Trityl chloride as an efficient organic catalyst for one-pot, five-component and diastereoselective synthesis of highly substituted piperidines

Seyed Sajad Sajadikhah · Nourallah Hazeri · Malek Taher Maghsoodlou · Sayyed Mostafa Habibi-Khorassani · Anthony C. Willis

Received: 13 November 2012/Accepted: 19 December 2012/Published online: 9 January 2013 © Springer Science+Business Media Dordrecht 2013

Abstract Trityl chloride is used as an efficient organic catalyst for the one-pot, fivecomponent and diastereoselective synthesis of highly substituted piperidines by means of reaction between aromatic aldehydes, amines and β -ketoesters in methanol at 50 °C. The structure as well as relative stereochemistry of products was confirmed by single X-ray crystallographic analysis. This homogeneous catalyst procedure includes some important aspects like the easy work-up, diastereoselectivity, simple and readily available precursors, inexpensive catalyst, relatively short reaction time, and good to high yields.

Keywords Trityl chloride \cdot Piperidine $\cdot \beta$ -Ketoester \cdot Aldehyde \cdot Amine

Introduction

Synthesis of six-membered nitrogen heterocyclic compounds such as piperidine rings is very important because of their pharmacological and biological properties. The piperidines and their analogues exhibit diverse biological activities such as antihypertensive [1], antibacterial [2], anticonvulsant, and anti-inflammatory agents [3], farnesyltransferase inhibitors [4], norepinephrine reuptake inhibitor (CTDP 31, 446) [5], antipsychotic agent (MDL-100907) [6], and antidepressant drug [7]. Furthermore, substituted piperidines have been identified as an important class of therapeutic agents in the treatment of Parkinson's disease [8–10], prolactinoma [11], schizophrenia [12–14], influenza infection [15, 16], cancer metastasis [17–19], viral infections including AIDS [20, 21], obesity, and diabetes [22–24], and also play key

A. C. Willis Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia

S. S. Sajadikhah · N. Hazeri (\boxtimes) · M. T. Maghsoodlou · S. M. Habibi-Khorassani Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, P.O. Box 98135–674, Zahedan, Iran e-mail: n_hazeri@yahoo.com

roles in many disease processes [25] (Fig. 1). These extensive investigations have resulted in the development of various synthetic methods for the synthesis of substituted piperidines [25-32].

Recently, the synthesis of highly functionalized piperidines has been reported using five-component reactions in the presence of InCl₃ [33, 34], bromodimethylsulfonium bromide (BDMS) [35], tetrabutylammonium tribromide (TBATB) [36], iodine [37], cerium ammonium nitrate [38], ZrOCl₂·8H₂O [39], picric acid [40], BF₃·SiO₂ [41], Bi(NO₃)₃·5H₂O [42], LaCl₃·7H₂O [43], VCl₃ [44], PEG-embedded KBr₃ [45], Mg(HSO₄)₂ [46], Zn(HSO₄)₂ [47], and NiCl₂·6H₂O [48] as catalyst. In addition, Misra and co-workers have reported the synthesis of highly functionalized piperidenes catalyzed by L-proline/TFA, and they also reported antimalarial activity of this class of compounds [49]. In view of the immense biological and pharmaceutical significance of these heterocycles, the introduction of an efficient method for the preparation of these compounds is still in demand.

On the other hand, in recent years, organic catalysts have attracted considerable attention in a variety of synthetic reactions as catalyst because of their unique properties, such as the possibility to perform reactions for acid-sensitive substrates and selectivity [50-52]. In this respect, triarylmethyl chlorides get the broad attention of chemists from various fields, including synthesis of important compounds, bulky protective groups for amino and primary hydroxyl functional groups, and organic transformations [51-55]. Triarylmethyl chlorides are inexpensive and can be obtained commercially or easily prepared by the known procedure [56].

As a part of our continuing interest in the development of multi-component reactions for the synthesis of functionalized piperidine [57-60], we report here an efficient and convenient procedure for the synthesis of highly substituted piperidines

Use for treatment of Parkinson's disease,^{8,9} and schizophrnia^{12,13}

Antiobesity and antidiabetic agent²⁴

Fig. 1 Pharmaceutically active compounds containing piperidine framework

via a one-pot five-component reaction between aromatic aldehydes, amines and β -ketoesters catalyzed by trityl chloride (TrCl) in methanol at 50 °C (Scheme 1).

Results and discussion

Initially, the reaction of 4-methylbenzaldehyde, aniline and methyl acetoacetate in ethanol separately at ambient temperature was examined without any catalyst. This control experiment verified that the reaction did not proceed in the absence of a catalyst (Table 1, entry 1). When the reaction was carried out in the presence of trityl chloride (5 mol%) for 18 h, the corresponding highly substituted piperidine was obtained with 65 % yield. Encouraged by this result, we then focused on optimizing the reaction conditions. As shown in Table 1, the best result was obtained in the presence of 15 mol% of catalyst gave a low yield even after a long reaction time, and larger amounts of it did not affect the efficiency of this conversion. Furthermore, the effect of different solvents such as CH₃CN and H₂O was also investigated, and were found to be ineffective.

Therefore, the reactions of a series of substituted benzaldehydes, anilines and methyl- and/or ethyl-acetoacetate were carried out in the presence of 15 mol% of TrCl in methanol at 50 °C to afford the corresponding highly functionalized piperidines. The results are summarized in Table 2. In general, benzaldehydes containing an electron-deficient and/or electron-releasing group reacted efficiently with substituted anilines in the presence of β -ketoesters to give the corresponding piperidines in good to high yields. The low yield obtained in the reaction of benzyl amine, 4-methyl benzaldehyede and methyl acetoacetate is suggested to be because of the higher basicity of aliphatic amine compared to anilines (Table 2, entry 27). In addition, the reaction of propanal, as an aliphatic aldehyde, with aniline and methyl acetoacetate was checked under optimized conditions, but unfortunately did not provide the desired product (Table 2, entry 28).

All known products have been reported previously in the literature and were characterized by comparison of melting point, IR and NMR spectra with authentic samples. The structures of the products were fully characterized by melting points, elemental analyses, IR, ¹H and ¹³C NMR, and mass spectra. For example, the mass spectrum of **4s** displayed a molecular ion peak (M^+) at m/z = 524, which is consistent with the proposed structure. The ¹H NMR spectrum of compound **4s**

Scheme 1 Synthesis of highly substituted piperidines 4

Entry	Catalyst (mol%)	Solvent/Conditions	Time (h)	Yield (%) ^a
1	_	EtOH/rt	24	_
2	5	EtOH/rt	18	65
3	7.5	EtOH/rt	14	69
4	10	EtOH/rt	14	74
5	12.5	EtOH/rt	14	76
6	15	EtOH/rt	12	78
7	20	EtOH/rt	12	78
8	25	EtOH/rt	12	77
9	15	MeOH/rt	8	79
10	15	MeOH/50 °C	5	81
11	15	MeOH/reflux	5	80
12	15	CH ₃ CN/rt	16	62
13	15	H ₂ O/rt	24	26
14	_	MeOH/50 °C	12	-

 Table 1
 Optimization of the reaction conditions for the synthesis of highly substituted piperidine form

 the reaction between 4-methylbenzaldehyde, aniline and methyl acetoacetate

^a Isolated yield

exhibited two singlets at δ 2.36 and 2.38 ppm for methyl groups and two doublets of doublets at 2.66 ppm (J = 15.1, 2.8 Hz) and 2.86 ppm (J = 15.1, 6.0 Hz) for methylene protons of the piperidin ring (H'-, H''-5). The protons of the methoxy group were observed at δ 3.95 ppm as a singlet. One of the methine protons of the piperidine ring (H-6) was observed as a doublet at δ 5.08 (J = 4.0 Hz) ppm and another methine proton (H-2) appeared as a singlet at δ 6.33 ppm. The aromatic protons resonance observed as multiplets at δ 6.25–7.20 ppm. The NH proton was observed at δ 10.17 ppm, which indicating intramolecular hydrogen bond formation with the vicinal carbonyl group. The ¹³C NMR spectrum of compound 4s showed 24 distinct resonances consistent with the piperidine structure. In the ¹³C NMR spectrum of this compound, the C-5 carbon was observed at δ 33.6 ppm and C-2 was exhibited at δ 55.4 ppm. The C-6 and C-3 carbons were observed at δ 58.1 and 98.0 ppm, respectively. Also, the methyls and methoxy carbons were exhibited at δ 21.0, 21.1, and 51.0 ppm, respectively. The C-4 and aromatic carbons were observed at δ 113.6–160.7 ppm. In addition, the carbon of the carbonyl group was seen at δ 168.6 ppm. The structure as well as the relative stereochemistry of this class of compounds, for instance 4s, was further elucidated by single crystal X-ray diffraction analysis (Fig. 2). As shown in Fig. 2, the relative anti-configuration of the product was confirmed. It is notable that, in the ¹H NMR spectra of the crude products, the corresponding syn-diastereomer was not identified, which confirmed the disatereoselectivity of the present protocol.

Crystal data and structure refinement for **4s** are presented in Table 3. Also, selected bond lengths, bond angles and torsion angles for **4s** were extracted from single X-ray crystallographic data and are exhibited in Table 4. It is noteworthy to mention that, on the basis of crystal X-ray analysis data, the piperidine ring adopted a boat conformation with some deviations (Scheme 2).

Entry	R^1	R ²	R ³	Product	Time (h)	Yield (%) ^a	M.p. (°C)	Lit. M.p. (°C) ^b
1	4-Me–C ₆ H ₄	Ph	Me	4 a	5	81	210-212	212–214 [35]
2	4-Me-C ₆ H ₄	Ph	Et	4b	5.5	80	227-230	228–231 [37]
3	4-MeO-C ₆ H ₄	Ph	Me	4c	5	79	189–190	187–188 [35]
5	3-Cl-C ₆ H ₄	Ph	Me	4d	6	80	218-220	220-221 [38]
6	$4-F-C_6H_4$	Ph	Me	4e	4.5	74	176–179	180 [<mark>49</mark>]
7	$3-NO_2-C_6H_4$	Ph	Me	4 f	9	41	178-181	182–183 [37]
8	Ph	Ph	Et	4g	5	75	171-172	174–175 [<mark>35</mark>]
9	Ph	4-Cl-C ₆ H ₄	Et	4h	5	84	196–198	202 [<mark>49</mark>]
10	Ph	Ph	Me	4i	5	79	175-177	169–171 [<mark>35</mark>]
11	4-Me–C ₆ H ₄	$4-F-C_6H_4$	Et	4j	4	79	183–185	183–185 [<mark>59</mark>]
12	4-Me–C ₆ H ₄	$4-Br-C_6H_4$	Me	4k	6	80	227-229	229–230 [<mark>35</mark>]
13	4-Me-C ₆ H ₄	3,4-diCl-C ₆ H ₃	Et	41	5	72	173-175	173–175 [<mark>59</mark>]
14	4-Me–C ₆ H ₄	4-Me-C ₆ H ₄	Me	4m	4	79	202-205	206–208 [37]
15	4-Br-C ₆ H ₄	4-Cl-C ₆ H ₄	Me	4n	4.5	73	160-162	160–163 [<mark>49</mark>]
16	4-MeO-C ₆ H ₄	4-Br-C ₆ H ₄	Me	4 0	5	82	175-176	178 [<mark>49</mark>]
17	Ph	4-Me-C ₆ H ₄	Et	4p	4	78	195–198	196–198 [<mark>42</mark>]
18	$4-F-C_6H_4$	4-Me-C ₆ H ₄	Me	4 q	4	79	200-202	200–202 [59]
19	3-Br-C ₆ H ₄	Ph	Et	4r	5	83	163–165	164–167 [<mark>60</mark>]
20	4-Me–C ₆ H ₄	$4-F-C_6H_4$	Me	4s	6	78	199–201	_
21	4-Me–C ₆ H ₄	4-Cl-C ₆ H ₄	Et	4t	5	81	218-220	_
22	4-Me-C ₆ H ₄	4-Br-C ₆ H ₄	Et	4u	5	76	234-236	_
23	3-Cl-C ₆ H ₄	4-MeO-C ₆ H ₄	Et	4v	5	70	167–169	167–170 [<mark>49</mark>]
24	4-Me-C ₆ H ₄	4-Cl-C ₆ H ₄	Me	4 w	4	79	208-210	204–206 [60]
25	Ph	4-Me-C ₆ H ₄	Et	4x	5.5	80	193–196	194–196 [<mark>60</mark>]
26	3-Me-C ₆ H ₄	Ph	Et	4y	5	78	155–157	149–151 [<mark>60</mark>]
27	4-Me–C ₆ H ₄	PhCH ₂	Me	4z	24	37	169–171	172–173 [35]
28	Et	Ph	Me	-	24	c	-	-

Table 2 The synthesis of highly substituted piperidine 4

^a Isolated yield

^b References to known products in the literature

^c No reaction

As reported in the literature [36–38, 41, 42, 57–60], a possible mechanism for the formation of piperidine 4 is shown in Scheme 3. Amine 2 reacts with aromatic aldehyde 1 and β -ketoester 3 in the presence of TrCl to give imine 5 and enamine 6, respectively. The reaction between imine 5 and enamine 6 produces intermediate 7, which reacts with another aldehyde 1 to afford intermediate 8. Then, intermediate 8 is converted to intermediate 9, which immediately undergoes an intramolecular Mannich-type reaction to give intermediate 10. Finally, tautomerization of intermediate 10 gives the desired piperidine 4.

To show the merit and applicability of TrCl in comparison with the reported catalysts, we compared results of these catalysts for the synthesis of highly

functionalized piperidine derivatives **4a** and **4i**, in Table 5. As shown in Table 5, TrCl can act as an effective and efficient catalyst with respect to reaction times and yield of products.

Experimental

General procedure for synthesis of highly substituted piperidine 4a-y

First, a solution of aromatic amine (2 mmol) and β -ketoester (1 mmol) in methanol (5 mL) was stirred for 30 min in the presence of TrCl (15 mol%) at ambient temperature. Next, the aromatic aldehyde (2 mmol) was added and the reaction mixture was stirred at 50 °C. The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was cooled to room temperature. The thick precipitate was filtered off and washed with ethanol (3 × 2 mL) to give the pure product. Physical and spectral data of selected products are represented below.

Methyl 1,2,5,6-*tetrahydro-1-phenyl-4-(phenylamino)-2,6-dip-tolylpyridine-3-carboxylate* (**4***a*)

White solid. (400 MHz, CDCl₃) δ (ppm): 2.25 (s, 3H, CH₃), 2.32 (s, 3H, CH₃), 2.75 (dd, 1H, J = 15.2, 2.4 Hz, H'-5), 2.84 (dd, 1H, J = 15.2, 5.6 Hz, H"-5), 3.93 (s, 3H, OCH₃), 5.09 (d, 1H, J = 3.1 Hz, H-6), 6.30 (d, 2H, J = 8.0 Hz, ArH), 6.37 (s, 1H, H-2), 6.48 (d, 2H, J = 8.8 Hz, ArH), 6.60 (t, 1H, J = 7.2 Hz, ArH), 6.99–7.12 (m, 11H, ArH), 7.20 (d, 2H, J = 8.0 Hz, ArH), 10.27 (s, 1H, NH).

Fig. 2 ORTEP representation of the X-ray structure of piperidine 4s

Table 3 Crystallographic data and structure refinement for	Empirical formula	$C_{33}H_{30}F_2N_2O_2$				
compound 4s	Formula weight	524.61				
	Crystal system	Triclinic				
	Space group	$P\bar{1}$				
	a (Å)	9.7029(2)				
	<i>b</i> (Å)	11.1684(3)				
	<i>c</i> (Å)	13.9443(2)				
	α (°)	110.6790(14)				
	β (°)	100.5434(14)				
	γ (°)	96.1495(12)				
	$V(\text{\AA}^3)$	1,365.42(5)				
	Ζ	2				
	D_x (Mg m ⁻³)	1.276				
	$\mu \ (\mathrm{mm}^{-1})$	0.09				
	$T_{\min/\max}$	0.885/0.995				
	Crystal dimensions (mm)	$0.51\times0.37\times0.06$				
	$\theta_{ m max/min}$ (°)	27.5/2.7				
	Measured reflections	44,457				
	Independent reflections	6,253				
	Reflections $[I > 2\sigma(I)]$	5,000				
	R _{int}	0.063				
	Parameters/restraints	355/0				
	$R[F^2 > 2\sigma(F^2)]$	0.043				
	$wR(F^2)$	0.105				
	S	0.99				
	$(\Delta/\sigma)_{max}$	0.001				
	$\Delta \rho_{\text{max/min}}$ (e Å ⁻³)	0.27/-0.27				

Methyl 2,6-*bis*(4-fluorophenyl)-1,2,5,6-tetrahydro-1-phenyl-4-(phenylamino)pyridine-3-carboxylate (**4e**)

Withe solid. (400 MHz, CDCl₃) δ (ppm): 2.75 (dd, 1H, J = 15.1, 2.0 Hz, H'-5), 2.87 (dd, 1H, J = 15.1, 5.6 Hz, H"-5), 3.95 (s, 3H, OCH₃), 5.11 (br s, 1H, H-6), 6.36–6.40 (m, 2H, ArH), 6.41 (s, 1H, H-2), 6.46–6.50 (m, 2H, ArH), 6.65 (t, 1H, J = 7.2 Hz, ArH), 6.90–7.24 (m, 13H, ArH), 10.29 (s, 1H, NH).

Methyl 4-(4-chlorophenylamino)-2,6-bis(4-bromophenyl)-1-(4-chlorophenyl)-1,2,5,6-tetrahydropyridine-3-carboxylate (**4n**)

White solid. (400 MHz, CDCl₃) δ (ppm): 2.73 (dd, 1H, J = 15.1, 2.2 Hz, H'-5), 2.85 (dd, 1H, J = 15.2, 5.6 Hz, H"-5), 3.95 (s, 3H, OCH₃), 5.13 (br s, 1H, H-6), 6.28 (d, 2H, J = 7.0 Hz, ArH), 6.36 (s, 1H, H-2), 6.45 (d, 2H, J = 6.9 Hz, ArH), 6.99–7.23 (m, 12H, ArH), 10.18 (s, 1H, NH).

T 11 4	0 1 . 11 11 .1		(0) 1.	1 (0) *	
Table 4	Selected bond lengths (A), bond angles	(°) and torsion	angles (°) in	piperidine structure 4s

		e			
	Bond		Length (Å)		
C1-C2			1.3662(17)		
	C2–C3			1.5165(16)	
	C3-N4			1.4731(15)	
	N4-C5		1.4589(15)		
	C5–C6			1.5433(17)	
	C6–C1			1.5010(16)	
Atom1	Ato	Atom2		Angle (°)	
C2	C1		C6	115.70(10)	
C1	C2		C3	117.22(10)	
C2	C3		N4	110.25(10)	
C3	N4		C5 118.98		
N4	C5		C6	109.59(10)	
C5	C6		C1	109.06(10)	
Atom1	Atom2	Atom3	Atom4	Angle (°)	
C1	C2	C3	N4	45.4(2)	
C1	C6	C5	N4	55.5(1)	
C1	C6	C5	C51	-70.0(1)	
C2	C1	C6	C5	-49.4(2)	
C2	C3	N4	C5	-36.6(1)	
C3	N4	C5	C6	-12.3(1)	
C3	C2	C1	C6	-1.8(2)	
C5	C6	C1	N11	128.1(1)	
C6	C1	C2	C21	171.7(1)	
	Atom1 C2 C1 C2 C3 N4 C5 Atom1 C1 C1 C1 C1 C1 C2 C2 C3 C3 C3 C3 C5 C6	Bond C1-C2 C2-C3 C3-N4 N4-C5 C5-C6 C6-C1 Atom1 Ato C1 C2 C1 C2 C2 C1 C2 C1 C2 C3 N4 C5 C6 Atom1 Atom2 C1 C2 C3 Atom1 Atom2 C1 C2 C3 N4 C3 C3 N4 C3 C3 C3 C3 C3 C3 C3 C3 C3 C4 C5 C6 C3 C4 C5 <t< td=""><td>Bond C1-C2 C2-C3 C3-N4 N4-C5 C5-C6 C6-C1 Atom1 Atom2 C2 C1-C2 C2-C3 C3-N4 N4-C5 C5-C6 C6-C1 C1 C2 C1 C2 C2 C2 C3 N4 C5 C5 C6 C1 C2 C3 N4 C5 C5 C6 C1 C2 C1 C2 C1 C6 C2 C3 N4 C3 C4 C5 C3 C2 C3 C3 C4</td><td>Bond C1-C2 C2-C3 C3-N4 N4-C5 C5-C6 C6-C1 Atom1 Atom2 Atom3 C2 C1 C2 C3 N4 C5 N4 C5 N4 C5 N4 C5 C6 C1 C1 C2 C3 N4 C5 C6 C5 C6 C1 Atom1 Atom2 Atom3 C1 C2 C3 N4 C1 C6 C5 N4 C1 C6 C5 C5 C2 C3 N4 C5 C2 C3 N4 C5 </td></t<>	Bond C1-C2 C2-C3 C3-N4 N4-C5 C5-C6 C6-C1 Atom1 Atom2 C2 C1-C2 C2-C3 C3-N4 N4-C5 C5-C6 C6-C1 C1 C2 C1 C2 C2 C2 C3 N4 C5 C5 C6 C1 C2 C3 N4 C5 C5 C6 C1 C2 C1 C2 C1 C6 C2 C3 N4 C3 C4 C5 C3 C2 C3 C3 C4	Bond C1-C2 C2-C3 C3-N4 N4-C5 C5-C6 C6-C1 Atom1 Atom2 Atom3 C2 C1 C2 C3 N4 C5 N4 C5 N4 C5 N4 C5 C6 C1 C1 C2 C3 N4 C5 C6 C5 C6 C1 Atom1 Atom2 Atom3 C1 C2 C3 N4 C1 C6 C5 N4 C1 C6 C5 C5 C2 C3 N4 C5 C2 C3 N4 C5	

Scheme 3 Proposed reaction mechanism for synthesis of highly substituted piperidines 4

Ethyl 4-(p-tolylamino)-1,2,5,6-tetrahydro-2,6-diphenyl-1-p-tolylpyridine-3-carboxylate (4p)

White solid. (400 MHz, CDCl₃) δ (ppm): 1.48 (t, 3H, J = 7.0 Hz, OCH₂CH₃), 2.19 (s, 3H, CH₃), 2.31 (s, 3H, CH₃), 2.75 (dd, 1H, J = 15.1, 2.4 Hz, H'-5), 2.83 (dd, 1H,

Compound	Catalyst/conditions	Catalyst amount (mol %)	Time (h)	Yield (%)	Ref.
4a	InCl ₃ /CH ₃ CN, r.t.	33	24	50	[33]
	BDMS/CH ₃ CN, r.t.	10	3	80	[35]
	TBATB/EtOH, r.t.	10	8	78	[36]
	I ₂ /MeOH, r.t.	10	8	84	[37]
	CAN/CH ₃ CN, r.t.	15	22	85	[38]
	ZrOCl ₂ ·8H ₂ O/EtOH, reflux	20	_	-	[39]
	p-TsOH·H ₂ O/EtOH, r.t.	63	7	89	[55]
	BF ₃ ·SiO ₂ /MeOH, 65 °C	15	-	-	[41]
	Bi(NO ₃) ₃ ·5H ₂ O/EtOH, r.t.	10	18	73	[42]
	L-proline/THF/CH ₃ CN, 20–30 °C	20	-	-	[49]
	TrCl/MeOH, 50 °C	15	5	81	a
4i	InCl ₃ /CH ₃ CN, r.t.	33	24	60	[33]
	BDMS/CH ₃ CN, r.t.	10	3	75	[35]
	TBATB/EtOH, r.t.	10	24	74	[36]
	I ₂ /MeOH, r.t.	10	8	81	[36]
	CAN/CH ₃ CN, r.t.	15	20	82	[38]
	ZrOCl ₂ ·8H ₂ O/EtOH, reflux	20	3.5	80	[39]
	p-TsOH·H ₂ O/EtOH, r.t.	63	10	78	[55]
	BF ₃ ·SiO ₂ /MeOH, 65 °C	15	9	78	[41]
	Bi(NO ₃) ₃ ·5H ₂ O/EtOH, r.t.	10	12	81	[42]
	L-proline/THF/CH ₃ CN, 20–30 °C	20	17	70	[49]
	TrCl/MeOH, 50 °C	15	5	79	_ ^a

 Table 5
 Comparison of TrCl with reported catalysts for the synthesis of highly substituted piperidine derivatives

^a This work

J = 15.1, 5.2 Hz, H"-5), 4.33–4.40 (m, 1H, OCH_aH_b), 4.48–4.55 (m, 1H, OCH_aH_b), 5.14 (d, 1H, J = 2.8 Hz, H-6), 6.19 (d, 2H, J = 7.8 Hz, ArH), 6.41 (d, 2H, J = 8.0 Hz, ArH), 6.43 (s, 1H, H-2), 6.90–7.17 (m, 7H, ArH), 7.21–7.36 (m, 7H, ArH), 10.24 (s, 1H, NH).

Methyl 4-(4-fluorophenylamino)-1-(4-fluorophenyl)-1,2,5,6-tetrahydro-2,6-diptolylpyridine-3-carboxylate (**4**s)

White solid. mp: 199–201 °C. IR (KBr) v = 3255 (NH), 1649 (C=O) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.36 (s, 3H, CH₃), 2.38 (s, 3H, CH₃), 2.66 (dd, 1H, J = 15.1, 2.8 Hz, H'-5), 2.86 (dd, 1H, J = 15.1, 6.0 Hz, H"-5), 3.95 (s, 3H, OCH₃), 5.08 (d, 1H, J = 4.0 Hz, H-6), 6.25–6.28 (m, 2H, ArH), 6.33 (s, 1H, H-2), 6.43–6.48 (m, 2H, ArH), 6.77–6.84 (m, 4H, ArH), 7.05–7.20 (m, 8H, ArH), 10.17

(s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 21.0 (CH₃), 21.1 (CH₃), 33.6 (C-5), 51.0 (OCH₃), 55.4 (C-2), 58.1 (C-6), 98.0 (C-3), 113.6 (d, *J* = 7.0 Hz), 115.2 (d, *J* = 22.0 Hz), 115.6 (d, *J* = 22.0 Hz), 126.4 (d, *J* = 23.0 Hz), 128.0 (d, *J* = 8.0 Hz), 129.0, 129.4, 133.9 (d, *J* = 3.0 Hz), 136.0, 136.9, 139.7, 140.6, 143.5, 155.0 (d, ¹*J*_{CF} = 233.0 Hz), 156.2 (C-4), 160.7 (d, ¹*J*_{CF} = 244.0 Hz), 168.6 (C=O). MS (EI, 70 eV) *m*/*z* (%): 524 (M⁺, 16), 465 (6), 433 (100), 414 (8), 401 (18), 310 (61), 296 (51), 278 (22), 212 (66), 115 (23), 95 (41), 59 (14). Anal. Calcd for C₃₃H₃₀F₂N₂O₂: C, 75.55; H, 5.76; N, 5.34. Found: C, 75.82; H, 5.80; N, 5.39.

Crystallographic data (excluding structure factors) for the structure in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC 864008 for **4s**. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk), or via www.ccdc.cam.ac. uk/datarequest/cif.

Ethyl 4-(4-chlorophenylamino)-1-(4-chlorophenyl)-1,2,5,6-tetrahydro-2,6-dip-tolylpyridine-3-carboxylate (4t)

White solid. mp: 218–220 °C. IR (KBr) v = 3228 (NH), 1645 (C=O) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 1.49 (t, 3H, J = 6.8 Hz, OCH₂CH₃), 2.35 (s, 3H, CH₃), 2.37 (s, 3H, CH₃), 2.73 (d, 1H, J = 14.4 Hz, H'-5), 2. 88 (dd, 1H, J = 15.2, 5.6 Hz, H"-5), 4.31–4.39 (m, 1H, OCH_aH_b), 4.45–4.51 (m, 1H, OCH_aH_b), 5.10 (d, 1H, J = 3.2 Hz, H-6), 6.22 (d, 2H, J = 8.0 Hz, ArH), 6.36 (s, 1H, H-2), 6.46 (d, 2H, J = 8.8 Hz, ArH), 7.01–7.21 (m, 12H, ArH), 10.27 (s, 1H, NH). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 14.7 (OCH₂CH₃), 21.0 (CH₃), 21.1 (CH₃), 33.5 (C-5), 55.1 (C-2), 58.0 (C-6), 59.8 (OCH₂CH₃), 98.9 (C-3), 114.0, 121.0, 126.2, 126.4, 126.9, 128.7, 128.9, 129.0, 129.4, 131.2, 136.1, 136.5, 137.0, 139.2, 140.3, 145.6, 155.3 (C-4), 168.1 (C=O). MS (EI, 70 eV) m/z (%): 571 (M⁺, 2), 570 (4), 479 (22), 439 (20), 299 (21), 228 (39), 105 (32), 91 (63), 77 (31), 55 (100). Anal. Calcd for C₃₄H₃₂Cl₂N₂O₂: C, 61.45; H, 5.64; N, 4.93. Found: C, 61.67; H, 5.75; N, 4.96.

Ethyl 4-(4-bromophenylamino)-1-(4-bromophenyl)-1,2,5,6-tetrahydro-2,6-dip-tolylpyridine-3-carboxylate (4u)

White solid. mp: 234–236 °C. IR (KBr) v = 3310 (NH), 1652 (C=O) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 1.49 (t, 3H, J = 6.8 Hz, OCH₂CH₃), 2.35 (s, 3H, CH₃), 2.38 (s, 3H, CH₃), 2.74 (d, 1H, J = 15.2 Hz, H'-5), 2.88 (dd, 1H, J = 15.2, 5.6 Hz, H"-5), 4.33-4.39 (m, 1H, OCH_aH_b), 4.45–4.51 (m, 1H, OCH_aH_b), 5.09 (d, 1H, J = 3.6 Hz, H-6), 6.17 (d, 2H, J = 8.0 Hz, ArH), 6.35 (s, 1H, H-2), 6.42 (d, 2H, J = 8.8 Hz, ArH), 7.05–7.24 (m, 12H, ArH), 10.26 (s, 1H, NH). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 14.7 (OCH₂CH₃), 21.0 (CH₃), 21.2 (CH₃), 33.4 (C-5), 55.0 (C-2), 58.1 (C-6), 59.9 (OCH₂CH₃), 99.0 (C-3), 108.2, 114.5, 118.9, 126.2, 126.4, 127.2, 129.0, 129.4, 131.5, 131.9, 136.1, 137.0, 139.1, 140.2, 146.0, 155.2 (C-4), 168.1 (C=O); MS (EI, 70 eV) m/z (%): 664 (M⁺⁴, 13), 662 (M⁺², 25), 660 (M⁺, 12), 587 (10), 569 (48), 488 (24), 386 (60), 272 (100), 312 (51), 245 (40), 105

(48), 91 (49), 77 (28), 55 (50). Anal. Calcd for $C_{34}H_{32}Br_2N_2O_2$: C, 61.83; H, 4.88; N, 4.24. Found: C, 61.99; H, 4.93; N, 4.39.

Methyl 1-benzyl-4-(benzylamino)-1,2,5,6-tetrahydro-2,6-dip-tolylpyridine-3-carboxylate (4z)

A mixture of benzyl amine (2 mmol) and methyl acetoacetate (1 mmol) in methanol (5 mL) was stirred for 30 min in the presence of TrCl (15 mol%) at ambient temperature. Next, the 4-methyl benzaldehyde (2 mmol) was added and the reaction mixture was stirred at 50 °C. After completion of the reaction (as monitored by TLC), the reaction mixture was cooled to ambient temperate and the solvent was evaporated under reduced pressure. Ethyl acetate (20 mL) was added and washed with H₂O and then brine, and dried with anhydrous Na₂SO₄. The filtrate was concentrated and purified by silica gel column chromatography in ethyl acetate: *n*-hexane (40:60) as eluent to give the piperidine **4z**. Light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.29 (s, 3H, CH₃), 2.32 (s, 3H, CH₃), 2.63 (dd, 1H, *J* = 17.2, 5.6 Hz, H'-5), 2.74 (dd, 1H, *J* = 17.2, 11.6 Hz, H''-5), 3.31 (d, 1H, *J* = 13.5 Hz, NCH_aH_b), 3.36 (d, 1H, *J* = 13.5 Hz, NCH_aH_b), 3.48 (s, 3H, OCH₃), 4.05 (dd, 1H, *J* = 11.6, 5.6 Hz, H-6), 4.56 (dd, 1H, *J* = 15.6, 6.0 Hz, NHCH_aH_b), 4.64 (dd, 1H, *J* = 15.6, 6.2 Hz, NHCH_aH_b), 4.73 (s, 1H, H-2), 7.08–7.24 (m, 9H, ArH), 7.29–7.38 (m, 9H, ArH), 9.65 (t, 1H, *J* = 6.0 Hz, NH).

Conclusion

In summary, the use of trityl chloride as an efficient organic catalyst is reported for the synthesis of highly substituted piperidines via a one-pot five-component reaction between aromatic aldehydes, amines and β -ketoesters in methanol at 50 °C in good to high yields. This methodology offered several advantages such as mild reaction conditions, simplicity in operation, diastereoselectivity, and simple and readily available precursors, which make it a useful and attractive process for the synthesis of these important compounds.

Acknowledgments We gratefully acknowledge financial support from the Research Council of the University of Sistan and Baluchestan and the Australian National University.

References

- S. Petit, J.P. Nallet, M. Guillard, J. Dreux, R. Chermat, M. Poncelet, C. Bulach, P. Simon, C. Fontaine, M. Barthelmebs, J.L. Imbs, Eur. J. Med. Chem. 26, 19 (1991)
- Y. Zhou, V.E. Gregor, B.K. Ayida, G.C. Winters, Z. Sun, D. Murphy, G. Haley, D. Bailey, J.M. Froelich, S. Fish, S.E. Webber, T. Hermann, D. Wall, Bioorg. Med. Chem. Lett. 17, 1206 (2007)
- 3. H. Bin, A.M. Grider, J.P. Stables, Eur. J. Med. Chem. 36, 265 (2001)
- S.L. Gwaltney II, S.J. O'Connor, L.T.J. Nelson, G.M. Sullivan, H. Imade, W. Wang, L. Hasvold, Q. Li, J. Cohen, W.-Z. Gu, S.K. Tahir, J. Bauch, K. Marsh, S.-C. Ng, D.J. Frost, H. Zhang, S. Muchmore, C.G. Jakob, V. Stoll, C. Hutchins, Bioorg. Med. Chem. Lett. 13, 1359 (2003)
- B.I. Mobele, T. Kinahan, L.G. Ulysse, S.V. Gagnier, M.D. Ironside, G.S. Knox, F. Mohammadi, Org. Process. Res. Dev. 10, 914 (2006)

- 6. L.A. Sorbera, J. Silvestra, J. Castaner, Drugs Futur. 23, 955 (1998)
- 7. J.C. Pastre, C.R.D. Correia, Org. Lett. 8, 1657 (2006)
- 8. D. Bravi, T.L. Davis, M.M. Mouradian, T.N. Chase, Mov. Disord. 8, 195 (1993)
- 9. J.D. Adams, M.-L. Chang, L. Klaidman, Curr. Med. Chem. 8, 809 (2001)
- 10. J.-L. Vidaluc, Curr. Med. Chem. 3, 117 (1996)
- 11. C. Jaspers, G. Benker, D. Reinwein, Clin. Investig. 72, 451 (1994)
- 12. O. Benkert, G. Gründer, H. Wetzel, Pharmacopsychiatry 25, 254 (1992)
- 13. G. Gründer, H. Wetzel, E. Hammes, O. Benkert, Psychopharmacology 111, 123 (1993)
- 14. S. Kasper, J. Fuger, H.J. Zinner, J. Bäuml, H.J. Möller, Eur. Neuropsychopharmacol. 2, 91 (1992)
- C.U. Kim, W. Lew, M.A. Williams, H. Liu, L. Zhang, S. Swaminathan, N. Bischofberger, M.S. Chen, D.B. Mendel, C.Y. Tai, W.G. Laver, R.C. Stevens, J. Am. Chem. Soc. 119, 681 (1997)
- P. Chand, P.L. Kotian, A. Dehghani, Y. El-Kattan, T.-H. Lin, T.L. Hutchison, Y.S. Babu, S. Bantia, A.J. Elliott, J.A. Montgomery, J. Med. Chem. 44, 4379 (2001)
- 17. P.E. Goss, M.A. Baker, J.P. Carver, J.W. Dennis, Clin. Cancer Res. 1, 935 (1995)
- Y. Nishimura, T. Satoh, H. Adachi, S. Kondo, T. Takeuchi, M. Azetaka, H. Fukuyasu, Y. Iizuka, J. Med. Chem. 40, 2626 (1997)
- N. Zitzmann, A.S. Mehta, S. Carrouee, T.D. Butters, F.M. Platt, J. McCauley, B.S. Blumberg, R.A. Dwek, T.M. Block, Proc. Natl. Acad. Sci. USA 96, 11878 (1999)
- 20. G.B. Karlsson, T.D. Butters, R.A. Dwek, F.M. Platt, J. Biol. Chem. 268, 570 (1993)
- 21. J.E. Groopman, Rev. Infect. Dis. 12, 931 (1990)
- 22. J.L. Treadway, P. Mendys, D.J. Hoover, Expert Opin. Invest. Drugs 10, 439 (2001)
- 23. G.S. Jacob, Curr. Opin. Struct. Biol. 5, 605 (1995)
- 24. A. Braun, B. Cornet, G. Courtemanche, O. Crespin, E. Fett, C. Pascal, WO 2006/021565, 2006
- 25. S. Källström, R. Leino, Bioorg. Med. Chem. 16, 601 (2008)
- 26. F.A. Davis, B. Chao, A. Rao, Org. Lett. 3, 3169 (2001)
- 27. K. Takasu, N. Shindoh, H. Tokuyama, M. Ihara, Tetrahedron 62, 11900 (2006)
- 28. M. Sales, A.B. Charette, Org. Lett. 7, 5773 (2005)
- 29. M.S.R. Murty, R. Ram, J.S. Yadav, Tetrahedron Lett. 49, 1141 (2008)
- 30. A.P. Dobbs, S.J.J. Guesne, Synlett 13, 2101 (2005)
- 31. S. Fustero, D. Jimenez, J. Moscardo, S. Catalan, C. del Pozo, Org. Lett. 9, 5283 (2007)
- 32. T.P. Lebold, A.B. Leduc, M.A. Kerr, Org. Lett. 11, 3770 (2009)
- 33. P.A. Clark, A.V. Zaytzev, A.C. Whitwood, Tetrahedron Lett. 48, 5209 (2007)
- 34. P.A. Clark, A.V. Zaytzev, A.C. Whitwood, Synthesis 3530 (2008)
- 35. A.T. Khan, T. Parvin, L.H. Choudhury, J. Org. Chem. 73, 8398 (2008)
- 36. A.T. Khan, M. Lal, Md.M. Khan, K.K.R. Bannuru, Tetrahedron Lett. 51, 4419 (2010)
- 37. A.T. Khan, Md.M. Khan, K.K.R. Bannuru, Tetrahedron 66, 7762 (2010)
- 38. H.-J. Wang, L.-P. Mo, Z.-H. Zhang, ACS Comb. Sci. 13, 181 (2011)
- 39. S. Mishra, R. Ghosh, Tetrahedron Lett. 52, 2857 (2011)
- 40. C. Mukhopadhyay, S. Rana, R.J. Butcher, A.M. Schmiedekamp, Tetrahedron Lett. 52, 5835 (2011)
- 41. R. Ramachandran, S. Jayanthi, Y.T. Jeong, Tetrahedron 68, 363 (2012)
- 42. G. Brahmachari, S. Das, Tetrahedron Lett. 53, 1479 (2012)
- B. Umamahesh, V. Sathesh, G. Ramachandran, M. Sathishkumar, K. Sathiyanarayanan, Catal. Lett. 142, 895 (2012)
- 44. S. Pal, L.H. Choudhury, T. Parvin, Mol. Divers. 16, 129 (2012)
- 45. S. Verma, S.L. Jain, B. Sain, Beilstein J. Org. Chem. 7, 1334 (2011)
- 46. M.R. Mohammad Shafiee, B.H. Najafabadi, M. Ghashang, Res. Chem. Intermed. (2012). doi: 10.1007/s11164-012-0878-1
- 47. M. Ghashang, Lett. Org. Chem. 9, 497 (2012)
- 48. M.R. Mohammad Shafiee, B.H. Najafabadi, M. Ghashang, J. Chem. Res. 36, 336 (2012)
- M. Misra, S.K. Pandey, V.P. Pandey, J. Pandey, R. Tripathi, R.P. Tripathi, Bioorg. Med. Chem. 17, 625 (2009)
- 50. S. Chandrasekhar, K. Johny, C.R. Reddy, Tetrahedron 20, 1742 (2009)
- A. Khalafi-Nezhad, A. Parhami, A. Zare, A.R. Moosavi-Zare, A. Hasaninejad, F. Panahi. Synthesis 617 (2008)
- A. Khazaei, M.A. Zolfigol, A.R. Moosavi-Zare, A. Zare, A. Parhami, A. Khalafi-Nezhad, Appl. Catal. A 386, 179 (2010)
- A. Khalafi-Nezhad, A. Parhami, A. Zare, A. Nasrollahi-Shirazi, A.R. Moosavi-Zare, A. Hasaninejad, Can. J. Chem. 86, 456 (2008)

- 54. T.W. Green, P.G.M. Wuts, Protective Group in Organic Synthesis, 3rd edn. (Wiley, New York, 1999)
- 55. T. Mukaiyama, S. Kobayashi, J. Organomet. Chem. 382, 39 (1990)
- 56. W.E. Bachmann, Organic Syntheses, Coll. vol. III (Wiley, London, 1955), p. 841
- S.S. Sajadikhah, N. Hazeri, M.T. Maghsoodlou, S.M. Habibi-Khorassani, A. Biegbabaei, M. Lashkari, J. Chem. Res. 36, 463 (2012)
- S.S. Sajadikhah, M.T. Maghsoodlou, N. Hazeri, S.M. Habibi-Khorassani, A.C. Willis, Chin. Chem. Lett. 23, 569 (2012)
- S.S. Sajadikhah, M.T. Maghsoodlou, N. Hazeri, S.M. Habibi-Khorassani, S.J. Shams-Najafi, Monatsh. Chem. 143, 939 (2012)
- M. Lashkari, M.T. Maghsoodlou, N. Hazeri, S.M. Habibi-Khorassani, S.S. Sajadikhah, R. Doostmohamadi, Synth. Commun. 43, 635 (2013)