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Abstract
Time management skills are an essential component of college student success, especially 
in online classes. Through a randomized control trial of students in a for-credit online 
course at a public 4-year university, we test the efficacy of a scheduling intervention aimed 
at improving students’ time management. Results indicate the intervention had positive 
effects on initial achievement scores; students who were given the opportunity to schedule 
their lecture watching in advance scored about a third of a standard deviation better on the 
first quiz than students who were not given that opportunity. These effects are concentrated 
in students with the lowest self-reported time management skills. However, these effects 
diminish over time such that we see a marginally significant negative effect of treatment on 
the last week’s quiz grade and no difference in overall course scores. We examine the effect 
of the intervention on plausible mechanisms to explain the observed achievement effects. 
We find no evidence that the intervention affected cramming, procrastination, or the time at 
which students did work.

Keywords  Scheduling · Procrastination · Online courses · Persistence · Performance · 
Achievement

Introduction

Concerns about student learning and poor academic performance are prevalent among 
parents, faculty, administrators, and policymakers in postsecondary education. Empirical 
evidence suggests that these concerns are not unfounded. Research indicates that student 
learning and academic growth is limited in some sectors of modern higher education (Arum 
and Roksa 2011) and academic performance, as measured by grades, can affect a student’s 
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eligibility for financial aid, choice of major, and probability of dropping out (Griffith 
2010; Rask and Tiefenthaler 2008; Schudde and Scott-Clayton 2016; Stratton et al. 2008). 
Recently, new modalities, such as fully online courses, have posed novel challenges to stu-
dents and instructors. These modalities are associated with even lower levels of learning and 
persistence (Angelino et al. 2007; Cochran et al. 2014; Evans et al. 2016; Figlio et al. 2013; 
Leeds et al. 2013; Moody 2004; Perna et al. 2014; Rovai 2003; Xu and Jaggars 2013).

Institutions and scholars are searching for causes of and solutions to low academic per-
formance. One promising area of focus is the inherent need for advanced time management 
skills in college classes and individual student characteristics associated with poor time 
management. Babcock and Marks (2011) have documented the decline of study time over 
the last several decades and have suggested that an increase in leisure activities might be 
a cause. Relatedly, a long line of empirical evidence suggests that poor time management 
and relatively few study hours are predictors of poor academic performance (Beattie et al. 
2017; Macan et al. 1990; Trueman and Hartley 1996).

While most of the extant research has focused on traditional, in-person higher educa-
tion, there are at least two reasons to believe time management is even more critical in 
online higher education. First, the asynchronous setting, with few, if any, set times at which 
a student must do work or participate in class does not generate an environment with a con-
sistent schedule. This greater flexibility forces students to make more decisions about when 
to do work and puts greater demands on the self-regulatory skills necessary for making 
plans for learning (Broadbent and Poon 2015; Schwartz and Ward 2004; Tuckman 2005). 
Second, the lack of a face-to-face connection and joint social presence with instructors and 
classmates creates fewer opportunities for extrinsic accountability, which can negatively 
affect student motivation and the extent to which students carry out their plans (Black and 
Deci 2000; Bowers and Kumar 2015; Miltiadou and Savenye 2003; Mullen and Tallent-
Runnels 2006; Zhan and Mei 2013).

These structural issues may disproportionately harm students with worse time manage-
ment skills. Several studies have identified student characteristics, such as student motiva-
tion, student interaction in the course, proclivity towards self-regulated learning, and time 
management skills, that predict success in online courses (Cochran et al. 2014; Hart 2012; 
Rostaminezhad et  al. 2013). Additionally, a meta-analysis of self-regulated learning in 
online higher education identified that effective time management is positively related to 
academic outcomes (Broadbent and Poon 2015).

Continued focus on these issues is especially important as higher education is rap-
idly expanding into the online world. Both traditional and for-profit providers are offer-
ing a greater share of credit bearing courses in certificate and degree programs online and 
increasing numbers of college students enrolled in traditional postsecondary programs are 
taking at least one class online. About 28.5% of college students take at least one online 
course and 14% of college students take all of their classes online (National Center for 
Education Statistics (NCES) 2015).

This trend is unlikely to stop; over 60% of chief academic officers across institutions of 
higher education say online education is part of their long-term institutional strategy (Allen 
et al. 2016). This growth is motivated by the opportunity to expand enrollments with mini-
mal investments in infrastructure and the view that providing postsecondary content online 
may slow the rapidly growing costs of delivering higher education (Deming et al. 2015).

Given the increasing importance of online higher education and the link between 
time management and students’ academic performance, many institutions, hoping to 
promote positive academic outcomes in online courses, are seeking simple, low-cost, 
scalable interventions aimed at improving time management. Because several studies 
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have suggested time management skills are critical to success in online courses (Elvers 
et al. 2003; Michinov et al. 2011; Nawrot and Doucet 2014; Roper 2007), and provid-
ing a scheduling structure for completing tasks has been identified as a principle in the 
successful design of Massive Open Online Courses (MOOCs) (Guàrdia et al. 2013), the 
goal of this paper is to test the efficacy of a scheduling intervention in an online post-
secondary course. We seek to answer one primary research question: what is the effect 
of encouraging students to schedule their coursework on academic performance in an 
online, for-credit postsecondary course?

To answer this question, we employ a randomized control trial testing the effects of a 
low-cost, scalable scheduling intervention on course achievement in an online, for-credit 
course for degree seeking students in a 4-year selective public college. The interven-
tion we examine is a suggestion by the course instructor that students schedule when 
to watch the lecture videos and an online survey in which they could set their lecture 
watching schedule. The suggestion was delivered to a randomly selected group of stu-
dents in each of the first 2  weeks of the course. Treated students were asked to state 
when (day of the week and hour of the day) they intended to watch the daily lectures in 
the first 2 weeks of the course. In order to ensure that the control students had an equal 
number of contacts from the instructor in an effort to isolate the effect of the schedul-
ing survey, control students received an email from the course instructor with a link to 
a survey asking them which web browser they used to access the course (week one) and 
whether they listened using speakers or headphones (week two). Screenshots of both 
surveys are provided in Fig. 1.

Although many studies have previously explored the correlation between time manage-
ment, scheduling, and student outcomes in higher education, there is a dearth of evidence 
on the causal effect of scheduling on student performance in online education. The causal 
evidence that does exist is limited to evidence from three studies that took place in MOOCs 
(Baker et al. 2016; Kizilcec et al. 2016; Patterson 2014). The MOOCs in these three papers 
present a very different context, and it is questionable whether or not these results can be 
generalized to students in online classes offered by traditional colleges. In each of the prior 
studies, the MOOCs were free, open access, and students could not earn college credits 
for successfully completing them. As such, student motivation to take and complete these 
courses is likely very different from motivation to pay for and enroll in a credit-bearing 
online course. This difference in motivation for enrolling leads to very different student 
populations and likely leads to substantially different behaviors and outcomes among stu-
dents. Therefore, it is important to test scheduling interventions in for-credit online classes 
as well as in open access non-credit bearing courses such as MOOCs.

In addition to the different context, the current study also extends the previous litera-
ture by examining heterogeneity of treatment across student characteristics. We measure 
students’ perceived time management skills using a pre-course survey. This enables us to 
assess whether our intervention, which targets improving time management through sched-
uling, has differential effects on students with high and low self-reported time management 
skills. We hypothesize that the treatment effects will be stronger for students who report 
having poor time management abilities.

A final contribution of our analysis is a consideration of potential mechanisms. We have 
access to many student behaviors within the course (e.g. timing of watching lectures and 
completing assignments). These detailed clickstream data allow us to observe micro inter-
actions and examine if the scheduling intervention has effects on student behaviors such as 
procrastination and cramming. This level of detail enables us to examine potential mecha-
nisms through which the scheduling intervention may yield effects on course performance.
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Our employment of a randomized control trial enables us to causally assess the effect 
of encouraging scheduling on a variety of achievement outcomes. To summarize our 
results, we find high levels of take-up of the treatment (92–93%) and positive treat-
ment effects of the scheduling intervention on initial quiz grades. However, these effects 
diminish over time such that we see a marginally significant negative effect of treatment 
on the last week’s quiz grade and no difference in overall course scores. In support of 
our hypothesis, we find that the positive effects of the first quiz score are concentrated 
among students who report poor time management skills. We do not find evidence that 

Fig. 1   a Scheduling survey. b Control survey
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the treatment affected student lecture watching behaviors such as procrastination and 
cramming.

Prior Literature & Theory

Academic Performance in Online Higher Education

A great deal of effort has gone into identifying the effects of online postsecondary course-
work on student performance. Lack (2013) cites numerous observational studies that exam-
ined the difference in academic performance between online and face-to-face courses. 
These studies found inconsistent results, but all were plagued by selection bias. Xu and 
Jaggars (2013) improved on observational studies by comparing the same students when 
they take face-to-face versus online coursework and found students generally performed 
worse in online delivery. The best identified studies have shown mixed results. Bowen et al. 
(2014) randomly assigned students to a hybrid versus face-to-face statistics course at six 
4-year public institutions and observed no difference in learning outcomes between the two 
delivery formats. However, in another randomized control trial, Figlio et al. (2013) found 
male, Hispanic, and lower achieving students performed worse when assigned to an online 
economics course relative to their peers assigned to the in-person version.

Although these studies investigated different interventions in different contexts, the bal-
ance of evidence suggests that students perform no better, and oftentimes worse, in for-
credit online postsecondary coursework relative to traditional face-to-face coursework. 
However, from an institutional cost–benefit perspective, and in the context of limited 
resources, it is possible to argue that potential performance loss is worth the substantial 
savings, to schools and to students, of delivering content online. However, that debate 
obscures what we consider to be the more relevant question: can we improve learning out-
comes in the online context? To accomplish this goal, we must identify the critical chal-
lenges students encounter in online education and help students overcome those challenges.

Time Management & Scheduling Study Time

One critical challenge in online classes is time management. Prior research has repeatedly 
demonstrated that time management is an important skill related to college performance in 
both face-to-face and online postsecondary classes. Poor time management and fewer study 
hours are the leading predictors of poor academic performance in a traditional 4-year col-
lege education setting (Beattie et al. 2017). Specifically, studying course materials through-
out the term, as opposed to cramming right before a deadline, is positively correlated with 
a higher college GPA (Hartwig and Dunlosky 2012). Similarly, Macan et al. (1990) found 
that scores on a robust time management scale were positively related not only to higher 
college GPA but also to higher students’ self-perceptions of performance and general sat-
isfaction with life. College students with better time management skills both scored higher 
on cognitive tests and were more efficient students, spending less total time studying (Van 
Den Hurk 2006). There is not a large literature focusing explicitly on the scheduling com-
ponent of time management, but short range planning, including scheduling study time, has 
been found to be more predictive of college grades than SAT scores (Britton and Tesser 
1991).
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Important for our specific context, these results have been shown to extend to online 
learning settings. In a study of online learners who completed degrees, students identified 
that developing a time management strategy was critical to their success (Roper 2007). 
Guàrdia et al. (2013) argue that providing a scheduling structure with clear tasks is one of 
ten critical design principles for designing successful MOOCs.

Hypotheses to explain why scheduling is so important are thin, but we propose several 
potential mechanisms. Scheduling could simply encourage students to spend more time on 
their coursework. By scheduling when to work, it is more likely students will spend that 
scheduled time on their classes rather than on alternate activities.

It is also possible that planning induces more efficient studying by reducing the prob-
ability that students will do work at non-ideal times of day. Prior research on adolescents 
links improved performance on intelligence assessments with working during students’ 
preferred time of day (Goldstein et al. 2007), and a study of college students demonstrated 
that starting classes later in the morning improves academic performance (Carrell et  al. 
2011). It is likely that if students establish and stick with a schedule, they are more likely to 
complete work during ideal times.

Another possible explanation of the importance of scheduling is that it reduces the like-
lihood of students cramming a lot of work into a short period of time or putting off work 
until just before the deadline. Cramming and procrastination have both been found to be 
negatively related to success in online classes (Elvers et al. 2003; Michinov et al. 2011).

A final potential mechanism is that time management is an effective strategy to reduce 
academic stress and anxiety, which in turn may increase performance (Misra and McKean 
2000). We are able to explore the time of day, cramming, and procrastination mechanisms 
with empirical data in our analysis below.

Theory of Action of the Scheduling Intervention

The goal of our study, unlike much of the prior literature, is not to survey students about 
their study strategies to look for a relationship between study skills and academic out-
comes. Rather, given the consistent evidence that good time management practices are 
associated with positive outcomes, we attempted to manipulate students’ time management 
practices by encouraging students to schedule their study times. Such an intervention is 
particularly important in asynchronous online contexts which lack structure, as there are 
no scheduled class meeting times. Most online courses have weekly deadlines for submit-
ting assignments but lack any sort of meeting schedule like those traditionally found in 
face-to-face courses. Our goal is to induce students to improve their time management by 
scheduling when they will watch the lecture videos. Our hypothesis is that the scheduling 
will result in improved academic performance.

Our intervention encourages creating a structure and timeline in an otherwise unstruc-
tured course environment. Self-defined course schedules continue to provide flexibility, 
a notable advantage of online education, by allowing students to choose when they will 
watch the lecture videos throughout the week. However, by committing to the days and 
times they choose, students should be more likely to hold themselves to that schedule 
instead of putting off the online coursework in favor of other more immediate demands.

Our intervention functions similar to a precommitment device, which has been tested in 
the economics literature in a variety of contexts. People’s preferences tend to change over 
time, such that intentions to engage in a particular activity in the future are often revised 
when the future arrives and a different preference takes precedence (Frederick et al. 2002). 
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A precommitment device works by binding a person’s future behavior to reduce the risk 
of succumbing to immediate desires. For example, at the beginning of the week, a stu-
dent may intend to do work for their online class every evening, but when each evening 
approaches, the student will choose another more appealing activity, thereby delaying or 
forgoing their coursework. By committing in advance and formalizing their schedule, stu-
dents may be more likely to adhere to their coursework commitment.

Precommitment devices have been found to be effective in diverse contexts such as 
employee effort (Kaur et al. 2013), smoking (Gine et al. 2010), and savings (Ashraf et al. 
2006). One study from higher education (Ariely and Wertenbroch 2002) has demonstrated 
a demand for, and a positive effect of, precommitment devices that aim to affect student 
effort and behaviors on out-of-class assignments.

The intervention we study in this paper functions as a type of precommitment device 
wherein students are given the opportunity to shape their own future behavior. This inter-
vention is in line with Song et  al. (2004) and Nawrot and Doucet (2014), who directly 
called for interventions targeting the development of time management strategies in online 
classes. To our knowledge, there are only a few tests of similar interventions in online 
higher education, all of which were conducted in free, open-access MOOCs that did not 
confer college credits. One study examined the efficacy of a similar intervention in a 
MOOC (Baker et al. 2016), and found a small and surprisingly negative effect of schedul-
ing on completing the course and on course performance as measured by final grade. A 
work in progress paper presented at the Learning @ Scale conference provided a similar 
test by randomly informing a sample of MOOC users that a set of study skills have been 
reported as effective (Kizilcec et al. 2016). That study found no effect on engagement and 
persistence outcomes. Finally, Patterson (2014) randomly assigned MOOC students to a 
more costly commitment: installing software on their computers that limits access to dis-
tracting websites (news, Facebook, etc.). The experiment found large effects of the treat-
ment, including an 11 percentage point increase in course completion and more than a 
quarter of a standard deviation increase in course performance. These larger effects are 
likely driven by the intrusive commitment device and only apply to the small subset of 
course registrants (18%) who volunteered for the commitment device after being offered a 
financial incentive.

Our study improves upon the prior literature by examining the scheduling commitment 
in the context of a credit-bearing traditional online higher education course. The prior 
studies have limited external validity to for-credit coursework due to the different student 
expectations, motivations, and behaviors in a free MOOC that does not confer college cred-
its. Additionally, the prior studies report mixed results with positive, negative, and null 
effects represented across the three MOOC experiments, which necessitates further evi-
dence of the utility of this type of intervention. Furthermore, we are the first study able to 
examine heterogeneous effects of this intervention across reported time management skills 
and to be able to investigate plausible mechanisms of the scheduling intervention.
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Setting, Data, and Methods

Experimental Setting

Course

We conducted our study in an online undergraduate STEM course lasting 5  weeks in a 
selective, public 4-year university. The course was in the summer term, was offered online 
(though the final exam was given in person), and conferred full credit as if the enrollees had 
taken the same 10-week course in person during the academic year. The course was lower 
division, required for the major, and had calculus as a pre- or co-requisite. Although the 
prior courses in which a similar intervention has been evaluated are also STEM courses, 
we note that our setting differs in that it is for credit, not open access, not a MOOC, and 
slightly more advanced given that calculus is a co-requisite.

Taking courses over the summer is common among undergraduate students at this 
school; 35.7% of students take at least one summer class over the course of their career 
and the school promotes summer courses as a way to graduate on time. There are two sum-
mer terms offered by the university. Each is only 5 weeks long, so many students take one 
term of summer classes and work or have an internship for the remaining 2 months of the 
summer.

Students had to meet frequent deadlines throughout the course. Each week required stu-
dents to watch five lecture videos with in-video quizzes, complete daily homework assign-
ments, complete weekly “challenge problem sets,” and take weekly quizzes. Lecture videos 
were each approximately 40–50 min in length. To receive credit for watching the lecture 
videos and completing the in-video quizzes, students had to complete all videos by mid-
night on Friday each week. Daily problem sets were due every day from Monday to Sat-
urday, challenge problems sets were due once or twice a week, and weekly quizzes were 
only available on Sundays. In addition to these assignments, the course also had a final 
exam that was held on campus on the last day of the course. Students’ final grades were 
determined by participation in watching lectures (15%), performance on daily problem sets 
(15%), scores on the weekly quizzes (30%), and the final exam score (40%).

Participants

A total of 176 students enrolled in this course and more than half of these students had 
taken at least one online class before. Nineteen of these students did not participate in our 
experiment because they enrolled in the course after randomization, hence 157 students 
were randomly assigned.1 Prior to random assignment, and before the course officially 
started, a pre-course survey, which was worth 1% of extra credit toward the course grade, 
was sent out. It included questions about student characteristics (e.g., major, first language, 
and summer housing), self-assessments of self-regulation skills, expected time commit-
ment for the course (expected hours of work per week), and self-assessments of time-man-
agement skills. Among the 157 students in the potential sample, 145 of them completed 
the pre-course survey. We use the pre-course survey responses to examine heterogeneity 

1  Due to an administrative error, two students who were assigned to the control condition were given the 
treatment scheduling surveys. We consider this a compliance issue and leave them in our ITT estimates.
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of treatment effects across key student groups. For example, we identify students with low 
self-reported time management skills, as defined by responses to pre-course survey ques-
tions, and analyze the heterogeneity of the treatment effect by this characteristic. In an 
effort to maintain the same sample throughout the analysis, we use the 145 students who 
completed the pre-course survey as our analytic sample.

Although we observe the outcomes for the full 157 students randomized, we could con-
sider the reduction in sample to 145 to be a form of pseudo-attrition at a rate of 7.6%. 
There is also a differential response rate to the pre-course survey across treatment and 
control assignments of 7.7%. Because the pre-course survey was conducted prior to ran-
dom assignment, it is exogenous to treatment; therefore, these rates fall into the bounds of 
acceptable attrition as outlined by the What Works Clearinghouse (2017).2

Data

Demographic Variables

The institution provided administrative data on demographics and prior academic achieve-
ment including standardized test scores, prior course enrollment, and prior course perfor-
mance for all students enrolled in the course who were also enrolled as degree-seeking 
students in the institution. Of the 145 students who completed the pre-course survey, full 
demographic information was available for 111 students (we had information on between 
117 and 128 students for each demographic variable provided by the institution).3 We use 
demographic data to check for balance between our treatment and control groups (described 
below), but because of the reduction in sample size, do not include these covariates in our 
main analyses. Given the randomized nature of our study, the inclusion of these covariates 
should not affect our results, and indeed, we find similar results with this reduced sample 
and the addition of covariates as demonstrated in Appendix Table 7.

Table 1 presents summary statistics on student characteristics for the analytic sample, 
the treatment group, and the control group.4 Students in our samples were, on average, 
20.3 years old (SD 1.2). There are slightly more female students than male students (55.5 
compared to 44.5%), and our sample consisted of 67.5% Asian American, 12.8% Hispanic, 
8.5% White, and 1.7% Black with 9.5% not indicating their race/ethnicity. The majority of 
the students were sophomores (70.9%), followed by freshman (15.7%), juniors (11.8%), 
and seniors (1.6%). Half of the students were first generation students (defined as neither 
parent having a college degree). Individual t-tests were conducted on the treatment and 
control group mean difference for each variable to assess experimental balance of the 

2  To further alleviate concerns related to this sample reduction, we present results from ITT and TOT mod-
els without covariates using the fully randomized sample of 157 students in the first two columns of Appen-
dix Table 7. Reassuringly, results are consistent with the reported results from the pre-course survey sample 
of 145 students.
3  While most of the students enrolled in the course were degree-seeking students at the university, some 
(fewer than ten) students were enrolled in another university. We do not have demographic information 
available for these students, but we do have full data (including survey responses) for these students. They 
are included in our analyses.
4  Much of the data presented in this table come from institutional data provided to us by the school’s insti-
tutional research office. Sample sizes vary based on which data were available for which students. The sec-
ond set of variables were asked on the pre-course survey for this specific class and are available for all 
students in our analytic sample.
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randomization. None of the variables exhibited any significant difference between the two 
groups, suggesting that randomization produced treatment and control groups that were 
equal in expectation.

Time Management and Self‑regulation Skills

In the pre-course survey, questions adapted from a widely used and validated measure of 
students’ self-reported self-regulation and self-management skills (Pintrich 1991) were 
used to measure students’ perceptions of their own self-regulation and time management 
abilities. Except for the time commitment question, which was measured in hours, stu-
dents responded to the questions on a Likert scale from 1 (i.e., strongly disagree) to 5 (i.e., 
strongly agree).

It is important to note that these measures represent students’ self-reported time man-
agement skills. Students’ perceptions of their own time management abilities might be 
weakly, or even negatively, correlated to their actual abilities (i.e. Dunning–Kruger effects, 
Kruger and Dunning 1999). In our data, correlational evidence suggests that these self-
reports are generally unrelated to behavioral measures of time-management skills and prior 
academic performance, though we do have some evidence that students who reported very 
poor planning and scheduling did actually procrastinate more.

We use self-reported self-regulation skill measures as an additional test of balance 
across the treatment and control groups. Table 1 presents summary statistics of measures 
from the pre-course survey for the analytic sample and treatment and control groups. We 
observe that, on average, students report fairly high levels of self-regulation abilities. All 
variables have means above three (closer to agree than disagree), with most average scores 
close to four. Students expect to spend about 11 hours on the course per week. We test the 
balance on each of these survey responses between the treatment and control group using t 
tests and report the p value of that test in the last column of Table 1. We observe only one 
variable having a significant p-value at conventional levels (students in the control group 
are more confident than students in the treatment group about their ability to succeed in 
online classes), which provides additional confidence that randomization produced equiva-
lent groups.

We use these self-reported self-regulation measures in two other ways: we include them 
as controls in our treatment effect regressions to increase precision as they predict course 
performance, and we use the three time-related pre-course survey measures to examine 
heterogeneous effects of the intervention. We divide the students into meaningful catego-
ries that we theorize might be differentially affected by scheduling structure. The three 
measures that we use to divide students in our heterogeneity checks are the last three vari-
ables in Table 1 (expected time commitment for this course, propensity to keep a record 
of deadlines, and propensity to plan work in advance). Given that these measures are all 
self-reported, our subgroup analyses examine differences in estimated treatment effects by 
students’ perceptions, and not by actual time management abilities.

Course Performance

We observe achievement outcomes (weekly quiz scores, daily homework scores, and final 
course grade) as well as video clickstream data from the course management platform. 
We focus our analyses on the weekly quiz scores and final course grade as opposed to the 
daily homework scores for two reasons. First, the weekly quizzes are most closely aligned 
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with the content presented in the lectures. Second, our intervention aimed to affect weekly, 
not daily, scheduling, so any effects should be most present in weekly assignments (Koch 
and Nafziger 2017). We provide a check of treatment effects on daily homework scores in 
Appendix Table 8; we find weaker effects than we see for the weekly quizzes, but a similar 
pattern among student subgroups.

Table 2 presents summary statistics describing students’ scores on their weekly quizzes 
and their overall course grade. Except for the week one quiz, which had a maximum score 
of 15, all of the other quizzes had a maximum score of 6. On average, students scored 9.9 
on the first quiz and 3.9–4.8 on the following quizzes. The overall course grade, measured 
on a 100-point scale, was based on course participation (measured by watching the lecture 
videos and completing the in-video quizzes), five weekly quizzes, performance on the daily 
problem sets, and final exam score. On average, students scored 81.5 out of 100 available 
points at the end of the course.

Course Engagement

Clickstream data collected from the course management platform allow us to assess student 
engagement and time use by observing when students clicked on the lecture videos in the 
course platform (but not the total time they spent engaged with any particular component 
of the course). We use these data to examine the mechanisms by which the treatment could 
have an effect, specifically by investigating the time at which students watched lectures and 
students’ procrastination and cramming behavior.

Experimental Design

Students were randomly assigned into treatment (N = 79) and control (N = 78) groups on 
the first day of the course. The 76 students from the treatment group and 69 students from 
the control group who completed the pre-course survey were used in our analyses to esti-
mate the treatment effect. On the first day of week one and week two, the treatment stu-
dents received an email with a link to an online scheduling survey (which was separate 
from the pre-course survey which all students received) from the course instructor asking 
them to schedule on which day and at what time of the day they would watch each of the 

Table 2   Descriptive statistics for weekly quiz and final course grade outcomes

Quiz and course grades were collected from the course platform at the end of the course

Analytic sample 
(N = 145)

Control group (N = 69) Treatment group 
(N = 76)

M SD M SD M SD

Week 1 quiz (max = 15) 9.910 (3.595) 9.326 (3.763) 10.441 (3.373)
Week 2 quiz (max = 6) 3.945 (1.423) 3.855 (1.375) 4.026 (1.469)
Week 3 quiz (max = 6) 4.186 (1.434) 4.130 (1.371) 4.237 (1.495)
Week 4 quiz (max = 6) 3.979 (1.496) 3.930 (1.384) 4.024 (1.599)
Week 5 quiz (max = 6) 4.890 (1.507) 5.072 (1.304) 4.724 (1.662)
Course grade (max = 100) 81.525 (12.553) 80.454 (13.991) 82.498 (11.094)
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five video lectures for that week. The email and survey that were shown to students in the 
treatment group are presented in Fig. 1a.

The control students received emails from the course instructor asking them to respond 
to an online survey about how they watched course lectures (in week one students were 
asked which web browser they used to access the course and in week two they were asked 
if they listened to the lecture using the computer’s speakers or using headphones—the 
email and survey from week one are presented in Fig. 1b).

It is possible these control emails could affect student outcomes in two ways.5 First, the 
questions could have induced students to think about their online coursework, and thus 
could have increased their likelihood of watching lecture videos. Second, there is some 
evidence that increased contact from instructors is positively related to students’ academic 
satisfaction and self-reported learning gains (Bjorklund et  al. 2004; Kang and Im 2013; 
Heiman 2008). Therefore, the treatment contrast is not as strong as it would be if the con-
trol students received no contact from the course instructor. Notably, this reduces the treat-
ment contrast and likely provides conservative estimates of the treatment effect relative to 
an implementation without our control condition.

We provided control students with an emailed survey for two reasons. First, it enabled 
us to provide extra credit for the control students as we did for the treatment students. Not 
only was this equitable, but it ensured pursuing extra credit was not driving any differences 
in academic performance we observed. Second, it ensured that students received an equal 
number of contacts from the instructor. This allows us to isolate the effect of the scheduling 
intervention instead of estimating a combined effect of scheduling and additional contact 
from the course instructor.

The take-up rate of the intervention was very high. Among the 76 students in the treat-
ment group, 71 of them (93.4%) completed the week one scheduling survey and 70 of them 
(92.1%) completed the week two scheduling survey. Combining the 2 weeks, 74 (97.4%) 
students in the treatment group completed at least one scheduling survey. Take-up rates 
among the control students were a bit lower: 84.1% answered the survey the first week, 
85.5% answered the survey the second week, and 91.3% completed at least one survey. 
Although we cannot distinguish between never opening the survey from opening the sur-
vey but not responding to the survey questions, the slightly higher take-up rate for the treat-
ment survey might be due to students finding value in the scheduling survey questions.

Methods of Analysis

We employ linear regression to estimate the effect of treatment assignment on several 
course performance outcomes: standardized measures of quiz performance in weeks one 
through five and standardized final course grade. We include a vector of student-level 
covariates, Θi, which includes 13 covariates from the pre-course survey.6 Equation (1) was 
used to estimate the intent-to-treat effect (ITT) for student i:

(1)Y
i
= a + � Treatment

i
+ �

i
� + �

i

6  As noted earlier, we did not include student demographic characteristics in our analyses because we were 
missing these measures for about one quarter of our sample. Appendix Table 7 Columns 7–10 include esti-
mates of the treatment effect from this reduced sample with and without controls. Those estimates are a bit 
larger, but remain qualitatively similar (same sign and significance).

5  We note that we could appropriately call our control group a placebo group, although we preference the 
former term.
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The ITT estimate is of interest if we conceive of the treatment as being asked to sched-
ule when to watch the lecture video via an online survey in an email. Alternatively, we 
may be interested in the effect of actually completing the survey and scheduling when to 
watch each lecture video. This second effect is the treatment on the treated (TOT) esti-
mate, which we estimate using a two stage least squares instrumental variable approach in 
which random assignment to treatment is the instrument for actually completing the sched-
uling survey. Because we asked treatment group students to make schedules in both week 
one and week two, we define the treatment for the TOT estimate in two different ways. 
For outcomes in the first week, we estimate the effect of whether a student completed the 
scheduling survey in week one on the week one outcomes. For outcomes after week one, 
we consider whether a student completed either of the surveys in week one or week two to 
estimate TOT on outcomes of week two to week five as well as the final course grade.

There are three important assumptions to consider in the application of the two stage 
least squares instrumental variables approach to estimating the TOT effects. The first is a 
strong first-stage demonstrating treatment assignment is related to treatment received, for 
which we provided evidence given the high take-up rates of treatment. Second, the instru-
ment must satisfy the exclusion restriction, which states the instrument can only affect the 
outcome through treatment. Given the random nature of the treatment assignment instru-
ment, this assumption is satisfied. Finally, in order for the instrumental variable estimate to 
provide a TOT effect (also known as a local average treatment effect or a treatment effect 
for compliers), we must assume there are no defiers. We think it unlikely that there are stu-
dents who would have completed the scheduling survey if assigned control and would not 
have completed it if assigned treatment.

We also estimate treatment effect heterogeneity across three student characteristics 
measured on the pre-course survey related to time management: how many hours students 
planned to work on the course, how likely the student said he or she was to keep a record 
of deadlines, and how likely the student said he or she was to plan work for the course 
in advance. These three measures directly relate to existing literature on the relationship 
between time management and course performance. Beattie et al. (2017) identified the num-
bers of hours spent studying as a critical factor related to academic performance in higher 
education. We measure students’ expected time commitment on our pre-course survey. 
Admittedly, expected time commitment could vary from actual time spent studying, but we 
believe our expectations question is a reasonable proxy measure for actual time spent on 
the course. The two time management measures captured on the pre-course survey, keep-
ing record of deadlines and planning work in advance, are the most direct measures of time 
management available. They are also the two measures most directly related to our sched-
uling intervention which aims to induce students to schedule in advance and record their 
schedule.

We divided students into high and low categories for each of these three measures. 
Specifically, students who expected to work less than 7 hours per week (the 25th percen-
tile in the class) on this course were categorized into the low expected effort group, while 
the others were put into the high expected effort group. Students who responded with 
values of three or lower on their ability to keep a record of deadlines and plan in advance 
were put into the low self-regulation skills groups for these two items, while those who 
responded with values of four and five were categorized into the high self-reported self-
regulation groups. For each of these two types of self-regulation, the low category rep-
resents roughly the bottom third of the class. We estimated the ITT and TOT for each 
subgroup separately.
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Results

Did Students Watch When They Said They Would?

We first examine if students who were assigned to and complied with treatment followed 
the plans they set. That is, we examine if these students watched the lecture videos at the 
day and time they scheduled. We define watching at scheduled time in two ways: if the 
time that students watched the video was within 1 hour of the time they scheduled and if 
the watch time was within 3 hours of when they scheduled. For example, a student who 
scheduled to watch the video at 4:00 p.m. on Tuesday would be said to have watched it 
within one (three) hour if their recorded watch time was between 3:00 and 5:00 p.m. (1:00 
and 7:00 p.m.) on Tuesday. In the first week, 32% of treated students watched lecture video 
one within 1 hour of their scheduled time and 53% within 3 hours. This declined by the end 
of the week; 6% of students had watched lecture video five within 1 hour of their scheduled 
time and 11% within 3 hours. Rates were similar in the second week, with 34% of stu-
dents watching the first lecture within an hour of the scheduled time (49% within 3 hours) 
and 8% watching the fifth lecture video within an hour of the scheduled time (21% within 
3 hours).

Although this appears to be a low rate, many students watched the videos before they 
had planned to do so. We formalize this by relaxing the definition above to include all 
students who watched each lecture by 1 hour after their scheduled time. For example, a stu-
dent who scheduled to watch the first video at 4:00 p.m. on Tuesday would be counted as 
having watched it before their planned time if they watched it any time before 5:00 p.m. on 
Tuesday. In the first week, 79% (36%) of students had watched the first (fifth) lecture video 
by 1 hour after their scheduled time. In the second week, the rates were 56% (30%). On the 
whole, most treatment students watched the lecture videos before or near the time that they 
schedule.

Treatment Effect on Course Performance

We provide results addressing our first research question in Table 3, in which we report 
the treatment effect on two measures of course performance: weekly quiz score and final 

Table 3   Treatment effect 
estimates on course performance

Each row reports the coefficient on the treatment variable from a 
regression of that row’s outcome (measured in standard deviation 
units) on a dummy for treatment and thirteen student-level covariates 
from the pre-course survey. Heteroskedastic robust standard errors are 
included in parentheses. N = 145
+ p < 0.10, *p < 0.05, **p < 0.01

Outcomes ITT TOT

Week 1 quiz 0.341* (0.168) 0.363* (0.169)
Week 2 quiz 0.195 (0.173) 0.201 (0.170)
Week 3 quiz 0.100 (0.176) 0.103 (0.172)
Week 4 quiz 0.054 (0.167) 0.056 (0.148)
Week 5 quiz − 0.294+ (0.172) − 0.303+ (0.160)
Course grade 0.173 (0.160) 0.191 (0.154)



537Research in Higher Education (2019) 60:521–552	

1 3

course grade for our analytic sample of pre-course survey completers who were randomly 
assigned treatment and control. The estimates in column 1 are ITT estimates, and the esti-
mates in column 2 are TOT estimates. For the TOT estimates, we consider completing the 
week one survey as the treatment for week one outcomes and completing either survey as 
the treatment for all other outcomes.

Relative to control students, students assigned to the treatment group scored 0.341 
standard deviations (a little more than one point out of fifteen) higher on the week one quiz 
than students assigned to the control group, and this is statistically significant at the 5% 
level.7 Given that not all students assigned to the treatment group completed the schedul-
ing survey, the estimated TOT is slightly larger. This finding demonstrates that suggesting 
students schedule their work in advance in an online course improves their initial course 
performance.

The magnitude of this effect is also notable; a simple scheduling survey induced more 
than a third of a standard deviation increase in first week course performance, which is a 
large effect relative to many low-touch educational interventions. Given that the first quiz 
accounted for 6% of the total grade, and that the standard deviation on this quiz was about 
3.6 points, this amounts to about 0.5 point increase on the final course grade. While this is 
clearly not a huge increase, half a percentage point could meaningfully affect course grades 
for students who are on the margin between two grades (indeed, 9% of students in the con-
trol group would have received a higher letter grade had they received an additional 0.5 
points on the course grade).8

In subsequent weeks, however, the difference in quiz scores between treatment and 
control groups attenuates and becomes insignificant. In week two (the second and final 
week that students received the scheduling survey), the treatment effect is still positive, but 
the smaller effect size is not statistically significant. The effect attenuates further in weeks 
three and four, likely because the scheduling treatment was removed. In the final week of 
quiz performance, the treatment group actually experiences statistically significant (at the 
ten percent level) lower scores by three tenths of a standard deviation relative to the con-
trol group. Although the point estimates are positive, we observe no statistically significant 
effect on overall course final grade.

Treatment Heterogeneity

We next turn to whether the treatment has the same effect on outcomes across students 
that vary in their expected time commitment and self-reported time management skills. We 
conducted treatment heterogeneity checks for three variables: whether students expected to 
work more than 7 hours on this course, whether students perceived themselves to be good 
at keeping record of deadlines, and whether students perceived themselves to be good at 
planning in advance. Table 4 presents estimates of ITT and TOT for low and high levels of 
each of those three characteristics.

7  In Appendix Table 7, we present results from all students who were randomized into the treatment and 
control groups, and results from our pre-course survey sample but without the 13 controls. Results from all 
models are similar in magnitude and significance to the main results we present here.
8  Half a percentage point on the course grade is the same amount of extra credit that we offered to students 
for answering the weekly surveys (both treatment and control students). While many things, including want-
ing to respond to the professor, liking filling out surveys, etc. could induce student to fill out the survey, the 
very high take up rates indicate that an increase of 0.5 points is likely meaningful to students.
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We first examine treatment effect differences for students who had low and high 
expected hours of work on the course. For a student who has low expected hours of stud-
ying for the course, our scheduling intervention might induce them to spend more time 
on the course than they otherwise would have. Absent our intervention, students were not 
told how much time this course will take each week. Our scheduling intervention, which 
encourages students to think about when they will watch each of five roughly hour-long 
lectures each week, might change students expected work time. Given evidence on the rela-
tionship between time spent studying for a course and course outcomes (e.g. Beattie et al. 
2017), we expect our intervention to have a larger positive effect for students who expect to 
spend little time on the course each week.

For the week one quiz outcome, where we see positive effects in the full sample, we 
estimate positive point estimates for both the low and high expected working hour groups 
(ITT = 0.437, p > 0.10 for the low-expectation group, and 0.338, p < 0.10 for the high 
expectation group). There is no significant difference between the two groups when we 
estimate the two together using a pooled regression and include an interaction term for 
low-expectation with treatment. We do, however, see a statistically and practically signifi-
cant difference in week two quiz scores in which the high expected working group has a 
positive and significant treatment effect of (0.441, p < 0.05) while the low time expectation 
students had a negative point estimate that is not statistically different from zero (− 0.272, 
p > 0.10). We observe negative point estimates for both groups in week five (− 0.846, 
p < 0.10 for the low expectation group, − 0.143, p > 0.10 for the high expectation group), 
and there is no statistically significant difference between the two groups. Overall, students 
with high and low expected hours of work for the class responded relatively similarly to the 
scheduling treatment.

In contrast, we observe differential effects when examining treatment heterogeneity 
across self-reported time management characteristics. For students who state that they do 
not keep records of deadlines, the treatment has a very large effect: an increase of 0.850 
standard deviations (p < 0.05) for week one quiz performance, which is statistically differ-
ent from the small and statistically insignificant treatment effect for students who state that 
they keep a record of deadlines (0.148, p > 0.10). Similarly, the positive treatment effect on 
week one quiz score is larger (though not statistically significantly larger) for students who 
report that they do not tend to plan in advance than those who report planning in advance 
(0.612, p < 0.10 for the low planning group, 0.348, p < 0.10 for the high planning group). 
These results align with our hypothesis that being encouraged to make a schedule for video 
watching would most help students with poor time management skills.

Although we did not observe any treatment effect on the week two quiz score in the 
full sample, we see a strong positive treatment effect of the scheduling intervention in 
week two among students who report poor skills at planning in advance (0.875, p < 0.05). 
Similar to the overall sample, we do not observe any statistically significant results for the 
week three and four quizzes, ostensibly because the scheduling treatment did not encour-
age advance scheduling for those weeks. We find generally negative effects of assignment 
to treatment for the week five quiz scores, but we do not observe a consistent pattern of 
differential results across the low and high levels of our time management variables in the 
final week quiz scores. The negative effects are apparent across all student groups and are 
generally not or only marginally significant. We also see no statistically significant impacts 
of the treatment on final course grade for any subgroups.

These heterogeneous effects merit further consideration. As we examine heterogeneous 
effects by self-reported time management skills, it is possible that students who report poor 
time management and self-regulation skills are not actually worse at these abilities than 



540	 Research in Higher Education (2019) 60:521–552

1 3

other students. In a set of auxiliary analyses (available upon request) we find that this is 
mostly true—students who report inferior planning and commitment skills do not, in gen-
eral, show higher rates of procrastination and cramming. These students are also not more 
likely to have lower prior GPAs. Thus, it appears as if this type of intervention is most 
helpful for students who believe that their time management skills are poor, regardless of 
their actual skills.

Potential Mechanisms

We hypothesize two potential mechanisms to explain our intervention’s effect on achieve-
ment that we can explore empirically: reducing the proportion of work done at inopportune 
times of day and reducing procrastinating work and cramming at the end of the week. We 
consider these analyses to be exploratory and think that they could provide stepping stones 
for future work. First, the scheduling encouragement could affect whether students watch 
lecture videos at times of day that are not conducive to work. Past research has shown that 
the time of day when students do work is associated with learning outcomes (Goldstein 
et al. 2007) and that early morning classes are associated with worse outcomes for adoles-
cents (Carrell et al. 2011). Although not directly related to our experiment, we find results 
consistent with these prior findings in our sample: students who watched lectures in the 
early morning hours had worse final grades, on average, than students who did work later 
in the day (results available upon request).

By exploiting the randomization in our experiment, we can explore if the encourage-
ment to schedule altered the time of day in which students watched lecture videos. In 
our study, students tended to watch lecture videos in the evening and at night—over 
50% of lectures were watched between 4:00 p.m. and midnight (and an additional 14% 
between midnight and 4:00 a.m.).We examine if our treatment was associated with the 
time that students watched lectures in Fig.  2 and Table  5. Figure  2 provides a kernel 
density plot, separately for treatment and control students, of the distribution of the tim-
ing of lecturing watching throughout the day (0 = midnight, 12 = noon) summed over all 

0
.0
2

.0
4

.0
6

.0
8

D
en

si
ty

0 4 8 12 16 20 24
Hour

Control Treatment

Fig. 2   Distribution of time of watching lecture videos in week 1, treatment and control students
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days in the first week of the course. While the distributions appear to be slightly differ-
ent, with students in the treatment group watching more videos in the early afternoon 
and students in the control group watching more videos late at night (after 8:00 p.m.), 
they are not statistically significantly different from each other (a two-sample Kolmogo-
rov–Smirnov test yields no significant difference).

Table 5 extends this analysis to all 5 weeks of the course. In this table we present 
regression analyses that test the effect of scheduling on time of day of watching. In 
the models presented in this table, we examine if being assigned to treatment (ITT) or 
scheduling lecture watching (TOT) was significantly associated with the proportion 
of lectures watched in each of the 4 hours periods of time throughout the day. Again, 
it does not appear that our treatment had any effect on the time of day that students 
watched the lecture videos; the coefficient on treatment is not significant (and very close 
to zero) in each model.

We turn to our second proposed mechanism, that treatment could affect whether stu-
dents wait until the weekly deadline to complete coursework (procrastination) or if they 
watch all of the lecture videos together in a short period of time (cramming). Using data 
from the course platform that records when students watched lecture videos (descriptive 
statistics are provided in Appendix Table 9), we can empirically investigate whether the 
scheduling treatment altered procrastination and cramming behaviors.9 Existing literature 
has shown that the spacing and timing of work can affect course outcomes (Elvers et al. 
2003; Hartwig & Dunlosky 2012; Michinov et al. 2011), and we also find that this is true 
for the students in our course. Appendix Table 10 presents the relationships between pro-
crastination and cramming and course outcomes. We clearly observe that higher levels of 
cramming and higher levels of procrastination predict lower final course grades.

To evaluate the possibility of the scheduling intervention affecting cramming and 
procrastination as a mechanism for the treatment’s effect on academic outcomes, we 
investigate the treatment effect using cramming and procrastination as the outcome vari-
ables. Results are reported in Table 6. We neither observe any statistically significant 
coefficients nor any consistent pattern of results. This suggests that our low-cost and 
scalable intervention does not have measurable direct effect on altering the cramming 

Table 5   Treatment effect estimates on timing of student’s lecture watching throughout the day

Heteroskedastic robust standard errors are included in parentheses. The outcome is the proportion of lecture 
videos that were watched by each student in each of the six 4-h periods during the day. Thirteen covariates 
from the pre-course survey are included. N = 145
+ p < 0.10, *p < 0.05, **p < 0.01

Proportion of lectures watched ITT TOT

Post midnight (midnight 4:00 a.m.) − 0.003 (0.027) − 0.003 (0.029)
Very early morning (4:00–8:00 a.m.) − 0.008 (0.009) − 0.008 (0.009)
Morning (8:00 a.m.–noon) 0.015 (0.027) 0.015 (0.027)
Afternoon (noon–4:00 p.m.) − 0.002 (0.026) − 0.003 (0.026)
Evening (4:00–8:00 p.m.) − 0.032 (0.023) − 0.033 (0.024)
Night (8:00 p.m.–midnight) 0.031 (0.033) 0.032 (0.031)

9  We describe how we define and operationalize procrastination and cramming in depth in Appendix 2.
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and procrastination of video watching behavior, although we acknowledge that our sam-
ple size limits the ability to detect small effects.

Discussion

This study finds that encouraging students in an online class to schedule when to watch 
lecture videos improves achievement early in the course by a third of a standard deviation. 
The positive effects are concentrated among students who have self-reported poor time 
management skills. That advantage fades in subsequent weeks of the course.

The week two results are not as consistent as the week one results as they appear for 
only students with high expected working hours and for students who state that they do not 
plan their work in advance. We examine six possible explanations for the fading treatment 
effects between weeks one and two. We do not find evidence for three of these explana-
tions. We do not see differential take-up of the scheduling survey between weeks one and 
two, we do not find evidence that students scheduled to watch the lectures earlier in the first 
week than the second, and we do not find that treatment students’ time management habits 
decreased more than the control students’ habits between weeks one and two. We discuss 
the three explanations for which we do have some evidence below.

First, it could be an artifact of the difference in quiz scoring between weeks one and two. 
The quiz in week one was out of 15 points and had a wider distribution of scores, while the 
quiz in week two was out of six points, and scores were much more tightly clustered.

Second, we see some evidence that the treatment was less effective in the second week. 
Even though treatment students planned to watch videos in the second week an average 
of 17 hours earlier than they did in the first week, they followed their schedules with less 

Table 6   Treatment effect on cramming and procrastination

Heteroskedastic robust standard errors are included in parentheses. Spacing is defined as the standard 
deviation of the first time (in days) students watched each of the five videos for the week. Procrastination 
is defined as the average time (in days) between watching each lecture and the Friday midnight deadline 
across all five weekly videos, where negative numbers indicate an earlier time point. Sample size varied 
for each week’s cramming and procrastination because students needed to watch at least one video to get a 
quantitative measure for procrastination and at least two videos to get a quantitative measure for cramming. 
Thirteen covariates from the pre-course survey are included
+ p < 0.10, *p < 0.05, **p < 0.01

Cramming Procrastination

ITT TOT N ITT TOT N

Week 1 − 0.142 (0.215) − 0.151 (0.217) 139 0.123 (0.29) 0.131 (0.283) 141
Week 2 0.129 (0.147) 0.140 (0.165) 140 − 0.030 (0.266) − 0.033 (0.268) 141
Week 3 − 0.093 (0.214) − 0.096 (0.210) 138 0.141 (0.324) 0.145 (0.310) 138
Week 4 − 0.059 (0.133) − 0.060 (0.130) 138 − 0.158 (0.383) − 0.163 (0.334) 139
Week 5 − 0.071 (0.116) − 0.073 (0.114) 137 0.124 (0.258) 0.128 (0.238) 139
Overall grade − 0.080 (0.089) − 0.082 (0.088) 132 0.052 (0.244) 0.054 (0.230) 135
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fidelity in the second week; on average, students watched about half a video more as sched-
uled (within one hour) in week 1 compared to week 2. This suggests that perhaps students’ 
habits are most malleable in the first week of the term, before other engagements and time 
commitments are firmly set, and a scheduling intervention is most effective early in the 
term.

Another explanation for the observed difference between week one and week two effects 
is that the control students took longer to establish a good schedule for studying but even-
tually caught up (that is, the observed shrinking difference between treatment and control 
students is due to control students catching up rather than treatment students doing worse). 
Although we are unable to fully test this possibility, we find weak evidence that this might 
be part of the story. Treatment students’ quiz scores decreased, on average, between week 
one and week two while control students’ quiz scores increased between the 2 weeks. Nei-
ther change is statistically significant, but the two trends do support the hypothesis that the 
treatment effect fades for the treated students because the control students learn how to 
succeed in the course on their own.

We observe no statistically significant difference between the control and treatment 
groups in weeks three and four (on average and in any subgroup) and negative impacts in 
week five. One potential explanation for the attenuation of effects over the length of the 
course is that we removed the scheduling intervention after the first 2 weeks—instead of 
teaching students time management skills that persist, the scheduling intervention might 
have induced students to schedule and improve academic performance only in the weeks 
when they were directed to schedule. The decline in treatment effect after the intervention 
was removed could suggest that the encouragement to schedule, while initially effective, 
did not induce students to internalize a change in time management behavior. It is also pos-
sible that students began to rely on the intervention and that its removal harmed their long 
term performance resulting in negative effects in the final week. However, we do not have 
robust support for this hypothesis, as we might expect that harm to appear immediately in 
week three as opposed to week five. The results suggest that future research should seek to 
implement and test interventions that teach time management tools that will persist over 
time and in other contexts.

Collectively, these findings deepen our understanding of results from previous studies. 
Our experimental findings confirm a long line of observational research on the importance 
of time management in academic performance. Additionally, they extend that confirma-
tion into an important and growing context: online, for-credit postsecondary courses. Prior 
studies, such as Patterson (2014), who found positive effects using a more invasive inter-
vention, have only been conducted in open-access, free MOOCs. Using a comparable treat-
ment to Baker et al. (2016), who also studied a scheduling intervention in an open-access, 
free MOOC, we similarly find weak evidence of negative effects on distal outcomes, but, 
in contrast to that prior work, we observe positive effects on immediate achievement out-
comes. The difference in these findings emphasizes the value of studying similar interven-
tions in different contexts.

Students taking a credit-bearing class, as opposed to enrolling in an open-access MOOC 
that does not confer credit, are likely to be more motivated to successfully complete a 
course, as they have paid tuition to take the course and are typically enrolled in degree 
seeking program. We see evidence of this increased motivation in the high take-up of the 
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scheduling intervention among the treatment group (over 90%) relative to the take-up 
observed in Baker et al.’s prior MOOC study (about 13%).

While the course in this study is very similar to the modal online course offered at this 
university (between 2015 and 2017, about 50% of the online classes at this school were in 
STEM fields, 70% were lower division, and 55% had a pre- or co-requisite), this course is 
likely somewhat advanced compared to the average online course given calculus is a co-
requisite. It is possible the intervention would have stronger effects for less academically 
accomplished students who may think that they require more time management support.

It is also notable that the focal course in this study was offered over the summer. While 
many students at this university enroll in courses over the summer, there are socio-eco-
nomic and academic reasons why a student might enroll in courses over the summer. When 
examining the group of students who choose to enroll in the summer, as compared to those 
students who take the same course in the fall, winter or spring terms, we see that the two 
groups are very similar in most respects. Students who took the class in the summer, how-
ever, had stronger prior academic backgrounds (in terms of SAT scores and prior GPA) 
and were more likely to be male. Our findings suggest replicating analyses among different 
populations and contexts in online higher education could reveal important heterogeneity 
and add to our understanding of the mechanisms through which these interventions work.

Although our study reflects data from only one online course and the sample size is 
small relative to MOOCs, the analysis serves as an important extension to the extant litera-
ture. It is exactly because we have a smaller sample size of more motivated students that 
we can collect detailed data on students’ self-reported expectations and time management 
skills, which enables us to examine how individual characteristics moderate the scheduling 
treatment. We hope that future analyses of similar interventions targeting time manage-
ment skills can widen the sample to include additional types of online learning programs in 
higher education.

The data that result from our sample of more motivated students also allows us to exam-
ine some potential mechanisms that could explain our results, but still leaves some hypoth-
esized mechanisms that we are unable to explore. We did not find any evidence to suggest 
that the treatment affected the time of day at which students completed coursework or their 
propensity to procrastinate or cram. There are two additional mechanisms through which 
the treatment could affect student outcomes that we hypothesize but that we do not have the 
empirical data to test. The first is that the scheduling prompt reduces student anxiety. If stu-
dents are anxious about finding time to complete the course, inducing them to consciously 
schedule may reduce that anxiety and enhance performance. It is plausible that this mecha-
nism would work best for students who are aware of their poor time management abilities 
thereby explaining the heterogeneous results we observe. We encourage future research to 
include a measure of anxiety to test this hypothesis.

Second, it is possible the scheduling intervention prompted students to spend more 
overall time in the course. Although the course platform provides data on when students 
started their lecture videos, it does not provide data on the amount of time students spent 
in the course platform, so we cannot test whether differences exist in total time spent on 
the course across treatment and control groups. This also seems a worthwhile inclusion in 
future studies.
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Our findings provide encouraging news for institutions seeking to increase academic 
performance in online coursework. By implementing a scheduling intervention, whose cost 
is close to zero, instructors can induce students to improve academic performance in the 
initial week of the course. Because the treatment is effective among students with lower 
time management skills, it would be beneficial to assess those skills at the beginning of the 
course and target interventions to those students. Although we are concerned that the inter-
vention may lead to poorer performance at the end of the course, this negative effect may 
be driven by the removal of the encouragement to schedule, and we encourage researchers 
to test an intervention that lasts throughout the full length of the course. Given the rapid 
expansion of online courses in postsecondary education and the time management chal-
lenges faced by students in these courses, expanding cost effective strategies to mitigate 
time management concerns is an important endeavor, and our study demonstrates that even 
small improvements in course design may lead to improved academic performance that 
may provide a large return on investment.
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See Tables 7, 8, 9, and 10.
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Table 9   Summary statistics for cramming and procrastination

Cramming is defined as the standard deviation of the first time (in days) students watched each of the five 
videos for the week. Thus, smaller numbers indicate more cramming. Procrastination is defined as the aver-
age time (in days) between watching each lecture and the Friday midnight deadline across all five weekly 
videos, where negative numbers indicate an earlier time point. Sample size varied for each week’s cram-
ming and procrastination because students needed to watch at least one video to get a quantitative measure 
for procrastination and at least two videos to get a quantitative measure for cramming. For overall course, 
cramming and procrastination are averaged across all five weeks, if measures for all five weeks were avail-
able

Analytic sample Control group Treatment group

M SD N M SD N M SD N

Week 1
 Cramming 2.25 (1.22) 139 2.20 (1.07) 67 2.30 (1.35) 72
 Procrastination − 3.93 (1.67) 141 − 3.92 (1.53) 68 − 3.93 (1.79) 73

Week 2
 Cramming 1.58 (0.82) 140 1.69 (0.67) 67 1.49 (0.93) 73
 Procrastination − 3.48 (1.54) 141 − 3.41 (1.14) 68 − 3.54 (1.84) 73

Week 3
 Cramming 1.36 (1.15) 138 1.37 (0.89) 65 1.35 (1.35) 73
 Procrastination − 3.12 (1.8) 138 − 3.16 (1.74) 65 − 3.08 (1.87) 73

Week 4
 Cramming 1.21 (0.75) 138 1.18 (0.71) 67 1.24 (0.79) 71
 Procrastination − 3.15 (2.23) 139 − 3.13 (2.19) 67 − 3.17 (2.29) 72

Week 5
 Cramming 0.97 (0.68) 137 0.95 (0.66) 66 0.99 (0.69) 71
 Procrastination − 3.19 (1.46) 139 − 3.25 (1.36) 66 − 3.13 (1.55) 73

Overall course
 Cramming 1.5 (0.50) 132 1.49 (0.42) 64 1.51 (0.56) 68
 Procrastination − 3.41 (1.39) 135 − 3.43 (1.21) 64 − 3.4 (1.55) 71
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Appendix 2

Measuring Procrastination and Cramming

We examine two potential mechanisms that could explain how the scheduling intervention 
affects students’ performance: procrastination and cramming. We define procrastination as 
how far the average watch time for the five lecture videos in a given week is from the Friday 
midnight deadline; a larger negative number indicates more time before the deadline (and 
thus less procrastination). Cramming is defined as the standard deviation of the watch time 
for each of the five course videos within a week. A smaller number indicates more cram-
ming. Both of these variables are measured in days. The overall course cramming and pro-
crastinating for each student is the average of each student’s average across all five weeks.10 

Table 10   Relationship of cramming and procrastination with course performance

Heteroskedastic robust standard errors are included in parentheses. Cramming is defined as the standard 
deviation of the first time (in days) students watched each of the five videos for the week. Procrastination 
is defined as the average time (in days) between watching each lecture and the Friday midnight deadline 
across all five weekly videos, where negative numbers indicate an earlier time point. Sample size varied 
for each week’s cramming and procrastination because students needed to watch at least one video to get a 
quantitative measure for procrastination and at least two videos to get a quantitative measure for cramming. 
Weekly measures of cramming and procrastination are used to predict weekly quiz scores while overall 
cramming and procrastination are used to predict course score. Pre-course survey covariates are included
+ p < 0.10, *p < 0.05, **p < 0.01

Outcomes Separate models Combined single model

Cramming N Procrast. N Cramming Procrast. N

Week 1 quiz − 0.123+ (0.071) 139 − 0.042 (0.052) 141 − 0.116 (0.072) − 0.030 (0.053) 139
Week 2 quiz 0.028 (0.105) 140 − 0.042 (0.059) 141 0.024 (0.105) − 0.058 (0.058) 140
Week 3 quiz 0.101 (0.073) 138 − 0.12* (0.048) 138 0.061 (0.074) − 0.110* (0.049) 138
Week 4 quiz − 0.175 (0.116) 138 − 0.012 (0.040) 139 − 0.176 (0.119) 0.002 (0.041) 138
Week 5 quiz 0.011 (0.132) 137 − 0.075 (0.058) 139 0.041 (0.132) − 0.100 (0.061) 137
Course grade − 0.250+ (0.147) 132 − 0.219** (0.050) 135 − 0.263+ (0.137) − 0.212** (0.050) 132

10  There are a number of factors that need to be taken into consideration when creating these statistics. 
Although many students clicked play for the same video multiple times, (the average is 1.29 times across 
all videos), we only used students’ first video-watching record in our analyses. Videos that were watched 
for the first time after the deadline were still included in the cramming and procrastination calculation. 
No more than 2% of video watches each week were after the deadline. Some students also do not have a 
recorded watching time for all videos. This could be because they watched it on a friend’s computer or 
accessed it some other way. All students in the class received credit for watching all of the lectures (mean-
ing they completed the accompanying quiz), so we assume these missing video watching times are noise. 
For the purposes of calculating procrastination and cramming, we define a video as skipped if a student 
did not have a record of clicking on the video on the course management platform. Across all students 
and weeks, about 9% of videos were skipped. For students who skipped at least one video in a week, the 
cramming and procrastination variables reflects the standard deviation and mean video-watching time for 
less than five videos. Students who watched one or no videos in a given week do not have cramming or 
procrastination for that week. Students only had overall course cramming and procrastinating scores if they 
had corresponding scores for each of the 5 weeks. We acknowledge the possibility of measurement error for 
these video watching measures but we believe such error is likely to be small given the high percentage of 
students who we observe watching each lecture.
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Appendix Table 9 provides summary statistics of students’ video-watching habits in terms 
of their cramming and procrastination.

We first examined the relationship between course outcomes and our measures of pro-
crastination and cramming to examine if these time management measures predict aca-
demic outcomes, as has been found in other studies. These two variables were individually 
included in a series of linear regression models, with the same student level covariates as 
used in the main regressions, predicting each week’s quiz scores and the final course score. 
For the weekly quizzes, we used the student’s cramming and procrastination estimate for 
that given week. For the final course score, we used the average cramming and procrastina-
tion across all five weeks. We subsequently combined cramming and procrastination into a 
single model to account for the shared variance between the two predictors.

The left panel of Appendix Table 10  shows that, in the separate model specification, 
students who procrastinated more tended to have lower quiz and final course scores. This 
negative trend is consistent across all five weeks, and it is statistically significant for the 
third week and the overall course score. On average across students and weeks, watching 
the weekly videos a day closer to the Friday deadline is associated with over a fifth of a 
standard deviation worse final course score. We believe the effect appears strongest in the 
final course score because it reflects the sum total of students’ online problem set scores, 
participation in lecture-video quizzes, weekly quiz scores, and final exam score. If students 
are procrastinating on lecture watching, they are also likely to procrastinate on the comple-
tion of assignments further reducing their final course score. Furthermore, students who 
spaced their lecture-video watching out over the entire week instead of watching multiple 
videos in quick succession tended to have better first week quiz and final course scores; the 
coefficients on cramming are negative in most weeks. These results for both cramming and 
procrastinating hold for the final course score even in the combined model which includes 
cramming and procrastination simultaneously as independent variables. Appendix Table 10 
results suggest students who do not cram or procrastinate have higher scores, on average.
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