Solvothermal synthesis and photocatalytic activity of S-doped TiO_2 and TiS_2 powders

H. Y. He

Received: 31 January 2009/Accepted: 3 November 2009/Published online: 4 March 2010 © Springer Science+Business Media B.V. 2010

Abstract The photocatalytic activity of S-doped TiO₂ powder depends on the S content. To synthesize S-doped TiO₂ powders with high S content, solvothermal processes were used in this work. The S-doped TiO₂ powder contains 2.0 M% sulfur and has an absorption edge of 460 nm (2.7 eV). The pure TiS₂ powder also synthesized by a solvothermal process has an absorption edge of 595 nm (2.08 eV) and broad absorption above 595 nm. The photocatalysis experiments indicate that the degradation of methyl orange is associated with the light adsorption edge. The photocatalytic activity is much larger for the pure TiS₂ powder than for partially S-doped TiO₂ powder.

Keywords S-doped $TiO_2 \cdot TiS_2 \cdot Solvothermal process \cdot Nanocrystalline \cdot Band gap \cdot Photocatalysis$

Introduction

Nano-TiO₂ materials as photocatalysts have been studied widely for potential application in decontamination of the environment. The photocatalytic properties of TiO₂ powders depend on light absorption. However, TiO₂ is activated only in the ultraviolet region, which restricts its application under natural light conditions. A large number of efforts have been made to enhance the photocatalytic property of TiO₂. For example, short band gap semiconductors CdS [1–4], CdSe [5], PbS [6], and Fe₂O₃ [7], V₂O₅ [8], Bi₂S₃ [9], SnO₂ [10–12] have been used as additives, nitrogen [13] and sulfur [14] have been added to reduce the band gap energy of TiO₂, and noble metals Pt–Ru [15] and Au [16, 17] have been added as catalysts.

H. Y. He (🖂)

Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, 710021 Xi'an, China e-mail: hehy@sust.edu.cn Sulfur doping can extend the light absorption to visible light and is non-poisonous to the environment. Thus, sulfur-doped TiO_2 powder has been widely studied as a photocatalyst. The sulfur doping content of TiO_2 powder is associated with the synthetic process and can substantially affect the photocatalytic activity of the powders. To improve the photocatalytic activity of S-doped TiO_2 powder, increasing the sulfur doping content has become a key topic. New efficient and economic synthetic processes obviously need to be developed. The solvothermal process may be relatively effective in wet methods because small amounts of elemental oxygen in the solvothermal solution theoretically favors formation of titanium sulfide. In this paper we report:

- 1 solvothermal syntheses of sulfur-doped TiO₂ powder and TiS₂ powder; and
- 2 comparison of the photocatalytic activity of the synthesized powders.

Experimental

The S-doped TiO₂ powders were synthesized with a starting composition of 0.004 mol titanium sulfate (Ti(SO₄)₂) and 25 mL ammonium sulfide ((NH₄)₂S). The TiS₂ was synthesized with a starting composition of 0.008 mol amorphous TiS₂ and 0.008 mol sodium thiosulfate Na₂S₂O₃·5H₂O and 25 mL *n*-heptane. The amorphous TiS₂ was synthesized by reaction between titanium sulfate (Ti(SO₄)₂) and sodium sulfide (Na₂S) in aqueous solution. Two starting compositions were reacted in two 40-mL autoclaves at 200 °C for 4 h. Cooling was performed at the furnace. The reaction products were filtered and then washed repeatedly with distilled water. As washed powders were dried at 100 °C for 3 h. The two powders appeared yellowish brown and dark brown, respectively.

Characterization of the powders

Phase identification of the S-doped TiO₂ and TiS₂ powders was conducted at room temperature using X-ray diffractometry (XRD; $CuK_{\alpha 1}$, $\lambda = 0.15406$ nm; model no: D/Max-2200PC; Rigaku, Japan). The phases and particle sizes of the powders were determined with the Jade5 analytical software that was provided with the X-ray diffractometer. The morphology and X-ray energy-dispersive spectra (EDS) of the powders were analyzed using scanning electron microscopy (SEM, model no: JXM-6700F; Japan).

In this study, methyl orange was used as a photocatalytic substrate to study photodegradation on the S-doped TiO₂ and TiS₂ powders. Photodecomposition experiments were performed in glass beakers. In each experiment, 100 mL methyl orange solutions at a concentration of 1×10^{-6} M were added to 50 mg S-doped TiO₂ and TiS₂ powders and dispersed with a KQ-50E ultrasonic generator. Sunlight was used as light source. The absorption spectra of methyl orange solutions before and after irradiation for different times were measured on a WFZ-900D4 spectrophotometer.

The concentrations of methyl orange solution (C) were calculated using absorption intensities before and after irradiation for different time (I_0 and I) according to:

$$C = \frac{I}{I_0}$$

The UV-visible adsorption spectra of the powders dispersed in acetylacetone were also measured in a range 190–900 nm.

Results and discussion

X-ray diffractometry was used to determine the phase of the synthesized powders. The results showed that the powder solvothermally synthesized with titanium sulfate and ammonium sulfide is the TiO₂ phase with an anatase structure (Fig. 1a). The lattice constants calculated by XRD data analysis are a = b = 3.7936, and c = 9.5168, which are larger than a = b = 3.79, and c = 9.51 for the pure anatase. This could indicate that sulfur anion partially substituted the oxygen anion and entered the anatase crystal lattice because of the larger radius of the S²⁻ anion (1.84) than that of O²⁻ anion (1.40). This is also consistent with the yellowish brown color of the powder. The TiS₂ powders synthesized by aqueous reaction between titanium sulfate and sodium sulfide and by the following solvothermal process all have an amorphous structures (Fig. 1b, c). However, the color of the TiS₂ powder changes from a white to a dark brown in the solvothermal process, which could be explained by the formation of metacrystalline TiS₂.

The SEM micrographs of the powders are illustrated in Fig. 2. The powder solvothermally synthesized with titanium sulfate and ammonium sulfide shows uniform rode-like morphology and average grain size of 10–70 nm (Fig. 2a). The powders synthesized by the solvothermal process on the aqueous reaction product show sphere morphology and average grain size of 10–100 nm (Fig. 2b). The X-ray energy-dispersive spectrum (EDS) of the S-doped TiO₂ powder is shown in Fig. 3, which reveal that the sulfur content of the doped powder is about 2.0 mol%.

Fig. 2 SEM micrographs of \mathbf{a} the S-doped TiO₂ powder, and \mathbf{b} TiS₂ powder obtained by the solvothermal process

Fig. 3 X-ray energy dispersive spectrum of the S-doped TiO₂ powder

Similarly, the S-doped TiO₂ powder was synthesized by a hydrothermal process by Liu et al. [18]. This powder showed a uniform rode-like morphology but a rutile structure. The sulfur content in the powder was only 0.015 mol%. Formation of TiO₂ requires a larger chemical potential energy compared with TiS₂ because of the larger electronegativity of the oxygen atom (3.5) than that of the sulfur atom (2.5). The low oxygen content of the starting composition used in this work could be a

reason fo the high sulfur content of the S-doped TiO_2 powder in comparison with the hydrothermally synthesized powder [18].

The UV–visible adsorption spectra of the powders are shown in Fig. 4. The absorption edge of the S-doped TiO₂ powder is in region of visible light of 460 nm, which corresponds to a band gap energy of 2.70 eV. Compared with the pure anatase TiO₂ (3.2 eV), the band gap of the powder is narrowed, because of the narrower band gap of TiS₂ than that of the TiO₂. The absorption edge of the TiS₂ powder shifts to the visible light region of 595 nm, corresponding to a band gap energy of 2.08 eV. Bulk TiS₂ has a band gap of about 2.0 eV [19]. This shift of 0.08 eV could be because of a quantum size effect of the powder. Except for this absorption, stronger absorption than that of the partially S-doped TiO₂ powder in the region of >595 nm could demonstrate the presence of a narrower band gap for the pure TiS₂ powder, which could be a smaller indirect band gap of 1.4 eV [19] or 1.0 eV [20, 21].

Photodegradation of methyl orange solutions on the two powders were studied in the experiments. Figure 5 shows the absorbance variations of the methyl orange solutions at ~462 nm with irradiation time. It is obvious that photodegradation on the two powders increases with increasing irradiation time. Photodegradation of the methyl orange is much faster on the pure TiS_2 powders than on the S-doped TiO_2 powders, despite the larger average grain size of the former.

Conclusion

New classes of sulfur-doped TiO_2 and pure TiS_2 photocatalysts were prepared by a unique solvothermal synthetic process at relatively low temperatures. The sulfur-doped titania had a single anatase phase and a relatively small grain size.

For the samples obtained in this work, the visible-light absorbance correlated with sulfur content. The absorbance edge shifts to 595 nm for the TiS_2 powder from 460 nm for the S-doped powder. The S-doped TiO_2 powder has a significantly higher sulfur content and greater visible-light photocatalytic activity than the previously reported S-doped anatase TiO_2 . The visible-light photocatalytic activity was dependent on the visible-light absorbance. The visible-light photocatalytic activity of the TiS_2 is much larger than that of the partially S-doped powder. The two powders synthesized in this work are promising visible-light-driven photocatalysts.

References

- P.A. Sant, P.V. Kamat, Inter-particle electron transfer between size-quantized CdS and TiO₂ semiconductor nanoclusters. Phys. Chem. Chem. Phys. 4, 98–203 (2002)
- K.R. Gopidas, M. Bohorquez, P.V. Kamat, Photophysical and photochemical aspects of coupled semiconductors charge-transfer processes in colloidal CdS-TiO₂ and CdS-AgI systems. J. Phys. Chem. 94, 6435–6440 (1990)
- K.R. Gopidas, P.V. Kamat, Photoelectrochemistry in particulate systems. 11. Reduction of phenosafranin dye in colloidal TiO₂ and CdS suspensions. Langmuir 5, 22–26 (1989)
- D. Liu, P.V. Kamat, Electrochemical rectification in CdSe + TiO₂ coupled semiconductor films. J. Electroanal. Chem. Interfacial Electrochem. **347**, 451–456 (1993)
- D. Liu, P.V. Kamat, Photoelectrochemical behavior of thin CdSe and coupled TiO₂/CdSe semiconductor films. J. Phys. Chem. 97, 10769–10773 (1993)
- N. Serpone, E. Borgarello, M. Grätzel, Visible light induced generation of hydrogen from H₂S in mixed semiconductor dispersions: improved efficiency through inter-particle electron transfer. J. Chem. Soc. Chem. Commun. 342–344 (1984)
- W. Choi, A. Termin, M. Hoffmann, The role of metal ion dopants in quantum-sized TiO₂: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669– 13679 (1994)
- S.T. Martin, C. Morison, M.R. Hafmann, The role of metal ion dopants in quantum-sized TiO₂: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13695–13704 (1994)
- R. Saurez, P.K. Nair, P.V. Kamat, Photoelectrochemical behavior of Bi₂S₃ nanoclusters and nanostructured thin films. Langmuir 14, 3236–3241 (1998)
- I. Bedja, P.V. Kamat, Capped semiconductor colloids. Synthesis and photoelectrochemical properties of TiO₂ capped SnO₂ surfaces. J. Phys. Chem. 99, 9182–9188 (1995)

- K. Vinodgopal, P.V. Kamat, Enhanced rates of photocatalytic degradation of an azo dye using SnO₂/ TiO₂ coupled semiconductor thin films. Environ. Sci. Technol. 29, 841–845 (1995)
- K. Vinodgopal, I. Bedja, P.V. Kamat, Nanostructured semiconductor films for photocatalysis photoelectrochemical behavior of SnO₂/TiO₂ coupled systems and its role in photocatalytic degradation of a textile azo dye. Chem. Mater. 8, 2180 (1996)
- T. Lindgren, J.M. Mwabora, E. Avendano, J. Jonsson, A. Hael, C. Granqvist, S. Lindquist, Photoelectrochemical and optical properties of nitrogen-doped titanium dioxide film prepared by reactive DC magnetic sputtering. J. Phys. Chem. B. 107, 5709–5716 (2003)
- T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Bandgap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 81, 454–456 (2002)
- K. Drew, G. Girishkumar, K. Vinodgopal, P.V. Kamat, Boosting the fuel cell performance with a semiconductor photocatalyst: TiO₂/Pt–Ru hybrid catalyst for methanol oxidation. J. Phys. Chem. B 109, 11851–11857 (2005)
- V. Subramanian, E.E. Wolf, P.V. Kamat, Catalysis with TiO₂/Au nanocomposites: effect of metal particle size on the fermi level equilibration. J. Am. Chem. Soc. 126, 4943–4950 (2004)
- V. Subramanian, E.E. Wolf, P.V. Kamat, Influence of metal/metal ion concentration on the photocatalytic activity of TiO₂-Au composite nanoparticles. Langmuir 19, 469–474 (2003)
- H. Liu, L. Gao, (Sulfur, nitrogen)-codoped rutile-titanium dioxide as a visible-light-activated photocatalyst. J. Am. Ceram. Soc. 87, 1582–1584 (2004)
- H.W. Myron, A.J. Freemen, Electronic structure and optical properties of layered dichalcogenides: TiS₂ and TiSe₂. Phys. Rev. B 9, 481–486 (1974)
- 20. A.H. Thompson, K.R. Pisharody, R.F. Koehler Jr., Experimental study of the solid solutions $Ti_xTa_{1-x}S_2$. Phys. Rev. Lett. **29**, 163–166 (1972)
- 21. A.H. Thompson, Electron-electron scattering in TiS2. Phys. Rev. Lett. 35, 1786-1789 (1975)