energies of the highest occupied molecular orbital
(Exomo) and the lowest unoccupied molecular orbital (E7ymo), HOMO-LUMO
energy gap (AE), chemical hardness (1), softness (o), electronegativity (y), proton
affinity (PA), electrophilicity (w) and nucleophilicity (¢). A recent comprehensive
review by us on the use of DFT as a tool in the design of corrosion inhibitors is
available in the literature and the references therein [13].

The aim of the present work is to evaluate the corrosion inhibition efficiencies of
hexahydro-1,3,5-triphenyl-s-triazine (Inh1), hexahydro-1,3,5-p-tolyl-s-triazine (Inh2),
hexahydro-1,3,5-p-methoxyphenyl-s-triazine (Inh3), hexahydro-1,3,5-p-aminophenyl-
s-triazine (Inh4), and hexahydro-1,3,5-p-nitrophenyl-s-triazine (InhS) molecules from
information provided by DFT and Monte Carlo simulation results. The 2D molecular
structures of the investigated compounds are given in Fig. 1.

Computational details
Quantum chemical calculations

Density functional theory methods have been extensively used to predict the
chemical reactivity properties of molecules. In the present study, the input files of
studied molecules were prepared with Gauss View 5.0.8 [14]. A full optimization
was performed using the 6-311G++ (d,p) basis set for all molecules because this
basis set is well known to provide accurate geometries and electronic properties for
a wide range of organic compounds. Quantum chemical calculations regarding
studied inhibitors were made using HF and DFT/B3LYP methods with SDD, 6-31G
(d,p) and 6-314++4G (d,p) basis set in the gas phase [15]. It is well known that
electrochemical corrosion happens in the aqueous phase. Thus, the calculations
stated above for molecules were repeated also for aqueous phase. In addition, to
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X=H; Hexahydro-1,3,5-triphenyl-s-triazine (Inh1)

X=CHj3; Hexahydro-1,3,5-p-tolyl-s-triazine (Inh 2)
X=0CH;; Hexahydro-1,3,5-p-methoxyphenyl-s-triazine (Inh 3)
X=NH,; Hexahydro-1,3,5-p-aminophenyl-s-triazine (Inh 4)

X=NO,; Hexahydro-1,3,5-p-nitrophenyl-s-triazine (Inh 5)

Fig. 1 The molecular structures of the studied compounds

determine more accurately the proton affinities of inhibitor molecules, we
performed all the calculations also for protonated inhibitor molecules.

Density functional theory has provided important facilities to scientist for the
understanding of chemical reactivity of chemical species [16-18]. Within the
framework of the DFT, chemical reactivity descriptors such as chemical hardness,
chemical potential, and electronegativity are defined as derivate of electronic energy
(E) with respect to number of electron (N) at a constant external potential v(r).
Chemical potential, chemical hardness and electronegativity are given as follows

[19-21]:
OE

1 (O’E 1 /ou
=5\ a2 =5\ Ay 2
1 2 <6N2>u(r) 2 (aN) u(r) ( )

Using the finite difference approximation, these reactivity descriptors can be
calculated approximately via the following equations.
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(=—p=— (3)

=" (4)

where I and A are first vertical ionization energy and electron affinity values of any
chemical system, respectively.

Koopman’s theorem [22], provides an alternative molecular orbital theory
method to calculate the ionization energies and electron affinities of molecules.
According to this theorem, the negative of the highest occupied molecular orbital
energy and the negative of the lowest unoccupied molecular orbital energy
correspond to ionization energy and electron affinity, respectively (—Eyomo = IE
and —FE7ymo = EA). Consequently, chemical hardness and chemical potential can
be expressed as:

Erumo + Enomo
= 5
! 5
Erumo — Enomo
- 6

The global softness (o) is a measure of the polarization of electron cloud of
chemical species and is the inverse of global hardness. Global softness is given as:

1 ON
oc=—=2—"— 7

In 1999, Parr et al. [23], proposed a global electrophilicity index (w) based on
chemical hardness and electronegativity of chemical species. They introduced the
global electrophilicity index via the following equation and stated that nucle-
ophilicity (¢) is the inverse of the electrophilicity (¢ = 1/w).

HZ 72

2 (3)

Generally, corrosion inhibitors have high tendency towards protonation in acidic
solution. Hence it is important to investigate the chemical properties of protonated
forms of studied molecules. In this way, proton affinities (PA) of studied molecules
can be readily determined. It is known that proton affinity values of chemical
species provide remarkable clues about their electron donating ability. The proton
affinities of inhibitors can be estimated via the following equation:

PA = Epro + EHZO - Enonfpro - E]—[;OJr (9)

where Ep,;, and E,onpro are the total energies of the protonated and the non-proto-
nated inhibitors respectively, En,o is the total energy of a water molecule and Ey, o+
is the total energy of the hydronium ion.
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Monte Carlo simulations

The Monte Carlo (MC) simulation was adopted to compute the low configuration
adsorption energy of the interactions of the five triazine derivatives on clean iron
surface. For the whole simulation procedure, the universal force field (UFF) was
used to optimize the structures of all components of the system of interest. For the
gas phase study, the simulation was carried out with Fe(110) crystal with a slab of
5Ain depth with periodic boundary conditions in order to simulate a representative
part of an interface devoid of any arbitrary boundary effects. The Fe(110) plane was
next enlarged to a (8 x 8) supercell to provide a large surface for the interaction of
the inhibitors. After that, a vacuum slab with 30 A thickness was built above the
Fe(110) plane. In the simulation involving the aqueous phase, 30 molecules of water
were added to the simulation box. The simulation box was also enlarged to
(12 x 12) supercell with a vacuum slab of 50 A thickness in order to accommodate
the water molecules. The Monte Carlo simulation was carried out using Adsorption
Locator module in Materials Studio 7.0 commercial software licensed from
Accelrys Inc. USA.

Results and discussion
Quantum chemical study

The corrosion inhibition efficiencies of five triazines namely Hexahydro-1,3,5-
triphenyl-s-triazine (Inh-1), Hexahydro-1,3,5-p-tolyl-s-triazine (Inh-2), Hexahydro-
1,3,5-p-methoxyphenyl-s-triazine (Inh-3), Hexahydro-1,3,5-p-aminophenyl-s-tri-
azine (Inh-4) and Hexahydro-1,3,5-p-nitrophenyl-s-triazine (Inh-5) is investigated
in this work using quantum chemical calculations and Monte Carlo simulations
approach. Recently, Shukla et al. [24], synthesized these triazines and they studied
the corrosion inhibition performances of mentioned compounds against the
corrosion of mild steel 1 N HCI solution using weight loss, polarization resistance,
Tafel polarization and electrochemical Impedance spectroscopy techniques. In this
study, the experimental corrosion inhibition efficiency ranking of these molecules
was given as: Inh4 > Inh3 > Inh2 > Inh1 > InhS.

Corrosion inhibition efficiencies of inhibitors can be compared through quantum
chemical parameters such as chemical hardness, electronegativity, proton affinity,
softness, electrophilicity, nucleophilicity, AE energy gap, Epomo and Epumo
because these parameters provide the important information about electron donating
or electron accepting abilities of the inhibitors. Calculated quantum chemical
parameters for protonated and non-protonated forms of studied molecules in both
gas phase and aqueous phase are presented in Table 1, 2, 3, and 4.

The energy of HOMO is associated with the electron donating ability of a
molecule. High values of energy of HOMO state that the molecule is prone to
donate electrons to appropriate acceptor molecules with low energy and empty
molecular orbital. On the other hand, LUMO energy level is an indicator of electron
accepting abilities of molecules. It is important to note that the molecules that have
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lower LUMO energy value have more electron accepting ability. From the light of
information in Tables 1 and 2, considering HOMO and LUMO energies calculated
by various methods and basis sets, one can write corrosion inhibition ranking of
studied molecules as: Inh4 > Inh3 > Inh2 > Inhl > Inh5.

Chemical hardness, softness and AE are quantum chemical parameters closely
associated with each other. Chemical hardness is defined resistance towards electron
cloud polarization or deformation of chemical species and it is one of concepts that
have important application in topics such as complex stability, chemical reactivity,
estimation of formed products in a reaction, solubility of molecules. This concept
which is required to understand many aspects of chemical interactions was revealed
by Pearson with a study of the generalized acid-base reaction of G. N. Lewis.
Softness is the inverse of the chemical hardness and this parameter is a measure of
polarizabilities. As is known, both softness and hardness are given based on HOMO
and LUMO orbital energies as a result of Koopman’s theorem. Hard molecules
which have high HOMO-LUMO energy gap cannot act as good corrosion inhibitor.
However, soft molecules which have low HOMO-LUMO energy gap are good
corrosion inhibitors because they can easily give to metals. According to our
theoretical results, we can write the corrosion inhibition efficiency order as:
Inh4 > Inh3 > Inh2 > Inhl > InhS. This is in good agreement with experimental
observations.

The electronegativity values of inhibitors are important parameters in terms of
electron transfer between the metal and inhibitor. According to Sanderson’s
electronegativity equalization principle, electron transfer between metal and
inhibitor continues until their electronegativity values become equal with each
other. It is seen from the Eq. (10) that the electron transfer value between metal and
inhibitor decreases as the electronegativity values of inhibitor increases.

XM — Xinh
AN = JM ™ Xinh _ (10)
2(1m + Minn)

where AN is electron transfer between metal and inhibitor. yy; and ., are elec-
tronegativity of metal and electronegativity of inhibitor, respectively. ny and 7
represent chemical hardness value of metal and chemical hardness value of inhi-
bitor, respectively.

High electronegativity indicates low inhibition efficiency and considering this
information and data in Tables 1 and 2, we can write the corrosion inhibition
efficiency ranking of studied molecules as: Inh4 > Inh3 > Inh2 > Inhl > InhS.

Molecular electrostatic potential (ESP) maps regarding studied molecules
provide a visual method to understand the parts in which the electron density is
higher than other parts in the molecule and to determine the reactive center of
molecule. In the Fig. 2, ESP maps for mentioned molecules are indicated. The
different values of the electrostatic potential have been shown with the help of
different colors. In these maps, red color stands for the region of the most negative
electrostatic potential, blue color stands for the region of the most positive
electrostatic potential and green color stands for the region of the zero electrostatic
potential. We made the protonation process taking into advantage from ESP maps
and calculated the quantum chemical parameters and total energy values of
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Fig. 2 The optimized structures, HOMOs, LUMOs and electrostatic potential structures of non-
protonated inhibitor molecules using DFT/B3LYP/6-314++G (d,p)

molecules. The results obtained are presented in Tables 3 and 4. Then, we
determined the proton affinity values of molecules considering (Eq. 9). According
to Lewis acid-base definition, a Lewis base is defined as chemical species that

@ Springer



4978 I. B. Obot et al.

donate electron pair. In this sense, corrosion inhibitors act as Lewis bases. The
basicity of a molecule will increase with increasing of its proton affinity. Namely,
proton affinity is a measure of the basicity. According to proton affinity values given
in the Tables 1 and 2 for studied compounds, the inhibition efficiencies of
mentioned compounds follow the order: Inh5 > Inh4 > Inh3 > Inh2 > Inhl. This
implies that the computed proton affinity values are not in agreement with the
inhibition efficiency ordering of the triazine derivatives obtained experimentally.

The electrophilicity index (w) is an important parameter that indicates the
tendency of the inhibitor molecule to accept the electrons. Nucleophilicity (¢) is
physically the inverse of electrophilicity (//w). For this reason, it should be stated
that a molecule that have large electrophilicity value is ineffective against corrosion
while a molecule that have large nucleophilicity value is a good corrosion inhibitor.
Thus, for studied molecules, we can write the inhibition efficiency ranking as:
Inh4 > Inh3 > Inh2 > Inhl > InhS.

For the studied molecules, considering calculated quantum chemical parameters
and the rankings given above, we propose that the inhibition efficiencies of these
compounds follow the order: Inh4 > Inh3 > Inh2 > Inh1 > Inh5. This proposal is
compatible with both experimental data and theoretical expectations. The
electronegativity of functional groups are taken into consideration significantly to
explain inductive effects of functional groups. As is known, -NO, is an electron
accepting functional group and an inhibitor containing this functional group is not
effective against corrosion as other inhibitors. On the other hand, it is expected that
an inhibitor containing a good electron donating group such as NH, will be the best
inhibitor compared to others.

Monte Carlo simulation results

We carried out Metropolis Monte Carlo (MC) simulation to sample possible low
energy searches of the configuration space of the inhibitors on clean iron surface in
vacuum and in aqueous solution as the temperature is gradually decreased. In MC
simulation, the structures of the inhibitor components are minimized around the
clean iron surface by undergoing random rotation and translation until they satisfy
certain specified criteria. The configuration that results from one of these steps is
accepted or rejected according to the selection rules of the Metropolis Monte Carlo
method. More details on Monte Carlo simulations approaches to corrosion
inhibition studies are documented by us and others [25-29].

Typical energy profile made up of the total energy, average total energy, van der
Waals energy, electrostatic energy and intramolecular energy for Inh-4 adsorption
on Fe(110) in vacuum is depicted in Fig. 3. Also the most stable low energy
configuration for the adsorption of (a) Inh-1, (b) Inh-2, (c¢) Inh-3, (d) Inh-4 and
(e) Inh-5 on Fe(110) in vacuum obtained using the Monte Carlo simulation is also
presented in Fig. 4. It is clear that the whole simulation process attends equilibrium
as depicted in Fig. 3. From Fig. 4, it is seen that all the triazine derivatives
investigated possess a number of lone-pair electrons containing N, O atoms as well
as m-aromatic systems. This makes it possible for electrons to be donated to the
unoccupied d-orbitals of iron to form a stable coordination bonding.
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Fig. 3 Typical energy profile for Inh-4 adsorption on Fe(110) in gas phase

Fig. 4 The most stable low energy configuration for the adsorption of a Inh-1, b Inh-2, ¢ Inh-3, d Inh-4
and e Inh-5 on Fe(110) in gas phase obtained using the Monte Carlo simulation

Table 5 presents the adsorption energies for Inh-1, Inh-2, Inh-3, Inh-4 and Inh-5
on Fe(110) in vacuum obtained using the Monte Carlo simulation. It is clear that the
ranking of the adsorption of the triazine derivatives investigated on Fe(110) in
vacuum follows the order: Inh-4 > Inh-3 > Inh-2 > Inh-1 > Inh-5. This ordering is
the same as the experimentally obtained inhibition efficiency. Inh-4 is the best
inhibitor due the electron donating effect of the substituted -NH, groups on the
aromatic rings attached to the triazine moiety. While Inh-5 is the least due to the
electron withdrawing effect of the three -NO, groups. It follows that the substitution
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Table 5 Adsorption energies

for Inh-1, Inh-2, Inh-3, Inh-d ~ OYStems Adsorption energy

;I}igsingbsta(i)lrlleg ifsliil(;) tlhne gl\z;lsonte Fe(110)/Inh-1 =511

Carlo simulation (in kcal/mol) Fe(110)/Inh-2 —5.40
Fe(110)/Inh-3 542
Fe(110)/Inh-4 —5.85
Fe(110)/Inh-5 —4.66

90
80
70
60
—~ 50
e 401
§ 30 ]
3 20
< 104
S o]
2 10
(IO
230 4
240
50 T T T T T T T T T T T
0 50000 100000 150000 200000 250000
Step
m  Total energy
® Average total energy
A van der Waals energy
v Electrostatic energy
< Intramolecular energy

Fig. 5 Typical energy profile for Inh-4/Fe(110)/30 H,O system

of NH, on the aromatic rings enhances the ability of the molecules to bind to the
steel surface more than the presence of -CH; and —OCHj; groups present in Inh-2
and Inh-3.

In order the mimic the real corrosive environment, it is imperative to consider the
effect of water addition in the Monte Carlo simulation. Figure 5 shows a typical plot
of energy distribution for Inh-4/H,O/Fe(110) system during energy optimization
process (Inh-5:H,O = 1:30). The most stable low energy adsorption configurations
of the inhibitors on Fe(110)/H,O system using Monte Carlo simulations are depicted
in Fig. 6. As is seen from Fig. 6, all the inhibitors adsorbed at a parallel position on
the Fe surface so as to maximize surface contact and enhance surface coverage. The
values for the adsorption energies of the Monte Carlo simulations for both inhibitors
and water are listed in Table 6. It is generally acknowledged that the primary
mechanism of corrosion inhibitor interaction with steel is by adsorption. So the
adsorption energy can provide us with a direct tool to rank inhibitor molecules. High
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Fig. 6 The most stable low energy configuration for the adsorption of a Inh-1, b Inh-2, ¢ Inh-3, d Inh-4
and e Inh-5 on Fe(110)/30H,0 system obtained using the Monte Carlo simulation

Table 6 Adsorption energies

for Inh-1, Inh-2, Inh-3, Inh-4 Systems ??ﬁg?uon energy ﬁd(s)orptlon energy

and Inh-5 on Fe(110)/30H,0 frbrtor 2

system obtained using the Monte g 116,10 1300,0  —36.30 ~1.25

Carlo simulation (all units in

kcal/mol) Fe(110)/Inh-2/30H,0 —37.12 —0.69
Fe(110)/Inh-3/30H,0 —39.76 —1.25
Fe(110)/Inh-4/30H,0 —39.93 —-0.97
Fe(110)/Inh-5/30H,0  —32.82 —0.63

negative adsorption energy indicates the system with the most stable and stronger
adsorption [30-33]. It is quite clear from Table 6 that the adsorption energies of the
inhibitors on iron surface in the presence of water follows the order Inh-4 > Inh-
3 > Inh-2 > Inh-1 > Inh-5. This ordering also corroborates the result obtained in
vacuum but with higher values of adsorption energies. Inh-4 is the best corrosion
inhibitor and the same as the experimental determined inhibition efficiency for the
inhibitors. In all cases, the adsorption energies of the inhibitors are far higher than
that of water molecules as evident in Table 6. This indicates the possibility of
gradual substitution of water molecules from the surface of iron surface resulting in
the formation of a stable layer which can protect the iron from aqueous corrosion.

Conclusion
Density functional theory at B3LYP with different basis sets and Monte Carlo

simulation were employed to evaluate the corrosion inhibition activity of some
Schiff base derivatives at the molecular level. The neutral and protonated forms
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were considered in DFT calculations in gas and aqueous phases. The following
conclusions could be drawn from this study:

Excellent correlations have been obtained between calculated theoretical
parameters of the investigated triazine compounds and their experimentally
determined inhibition efficiencies.

The DFT results rank the inhibition capabilities of the inhibitors in the
following order: Inh4 > Inh3 > Inh2 > Inhl > InhS.

All the values of the adsorption energies in both vacuum and in water are
negative, which is an indication of spontaneous and strong adsorption process.
In aqueous solution all the investigated molecules displaced water molecules
and were strongly attracted to the Fe surface as evident in their large negative
adsorption energies compared to that in vacuum.

Monte Carlo simulations rank the inhibition capabilities of the inhibitors in the
following order: Inh4 > Inh3 > Inh2 > Inhl > Inh5, both in vacuum and in
water.

The theoretical results are in agreement with the experimentally determined
inhibition efficiencies. These outcomes are important towards rational design of
new triazine corrosion inhibitors.

Acknowledgments The authors would like to acknowledge the support and fruitful collaboration
between the Center of Research Excellence in Corrosion (CORE-C), at King Fahd University of
Petroleum and Minerals (KFUPM) Saudi Arabia and the Department of Chemistry, Faculty of Science,
Cumbhuriyet University, Turkey.

References

[ O N

[=))

10.
11.
12.

13

15.
16.

17.
18.

&

. R. Hasanov, M. Sadikoglu, S. Bilgic, Appl. Surf. Sci. 253, 3913 (2007)

. M. Ozcan, R. Solmaz, G. Kardas, I. Dehri, Colloid Surf. A Physicochem. Eng. Asp. 325, 57 (2008)

. K. Bhrara, H. Kim, G. Singh, Corros. Sci. 50, 2747 (2008)

. E.E. Oguzie, Y. Li, S.G. Wang, F. Wang, RSC Adv. 1, 866 (2011)

. M.A. Chidiebere, C.E. Ogukwe, K.L. Oguzie, C.N. Eneh, E.E. Oguzie, Ind. Eng. Chem. Res. 51, 668
(2012)

. J. Cruz, LM.R. Martinez-Aguilera, R. Salcedo, M. Castro, Reactivity properties of derivatives of
2-imidazoline: An ab initio DFT study. Int. J. Quantum Chem. 85, 546-556 (2001)

. J. Zhang, G. Qiao, S. Hu, Y. Yan, Z. Ren, L. Yu, Corros. Sci. 56, 176 (2011)

. G. Gece, S. Bilgic, Corros. Sci. 51, 1876 (2009)

. T. Arslan, F. Kandemirli, E.E. Ebenso, I. Love, H. Alemu, Corros. Sci. 51, 35 (2009)

N. Kovacevic, A. Kokalj, J. Phys. Chem. C 115, 24189 (2011)

K.F. Khaled, Electrochim. Acta 53, 3484 (2008)

M.K. Awad, M.R. Mustafa, M.M. Abo Elnga, J. Mol. Struct. (THEOCHEM) 959, 66-74 (2010)

. I.LB. Obot, D.D. Macdonald, Z.M. Gasem, Corros. Sci. 99, 1 (2015)

. R.D. Dennington, T.A. Keith, C.M. Millam, GaussView 5.0 (Gaussian Inc, Wallingford, 2009)

M.J. Frisch et al., Gaussian 09, Revision C.01 (Gaussian Inc, Wallingford, 2009)

R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press,

Oxford, 1989)

R.M. Dreizler, E.K.U. Gross, Density Functional Theory (Springer, Berlin, 1990)

P.K. Chattaraj, Chemical Reactivity Theory: A Density Functional View (Taylor & Francis/CRC

Press, Boca Raton, 2009)

. S. Kaya, C. Kaya, Comput. Theor. Chem. 1054, 42 (2015)

Springer



Theoretical evaluation of triazine derivatives as steel... 4983

20
21
22

23.
24.
25.
26.
27.
28.
29.
30.

31.
32.
33.

. S. Kaya, C. Kaya, Mol. Phys. 113, 1311 (2015)

. S. Kaya, C. Kaya, J. Phys. Theor. Chem. 11, 155 (2015)

. T. Koopmans, Physica 1, 104 (1934)

R.G. Parr, L.V. Szentpaly, S. Liu, J. Am. Chem. Soc. 121, 1922 (1999)

S.K. Shukla, A.K. Singh, M.A. Quraishi, Int. J. Electrochem. Sci. 7, 3371 (2012)

J. Tan, L. Guo, T. Lv, S. Zhang, Int. J. Electrochem. Sci. 10, 823 (2015)

L. Guo, S. Zhu, S. Zhang, Q. He, W. Li, Corros. Sci. 87, 366 (2014)

1B. Obot, S.A. Umoren, Z.M. Gasem, R. Suleiman, B. El Ali, J. Ind. Eng. Chem. 21, 1328 (2015)
A.M. Kumar, R.S. Babu, I.B. Obot, RSC Adv. 5, 19264-19272 (2015)

LB. Obot, A. Madhankumar, S.A. Umoren, Z.M. Gasem, J. Adhes. Sci. Technol. 29, 2130 (2015)
Y. Sasikumar, A.S. Adekunle, L.O. Olasunkanmi, I. Bahadur, R. Baskar, M.M. Kabanda, I1.B. Obot,
E.E. Ebenso, J. Mol. Liq. 211, 105 (2015)

I.B. Obot, E.E. Ebenso, M.M. Kabanda, J. Environ. Chem. Eng. 1, 431 (2013)

1.B. Obot, N.O. Obi-Egbedi, E.E. Ebenso, A.S. Afolabi, Res. Chem. Intermed. 39, 1927 (2012)
S.A. Umoren, I.B. Obot, Z.M. Gasem, Ionics 21, 1171 (2015)

@ Springer



	Theoretical evaluation of triazine derivatives as steel corrosion inhibitors: DFT and Monte Carlo simulation approaches
	Abstract
	Introduction
	Computational details
	Quantum chemical calculations
	Monte Carlo simulations

	Results and discussion
	Quantum chemical study
	Monte Carlo simulation results

	Conclusion
	Acknowledgments
	References




