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Abstract
This study investigates the link between basic math skills, remediation, and the educational 
opportunity and outcomes of community college students. Capitalizing on a unique place-
ment policy in one community college that assigns students to remedial coursework based 
on multiple math skill cutoffs, I first identify the skills that most commonly inhibit student 
access to higher-level math courses; these are procedural fluency with fractions and the 
ability to solve word problems. I then estimate the impact of “just missing” these skill cut-
offs using multiple rating-score regression discontinuity design. Missing just one fractions 
question on the placement diagnostic, and therefore starting college in a lower-level math 
course, had negative effects on college persistence and attainment. Missing other skill cut-
offs did not have the same impacts. The findings suggest the need to reconsider the specific 
math expectations that regulate access to college math coursework.

Keywords Community colleges · Math education · Developmental education · Regression 
discontinuity

Introduction

There is no question that mathematics plays a central role in shaping college access and 
opportunities. Not only are math skills and math preparation paramount in the college 
admissions process (Hacker 2015; Lee 2012), they inform course-taking decisions and can 
influence students’ academic trajectories in college, for example, away from or towards sci-
ence, technology, engineering, and mathematics (STEM) fields (Wang 2013). Further, over 
90% of postsecondary institutions cite quantitative reasoning as a learning outcome and 
hold mathematics as a general education requirement for their undergraduates (American 
Association of Colleges and Universities 2016), cementing mathematics’ status as a gate-
keeper in higher education.

Despite the importance of mathematics in higher education, there is surprisingly little 
evidence on how students’ specific math skills determine college access and opportunity. 
Skills in advanced algebra and calculus are known to be significant gatekeepers to STEM 
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fields, but how do expectations related to more basic math skills affect college access and 
outcomes? This inquiry is perhaps most crucial in the context of postsecondary math reme-
diation, which is predicated on the assumption that certain math skills and knowledge, 
usually up to the intermediate algebra level, are essential for success in college (Burdman 
2015). In the community college system, the context for the present study, students enter-
ing college without demonstrating proficiency and procedural fluency in basic math top-
ics such as fractions, decimals, and exponents, are typically directed towards developmen-
tal courses at the basic math, pre-algebra, or elementary algebra levels (Melguizo et  al. 
2014). It is estimated that as many as 60% of community college students take remedial 
math courses in college (Chen 2016). Although these courses are designed to equip stu-
dents with the skills and knowledge thought to be necessary for success in college, they can 
also extend time to degree (Ngo and Kosiewicz 2017), divert students from credit-bearing 
pathways (Martorell and McFarlin 2011; Scott-Clayton and Rodriguez 2015), and signifi-
cantly decrease the odds of degree completion or transfer to a 4-year university (Bailey 
et al. 2010; Fong et al. 2015).

The focus of this study is on investigating the link between basic math skills, reme-
diation, and the educational opportunity and outcomes of community college students. I 
capitalize on skill-specific information gleaned from diagnostic instruments in one large 
community college in California and a unique policy context in which these data are used 
to determine how remediation based on basic math skills impacts college outcomes. The 
data allow me to first identify the skill gaps that most commonly inhibit access to higher-
level courses, such as procedural fluency with fractions, solving algebraic equations, and 
answering word problems. The placement policy in the college, which consists of multiple 
math skill cutoffs, provides an opportunity to use regression discontinuity (RD) design to 
examine the impact of remedial placement on student success. I use two forms of multiple 
rating-score RD—binding-score RD and frontier-score RD—to determine how “just miss-
ing” these skill cutoffs and subsequently placing in lower-level courses affected the aca-
demic outcomes of community college students.

Although the study is conducted using data from one college and therefore has limited 
external validity, the findings nevertheless provide unique insight into how institutional 
expectations related to basic math skills may affect community college students. Several 
studies of developmental math education have used RD designs and provided evidence on 
the general impact of postsecondary math remediation on student outcomes [see Valentine 
et al. (2017) for a review], but none have provided deeper insight into the specific expecta-
tions of math proficiency that establish these relationships. This study, by focusing on a 
distinctive placement policy and diagnostic testing data from one college, contributes new 
evidence to the literature on the relevance of math for college success. For example, exami-
nations of placement cutoffs and score distributions reveal that proficiency with fractions 
is the gatekeeper skill for lower-level developmental math (e.g., pre-algebra and elemen-
tary algebra), and correctly solving algebra-based word problems is the gatekeeper skill 
for upper-level developmental math (e.g., intermediate algebra). The corresponding RD 
analyses show that students who barely missed the fractions cutoff and who were subse-
quently assigned to lower-level math courses were significantly less likely to attempt and 
pass required math courses, persist towards degree completion, and earn college credits. 
This demonstrates that certain math expectations, such as procedural fluency with frac-
tions, keep students from accessing higher-level math and the more efficient pathways to 
degree completion therein and may therefore need reconsideration.

I next discuss literature examining basic math skills and remediation in community col-
leges. I then describe the data and methods used in the study, focusing on the respective 
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contributions of the binding-score RD and frontier-score RD analyses I employ. I present 
the descriptive and quasi-experimental results, and in the discussion, describe ways to re-
consider the expectations of math proficiency that affect the college opportunity of com-
munity college students.

Basic Math Skills and Postsecondary Remediation

Roughly 30% of students in nonselective 4-year colleges and 60% of students in commu-
nity colleges take remedial math courses in college (Chen 2016). Although these courses 
are designed to equip students with the skills thought to be necessary for success in col-
lege-level math and math-intensive courses, research that has investigated the impact of 
remedial/developmental math offerings in community colleges raises concerns about its 
effectiveness. A meta-analytic review of studies using regression discontinuity designs to 
examine developmental education revealed mostly null or negative effects of developmen-
tal math placement on passing a college-level math course, credit completion, and college 
attainment (Valentine et al. 2017). Another study of one large community college system 
found that students assigned to math remediation did not necessarily develop math skills 
but rather were diverted away from credit-bearing pathways (Scott-Clayton and Rodri-
guez 2015). Studies that have examined whether these effects vary by level of remediation 
also report negative effects of initial placement into lower levels of developmental math 
sequences (Boatman and Long 2018; Xu and Dadgar 2018).

There are a number of possible explanations for these findings, such as the high cost of 
remediation to students (Melguizo et al. 2008), or the largely traditional and uninspiring 
nature of curriculum and instruction in developmental math courses (Grubb 1999) being 
deterrents to persistence. One explanation most relevant to the present study is that stu-
dents may be incorrectly placed into developmental courses. Research has demonstrated 
that a significant portion of students—as many as one-quarter in some community college 
systems—may have been erroneously placed into their math courses following placement 
testing, most typically into courses that are too easy (Scott-Clayton et  al. 2014). Impor-
tantly, these misplaced students could have succeeded in higher-level courses and avoided 
the costs associated with developmental education had they been given the opportunity to 
do so. Concern about placement testing error has prompted researchers to examine alterna-
tives to placement testing (e.g., Ngo and Melguizo 2016; Scott-Clayton et al. 2014). It has 
also provoked policy change, with a number of states either now using multiple measures 
for course placement (e.g., California; Texas) or removing placement testing requirements 
altogether (e.g., Florida) (Park et al. 2018).

The focus on issues with placement testing raises related concerns about what place-
ment tests in developmental education actually measure. In a study of community col-
lege students’ diagnostic test scores and performance on a survey with reasoning tasks 
in a set of California community colleges, Stigler et al. (2010) found that the vast major-
ity of students in their sample incorrectly answered test questions related to operations 
with fractions. Their analysis of student answers revealed that poor testing results were 
largely due to faulty procedural knowledge. However, upon examining student responses 
to open-ended problems they developed, the researchers also found that when prompted 
students displayed reasoning skills and offered correct conceptual explanations. They con-
cluded that a key limitation of the current placement testing system is that it seldom pro-
vides opportunities to reason mathematically or allow students to demonstrate conceptual 
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understanding. Instead, “the goal of much of developmental math education appears to 
be to get students to try harder to remember the rules, procedures, and notations they’ve 
repeatedly been taught,” (Givvin et al. 2011, p. 13).

Taken together, these findings suggest that expectations of math proficiency, manifested 
in placement testing criteria, may unfairly and unnecessarily sort students to remedial 
coursework. As such, the goals of this study are to investigate how specific expectations of 
math proficiency, particularly those pertaining to procedural fluency with basic math top-
ics, affect the college opportunity and outcomes of students in postsecondary math reme-
diation. This is an important research area because some critics have voiced concern about 
the math proficiencies expected of students pursuing postsecondary education, questioning 
whether the skills that are commonly associated with college-readiness are actually nec-
essary for success in college and the job market (e.g., Bryk and Treisman 2010; Hacker 
2015). In addition, higher education scholarship has drawn attention to the “institution-
alized disciplinary assumptions” and “disciplinary logics” within each field of study that 
inform admissions, evaluation, and perceptions of quality (Posselt 2015). This provides 
a framework for understanding how expectations of math skills affect placement testing 
practices and facilitate the gatekeeping role of mathematics.

Ultimately, examining how expectations of math proficiency and procedural fluency are 
related to subsequent college outcomes can provide greater insight into how math stand-
ards play a role in shaping students’ academic trajectories and opportunities, and in per-
petuating inequality in higher education at large. This is particularly important in com-
munity colleges, since low-income students and students of color are more likely to attend 
these institutions and are more likely to be enrolled in math remediation upon matricula-
tion (Attewell et al. 2006; Bailey et al. 2010). Given that community colleges are a primary 
postsecondary pathway for these students, a key goal of the study is to examine both the 
short- and long-term impact of basic math remediation on community college students’ 
outcomes. The research can be summarized by the following questions:

1. What basic math skills function as “gatekeepers” and limit access to higher-level 
courses?

2. How does remedial assignment based on these basic math skills affect college outcomes?

Setting and Data

I answer these questions using student-level administrative records from a large urban 
community college in California. “College M” serves roughly 25,000 full-time equivalent 
students each year. This includes a high fraction of Hispanic and Asian/Pacific Islander 
students, who comprise 76 and 17% of all students, respectively. For reference, about 44% 
of all California community college students identify as Hispanic and about 15% iden-
tify as Asian/Pacific Islander (CCCCO, n.d.). Thirty-seven percent of College M students 
indicated they were non-native English speakers, and a sizeable portion, 23%, indicated 
they were either permanent residents or had other visa status. According to the California 
Community Colleges Student Success Scorecard, College M’s 6-year degree, certificate, or 
transfer completion rate was just over 40% for the 2011 cohort.

College M, and California community colleges in general, are particularly relevant con-
texts for examining placement policies because in addition to serving roughly one in ten 
community college students in the U.S., they are in a state where community colleges have 
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considerable autonomy over choice of placement test and design of placement policies 
(Melguizo et al. 2014). Like most other California community colleges, College M’s devel-
opmental math sequence progresses from basic math/arithmetic to pre-algebra to elemen-
tary algebra. The next course in the sequence, intermediate algebra, is a pre-requisite for 
courses required for transfer to a 4-year institution.

College M was chosen because it used the Mathematics Diagnostic Testing Project 
(MDTP) to assess and place students into this sequence during the study period 2005–2011. 
The MDTP is a diagnostic test developed by the California State University and University 
of California systems to assess mathematics readiness at the secondary and postsecond-
ary levels. The MDTP includes four subtests: Algebra readiness, early/elementary algebra, 
intermediate algebra, and college-level mathematics/pre-calculus, each of which reports 
student skill level on several subtopics (MDTP, n.d.). For example, the MDTP Algebra 
Readiness subtest emphasizes arithmetic operations with integers, decimals, and frac-
tions. The MDTP Elementary Algebra subtest disaggregates scores for linear functions, 
polynomials, graphing, and other algebra topics. This is inherently different from the com-
monly-used ACCUPLACER or COMPASS placement tests, which automatically adapt 
to students’ skill level based on the sequence of correct and incorrect answers a student 
provides, resulting in a single final score (Mattern and Packman 2009). It is important to 
note that there is some aspect of choice with the MDTP; either the testing staff or students 
choose which MDTP subtest students take first, and students can be referred to other sub-
tests depending on their scores and local college policy. Fong and Melguizo (2017) have 
explored the implications of this test choice, finding in some cases that it limits the course 
levels to which students have access.

Nevertheless, the focus of this study is on the math diagnostic data available in the 
MDTP and the fact that College M used this wealth of student math skill information in 
a unique way—basing placement on multiple cutoff scores. The policy is illustrated in 
Table 1. To be placed into elementary algebra, a student must not only have a composite 

Table 1  Overview of multiple cutoff placement policy in college M and three hypothetical placements

Maximum score shows the total number of questions on the mathematics diagnostic testing project (MDTP) 
Algebra Readiness test (50) and the total number of questions within each subarea. The cutoff values indi-
cate the number of questions needed to be answered correctly in each subarea in order for a tested student 
be placed in the higher level course. Three hypothetical sets of scores are shown, along with the corre-
sponding placements. Even though Student C has the highest total score, Student C would be placed in 
basic math due to not achieving either fractions cutoff

MDTP Algebra Readiness subscores and corresponding cutoffs

Composite Integers Fractions Decimals Exponents Geometry

Maximum score 50 11 10 11 11 7
Pre-algebra/elementary algebra cutoff 24 7 6 7 0 0
Basic math/pre-algebra cutoff 23 4 4 4 0 0

Hypothetical 
scores and place-
ments

MDTP Algebra Readiness subscores and corresponding cutoffs Math placement

Composite Integers Fractions Decimals Exponents Geometry

Student A 25 8 8 9 0 0 Elementary 
algebra

Student B 25 6 8 9 2 0 Pre-algebra
Student C 30 10 2 10 4 4 Basic math
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test score of at least 24, she must also have at least a score of 7 on the integers subsection, 
a 6 on the fractions subsection, and a 6 on the decimals subsection. If the student fails 
to meet any one of these four cut score thresholds, she will be placed into a lower level 
course, either pre-algebra or arithmetic. For example, Table 1 also shows the hypothetical 
placements of three students. Student A passed all cutoffs and was assigned to elementary 
algebra. Student B had the same total score but was short on the integers cutoff and was 
therefore assigned to pre-algebra. Even though Student C had the highest total score, the 
low fractions score resulted in a basic math placement. As I will discuss below, this set 
of multiple cutoffs makes it possible to use a regression discontinuity design to determine 
the impact of remediation under such a placement system. Importantly, I can estimate the 
impact of remediation by various math skill cutoffs.

Table 2 presents summary statistics for the focal sample of students in College M, dis-
aggregated by placement level. The analytical sample includes student cohorts assessed for 
math for the first time between the spring 2005 and the fall 2011 semesters who were not 
concurrently enrolled in high school, had not already received an associate’s or bachelor’s 
degree at the time of testing, and were not over the age of 65. This includes 18,330 students 
taking the MDTP Algebra Readiness subtest for placement into either basic math, pre-alge-
bra, or elementary algebra, and 5638 students taking the Elementary Algebra subtest for 
placement into elementary algebra or intermediate algebra.

Enrollment data extend to the spring semester of 2013, so I am able to track persistence 
and course completion outcomes for 8  years for the spring 2005 cohort, 7  years for the 
2006 cohort, and so forth. The outcomes of interest are passing the placed math course 
with a C or better or a B or better (within 1 year of assessment date), and completing 30 
and 60 degree applicable units, which are indicators of progress towards an associate’s 
degree (60 credits are required). Each of these is a dummy indicator with success equal to 0 
and non-success equal to 1. I also examine students’ total credit accumulation, an indicator 
of attainment.

Table 2 also shows the mean MDTP test scores (i.e., percent correct) within each skill 
area for incoming students between 2005 and 2011. Consistently, the lowest means are in 
the areas of fractions and geometry for MDTP Algebra Readiness test-takers and in quad-
ratics and word problems for MDTP Elementary Algebra test-takers.

Methods

The detailed diagnostic data allow me to first examine the specific math skills of incom-
ing students, as assessed via the MDTP instruments. These data in conjunction with the 
context of multiple placement cutoffs enable me to determine “gatekeeping” skills, in other 
words, those skills that most frequently led to lower-level course placements. I uncover 
these gatekeeping skills by focusing on the subset of “one-off” students who missed cutoffs 
by just one point.

Multiple Rating‑Score Regression Discontinuity Design

I then estimate the impact of missing these skill-specific cutoffs on academic outcomes 
using a regression discontinuity (RD) design. The “treatment” is being placed into the 
lower-level math course at any given placement cutoff. The comparison control condi-
tion is placement in the higher-level math course. Provided that there is local continuity 
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Table 2  Description of college M sample, mean outcomes, and MDTP subscores

Took MDTP

Algebra Readiness test Elementary Algebra test

Placed in 
basic math 
(BM)

Placed in 
pre-algebra 
(PA)

Placed in 
elementary 
algebra (EA)

Placed in 
elementary 
algebra (EA)

Placed in inter-
mediate algebra 
(IA)

Student characteristics
 Age at assess-

ment
24.1 23.6 25.1 20.6 22.1

 Female 0.62 0.51 0.47 0.49 0.57
 Asian/Pacific 

Islander
0.04 0.11 0.21 0.19 0.55

 Black 0.02 0.02 0.01 0.01 0.01
 Hispanic 0.88 0.81 0.70 0.74 0.42
 White 0.01 0.02 0.03 0.02 0.02
 Other 0.03 0.04 0.04 0.04 0.01
 Non-native 

English
0.32 0.30 0.33 0.37 0.50

 Permanent 
resident

0.08 0.09 0.12 0.10 0.22

 Other visa 0.08 0.08 0.09 0.14 0.21
Outcomes
 Attempt PA 0.47 0.61
 Pass PA w/C or 

better
0.32 0.48

 Pass PA w/B or 
better

0.01 0.02

 Attempt EA 0.44 0.66
 Pass EA w/C or 

better
0.35 0.47

 Pass EA w/B or 
better

0.20 0.32

 Attempt IA 0.49 0.78
 Pass IA w/C or 

better
0.78 0.90

 Pass IA w/B or 
better

0.45 0.66

 Completed 30 
units

0.23 0.33 0.36 0.43 0.55

 Completed 60 
units

0.10 0.16 0.18 0.24 0.40

 Total units com-
pleted

18.1 24.7 26.8 32.9 43.2

MDTP subscores (% correct)
 Integers 45.3 66.2 75.7
 Fractions 19.5 49.5 66.8
 Decimals 35.2 56.8 72.4
 Exponents 43.7 67.7 73.4
 Geometry 25.9 38.3 39.7



492 Research in Higher Education (2019) 60:485–520

1 3

in observed and unobserved characteristics at the cutoff threshold, then differences in out-
comes between groups at the margin of the cutoff can be directly attributed to treatment 
status (Imbens and Lemieux 2008), which in this case is assignment to the lower-level 
developmental math course.

A requirement of the RD design is that an exogenously determined running variable, 
such as a placement test score, assigns individuals to the treatment and control conditions 
(Murnane and Willett 2010). However, the lack of a single continuous placement test score 
in College M, where a diagnostic and several cutoffs are used, posed a problem for tradi-
tional RD analysis. As described in Table 1, the total score is used in conjunction with sub-
scores to make the placement determination. Therefore, placement in the treatment condi-
tion can be determined by more than one assignment variable. Students taking the MDTP 
Algebra Readiness test may be placed into a course due to missing the integers cutoff, frac-
tions cutoff, or decimals cutoff, or by not having a high enough composite score.

Assignment based on multiple criteria is fairly prevalent in education. For example, 
Robinson (2011) described the case of English language learner reclassification, which 
is typically based on students meeting multiple English proficiency criteria. A number of 
studies have examined policies where both math and ELA test scores are used to deter-
mine participation in various educational interventions, such as summer school and grade 
retention (Jacob and Lefgren 2004; Mariano and Martorell 2013). It also has been used to 
understand the case of high school exit exams, where multiple criteria must be met in order 
to graduate (Papay et al. 2011).

There are several approaches outlined in the literature to estimate treatment effects in a 
multiple rating-score regression discontinuity design (MRRDD) where several scores are 
used to determine treatment assignment (Papay et al. 2011; Reardon and Robinson 2012; 
Porter et al. 2017; Wong et al. 2013). These include using a binding-score approach and a 

MDTP Mathematics diagnostic testing project

Table 2  (continued)

Took MDTP

Algebra Readiness test Elementary Algebra test

Placed in 
basic math 
(BM)

Placed in 
pre-algebra 
(PA)

Placed in 
elementary 
algebra (EA)

Placed in 
elementary 
algebra (EA)

Placed in inter-
mediate algebra 
(IA)

MDTP subscores (% correct)
 Arithmetic 52.0 80.0
 Polynomials 58.4 86.4
 Linear functions 39.6 84.3
 Quadratic func-

tions
28.1 70.5

 Graphing 53.4 75.6
 Rational expres-

sions
41.5 77.8

 Exponents 46.6 81.0
 Geometry 46.6 74.7
 Word problems 33.5 68.9

N 14,344 3287 699 5477 161
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frontier-score approach, which are the recommended estimation strategies for real-world 
applications of MRRDD (Porter et al. 2017). I employ these two techniques to identify the 
overall treatment effect as well as cutoff-specific effects.

Binding‑Score RD

The binding-score RD converts the multi-dimensional context to a single dimension, esti-
mating the treatment effect based on the scores that resulted in the treatment assignment. 
To determine the binding score for students in College M, I first calculated the raw devia-
tion from each subscore cutoff based on the number of questions that the student was short 
of in reaching the cutoff, or over in surpassing the cutoff. I then select the minimum score 
of this set of cutoff deviations as the assignment variable. The binding score Bi for MDTP 
AR test-takers is notated here as:

In this context, the binding score describes how “far” the student was from the multi-
dimensional cutoff. Students with any negative deviation should be referred downwards to 
a lower-level course, while students at zero or with a positive deviation should be referred 
upward to the higher-level course. Thus, this transformation of multiple scores into a single 
binding score perfectly predic ts treatment assignment (Reardon and Robinson 2012). A 
single-score RD approach with Bi as the assignment variable, as outlined in Eq. (2), can be 
used to estimate the causal effects of placement in remedial coursework.

Here i denotes each student-level observation.  Yi are the outcomes of interest, β1 is the esti-
mated treatment effect (T) of placement into the lower-level course, and β2 describes the 
relationship between the binding-score and student outcomes. This is commonly referred 
to as a “sharp” RD, in which a student’s test score is assumed to perfectly predict treatment 
within an OLS setting (Murnane and Willett 2010). The resulting estimate can be inter-
preted as the Intent to Treat (ITT) estimate, which in this context is the effect of assignment 
to the lower-level math course relative to the higher-level math course at the margin of the 
cutoff.

I assess sensitivity to functional form by including interactions between the linear, 
squared, and cubic terms of the binding-score and treatment status in Eq. (3). In Eq. (4) I 
also include a vector  Xi of student-level controls (age, gender, race, language, and resident 
status) to increase precision of the estimates.

The advantage of the binding-score approach is that all observations around the place-
ment cutoffs are included in the analytical sample. Methodologists have demonstrated that 
the binding-score RD is the preferred of MRRDD estimation strategies since it results in 
the lowest mean square errors (Porter et  al. 2017). However, the resultant estimates are 
more difficult to interpret since students assigned to the treatment could have been assigned 
by any one of the subscore cutoffs; the binding score estimate is merely the weighted esti-
mate of the effects of each subscore cutoff. This approach may therefore mask important 
heterogeneous treatment effects for each “frontier” score. Since a key question guiding the 

(1)
Bi = min

(

Compositei − cutoff1, Integersi − cutoff2, Fractionsi − cutoff3, Decimalsi − Cutoff4
)

(2)Yi = �1Ti + �2Bi + �i

(3)Yi = �1Ti + �2Bi + �3TiBi + �4TiB
2

i
+ �5TiB

3

i
+ �i

(4)Yi = �1Ti + �2Bi + �3TiBi + �4TiB
2

i
+ �5TiB

3

i
+ � �Xi + �i
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study concerns how specific expectations of basic math skills impact college opportunity 
and outcomes, it is important to examine the heterogeneous treatment effects for each cut-
off using a frontier-score RD approach.

Frontier‑Score RD

Frontier-score RD provides a means to determine precisely how the set of cutoffs described 
in Table 1 affects student outcomes. I constructed analytical samples around each sub-score 
cutoff that included students who scored near the cutoff in question but scored at or above 
the other cutoffs. For example, the frontier-score RD analysis at a bandwidth of two points 
around the fractions cutoff includes students who were no more than two points below the 
fractions cutoff and who did not fall below any of the other cutoffs. These students missed 
higher-level math placement because of their fractions score. The composite cutoff analy-
sis similarly includes students who surpassed all the subskill cutoffs but were placed in a 
lower-level due to their inadequate composite test score.

I conducted these RD analyses using one of the frontier scores (i.e., composite, integers, 
fractions, and decimals scores), centered around each cutoff, as the assignment variable. 
The frontier-score RDs for the pre-algebra and elementary algebra cutoffs are modeled 
here in Eqs. (5a)–(5d):

I also assess sensitivity of these analyses by including a set of linear, quadratic, and 
cubic interaction terms to each regression. For example, estimations of the fractions fron-
tier are given by Eq. (6):

Finally, per the recommendation of Porter et  al. (2017), I also include the other sub-
scores with the goal of improving precision of the estimate of �1:

The estimated treatment effects apply only to the student subpopulations in each analy-
sis, for example, students who “just missed” the cutoff by a fractions question or two. Pro-
vided that assumptions about continuity around the cutoff and internal validity (described 
below) are met, the frontier RD estimate provides an unbiased ITT treatment effect esti-
mate of placement in the lower-level course around each subscore cutoff.

A number of researchers have used RD designs to investigate the impact of math reme-
diation in the community college setting (e.g., Boatman and Long 2018; Martorell and 
McFarlin 2011; Melguizo et al. 2016; Ngo and Melguizo 2016; Scott-Clayton and Rodri-
guez 2015; Xu and Dadgar 2018). This study extends the literature by examining a setting 
where placement is jointly determined by a set of skill-specific placement cutoffs. Apply-
ing RD to obtain causal estimates from diagnostic tests in this setting is a particularly inter-
esting RD application because students who have higher total scores may be placed into 
lower courses because of a very specific skill gap. The college has identified the specific 

(5a)Yi = �1Ti + �2Compositei + �i

(5b)Yi = �1Ti + �2Integersi + �i

(5c)Yi = �1Ti + �2Fractionsi + �i

(5d)Yi = �1Ti + �2Decimalsi + �i

(6)Yi = �1Ti + �2Fraci + �3TiFraci + �4TiFrac
2

i
+ �5TiFrac

3

i
+ �i

(7)
Yi = �1Ti + �2Fraci + �3TiFraci + �4TiFrac

2

i
+ �5TiFrac

3

i
+ �6Compi + �7Inti + �8Deci + �i
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skill gaps that must necessarily be remediated and these RD analyses provide estimates of 
the impacts of this unique policy.

It also provides an understanding of how and whether these specific skills are important 
for student success. If for example, missing the fraction cutoff produces a negative RD 
treatment effect of placement in pre-algebra versus elementary algebra, then this would 
suggest that proficiency with fractions may not need to be so heavily emphasized as a pre-
requisite for upper-level courses. A possible implication is that this cutoff could be low-
ered or removed. Conversely, if the decimals cutoff results in a positive RD estimate then 
this suggests that students are benefitting from this cutoff and placement in the lower-level 
course; the cutoff could potentially be raised so that more students obtain the benefit (Mel-
guizo et al. 2016; Robinson 2011).

Internal Validity

Before proceeding with the results from these estimation strategies, I present checks of the 
internal validity of the RD design in this setting.

Treatment Assignment and Compliance

First, a critical assumption of RD analysis is that an exogenous policy assigns students 
to differing treatment statuses. Figures 1 and 2 show that students’ first math courses are 
directly related to their placement test score. There is also a high compliance rate with 
assignment to basic math when using the binding-score as the running variable (between 
90 and 100% depending on the distance from the cutoff). This is expected since students 
are blocked from enrolling in courses that are a higher level than the one to which they are 
assigned. The compliance rate with respect to assignment to pre-algebra versus elementary 
algebra is lower (between 70 and 80%). Even though students can challenge their place-
ment results and request clearance to enroll in a higher-level course, nearly a quarter of stu-
dents placed in pre-algebra enrolled in basic math for their first math course. Following the 
presentation of the results, I describe how I checked for bias in the estimation associated 
with this lower level of compliance.

Fig. 1  Assignment to basic math 
versus pre-algebra
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Manipulation Around the Cutoff

A threat to the internal validity of the RD estimates would arise if students were able to 
manipulate their scores around the cutoff in order to obtain a particular treatment status. 
This is unlikely since students are not made privy to cutoff scores at any point during the 
enrollment or testing processes. In accordance with standard practice, I conducted a test 
of the density of the running variable around each composite score cutoff to check for this 
potential manipulation of the running variable (McCrary 2008). There is no evidence of 
differing test score densities around either the basic math/pre-algebra cutoff or the pre-
algebra/elementary algebra cutoff (see Appendix). It is therefore likely that variation is due 
to careless errors in testing and not to manipulation or any “precise” sorting around the 
cutoff (Lee and Lemieux 2010).

Discontinuities in Covariates

Another threat to the internal validity would arise if there were any observable disconti-
nuities in covariates around the cutoff. A discontinuity in any one covariate would indicate 
that treatment was correlated with some background variable, thus jeopardizing the internal 
validity of the ITT estimates. I visually inspected the continuity of covariates at each cutoff 
using local polynomial smoothing, plotted with 95% confidence intervals (see Figs. 3, 4). 
There are no discontinuities or “jumps” for any of the covariates at the cutoff, suggesting 
that any observed discontinuities in outcomes would be attributable to the discontinuity in 
treatment assignment. As an additional check, I estimated Eq. (2) with the binding score as 
the running variable and each covariate as the dependent variable. These results are avail-
able in the Appendix and corroborate the conclusion of the visual inspection.

Limitations

One limitation of the study is that each skill area has a relatively small number of diagnos-
tic test questions. For example, there are just 10 fractions-based questions on the MDTP 
Algebra Readiness test. The concern in the context of RD design is that the subscore run-
ning variable may correspond to meaningful differences in the student population. That is, 

Fig. 2  Assignment to pre-algebra 
versus elementary algebra
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Fig. 3  Covariate balance around basic math and pre-algebra cutoff

Fig. 4  Covariate balance around pre-algebra and elementary algebra cutoff
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a fractions subscore of 5 may be very qualitatively different from a fractions subscore of 6 
(the cutoff score), and this may have implications for math outcomes. Relatedly, it is pos-
sible that faculty and administrators who set these cutoffs know something about the mean-
ing of the scores and set them accordingly.

These concerns should be minimal since the McCrary tests described above indicate 
that there is no manipulation or precise sorting around each cutoff. Coupled with the 
fact that all covariates were also found to be continuous at each cutoff, it is reasonable to 
assume that only treatment status as a result of placement testing assignment changes at the 
cutoff. Any differences can therefore be attributed to this change in treatment status rather 
than to any change in observable covariates.

Finally, although there is high internal validity with RD analyses due to the treatment 
assignment mechanism, they typically have limited external validity. This analysis is con-
ducted in one California community college that, though large and diverse, is not repre-
sentative of community colleges in the state or nation. The results should also not be gen-
eralized to other diagnostic testing contexts or developmental math contexts. Nevertheless, 
the methods outlined here provide a robust examination of a unique policy context and 
enable me to answer the research questions about basic math remediation stated above.

Results

What Basic Math Skills Function as “Gatekeepers” and Limit Access to Higher‑Level 
Courses?

A unique contribution of the study is that the context of multiple cutoffs in College M ena-
bles me to determine which skill cutoffs functioned as the most troublesome gatekeeper. To 
do so, I focus on only those students who missed any cutoff by one point. In other words, 
these “one-off” students were on the cusp of placement in the next highest-level course. 
The results of this tabulation, shown in Table 3, are illuminating. At the lower levels of 
developmental math (basic math and pre-algebra), most students missed placement in the 
next level due to being one short on the fraction subsection. Specifically, of the students 
who missed the next level course by one point, 69% of those assigned to basic math instead 
of pre-algebra missed a fractions question, as did 45% of those assigned to pre-algebra 
instead of elementary algebra. Decimals were also a gate-keeping skill, with 44% of pre-
algebra students being one-off because of a decimals question. In the upper levels (elemen-
tary algebra and intermediate algebra), 32% of the one-offs were due to missing a word 
problem that tested applications of algebra skills.

How Does Remedial Assignment Based on These Math Skills Affect College 
Outcomes?

The next set of results shows the impact of this placement policy. I first provide a visual 
inspection of mean outcomes by binding score, with a best-fit line mapping the trends on 
either side of each placement cutoff. Figure 5 shows the BM/PA cutoff and Fig. 6 shows 
the PA/EA cutoff. No major jumps are apparent at the BM/PA cutoff, but there does appear 
to be a sizeable jump at the PA/EA cutoff for passing EA with a C or better. I more pre-
cisely estimate this discontinuity using two forms of multiple rating-score regression 
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discontinuity design, binding-score RD and frontier-score RD, and compare the results of 
the two approaches.

Binding‑Score RD

Table  4 shows the results from binding-score RD estimation. The upper panel shows 
the RD estimates of placement in basic math instead of pre-algebra on the outcomes of 
attempting pre-algebra, eventually passing pre-algebra with a C or better and with a B or 
better, completing 60 degree-applicable units, and total credit completion. The lower panel 
shows the estimates for placement in pre-algebra instead of elementary algebra. For each 
analysis, the assignment variable is determined by the binding-score, the subscore that 
was closest to one of the given cutoffs. I show a two-point bandwidth around each cutoff 
(N = 7436 at BM/PA; N = 5025 at PA/EA), along with a one-point bandwidth (N = 3487 at 
BM/PA; N = 1785 at PA/EA) in order to assess the sensitivity of the results to bandwidth 
choice and since two points may be a somewhat large bandwidth given the limited range of 
possible subscores. Because the validity of RD estimates depends on adequate sample size 

Table 3  The gatekeeping skill area of students who missed cutoffs by just one point (%)

This analysis focuses on students who missed any of the cutoffs by just one point. It shows the percentage 
of “one-off” students by Mathematics Diagnostic Testing Project (MDTP) subarea

MDTP

Algebra Readiness test

Missed basic math/pre-algebra cutoff 
(BM/PA) by one point

Missed pre-algebra/elementary 
algebra cutoff (PA/EA) by one 
point

Composite Score 16.7 0.2
Integers 1.2 11.7
Fractions 68.8 44.6
Decimals 13.3 43.5
Total (N) 1332 471

MDTP Elementary Algebra test
Missed elementary algebra/interme-
diate algebra cutoff (EA/IA) by one 
point

Composite score 0.0
Arithmetic 7.4
Polynomials 1.5
Linear functions 6.1
Quadratic functions 10.3
Graphing 4.4
Rational expressions 9.6
Exponents 7.6
Geometry 21.3
Word problems 31.9
Total (N) 689
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Fig. 5  Mean outcomes at basic math (BM)/pre-algebra (PA) cutoff

Fig. 6  Mean outcomes at pre-algebra (PA)/elementary algebra (EA) cutoff
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within a narrow bandwidth around a placement cutoff, the RD analyses for the EA/IA cut-
off was not possible. This is largely owing to the fact that significantly fewer students place 
into intermediate algebra after placement testing via the MDTP Elementary Algebra test.

Nevertheless, the larger sample sizes at the BM/PA cutoff and the PA/EA cutoff allow 
for a robust analysis using MRRDD. The results show that assignment to the lower-level 
course significantly reduced the probability of attempting the next course in the sequence. 
Students placed in basic math instead of pre-algebra were 7 percentage points less likely to 
attempt pre-algebra than those directly placed in pre-algebra. With respect to passing pre-
algebra with a C or better and a B or better, there were null results across all specifications 
at the BM/PA cutoff. At first glance, one interpretation of these results could be that place-
ment into basic math relative to pre-algebra was not harmful for students since students 
just below and just above the cutoffs had an equivalent likelihood of eventually passing 
pre-algebra. However, given the costs of remediation to both the student and the institution, 
a null effect may also mean students at the margin of the placement cutoff but assigned to 
basic math could have been just as successful in pre-algebra. The placement cutoff could 
therefore be slightly lowered so that more students can obtain the benefit of reduced time in 
remediation (Melguizo et al. 2016). There were also null effects with respect to the longer-
term outcomes of completing 60 degree-applicable units and total credit completion.

There was a more pronounced significant negative effect at the PA/EA cutoff, confirm-
ing the discontinuity illustrated in Fig. 6. Students missing the multi-dimensional cutoff by 
one or two points and subsequently assigned to pre-algebra instead of elementary algebra 
were as many as 23 percentage points less likely to enroll in elementary algebra, and 14 
and 11 percentage points less likely, respectively, to eventually pass elementary algebra. 
This corresponds to reductions of about 35 and 25%, respectively. It is important to note 
that passing elementary algebra was a minimum requirement for earning an associate’s 
degree in College M during the period of the study. There is some indication that pre-alge-
bra placement did increase the probability of passing elementary algebra with a B or better 
by about 2 percentage points, though this was not significant at the 1-point bandwidth. 
Similar to the BM/PA cutoff, there were null effects with respect to longer-term outcomes 
for students at the margin of the PA/EA cutoff.

Frontier‑Score RD

While the binding-score results suggest that placement cutoffs could be lowered so that 
fewer students are penalized by basic math placement relative to pre-algebra placement, 
and by pre-algebra placement relative to elementary algebra placement, it is unclear from 
this analysis which specific math standards ought to be reevaluated. By design, the bind-
ing-score analysis masks heterogeneity by cutoff type. A frontier-score RD analysis is a 
useful complementary exercise because it enables identification of treatment effects for 
each type of subskill, and therefore, clearer policy guidance. Tables 5 and 6 provide the 
results of the frontier-score RD analysis for the composite and subscore cutoffs at the PA/
EA and BM/PA thresholds.

The results demonstrate that the frontier-score RDs provide more nuanced results 
compared to those from the binding-score RD. At both cutoffs, it is apparent that the 
negative effect of basic math and pre-algebra placement picked up in the binding-score 
RDs is driven mostly by the fractions cutoff. For example, the BM/PA results in Table 5 
reveal a significant negative effect at the fractions cutoff, with basic math placement 
reducing the probability of attempting pre-algebra by 6–7 percentage points. Mirroring 
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Table 5  The impact of placement in basic math (BM) relative to pre-algebra (PA), frontier-score regression 
discontinuity at one- and two-point bandwidths (BW)

Composite cutoff Integers cutoff Fractions cutoff Decimals cutoff

BW = 2 BW = 1 BW = 2 BW = 1 BW = 2 BW = 1 BW = 2 BW = 1

Attempt PA
 Treatment 

(T) = BM 
placement

− 0.098 − 0.170 − 0.165 − 0.198 − 0.061* − 0.067* 0.002 0.011
(0.070) (0.090) (0.100) (0.120) (0.030) (0.030) (0.050) (0.060)

 Composite 0.008 − 0.009
(0.020) (0.050)

 Integers − 0.009 − 0.028
(0.020) (0.050)

 Fractions − 0.012 − 0.012
(0.010) (0.020)

 Decimals − 0.004 0.010
(0.010) (0.030)

 Constant 0.587*** 0.578*** 0.600*** 0.611*** 0.618*** 0.615*** 0.626*** 0.618***
(0.030) (0.040) (0.040) (0.040) (0.010) (0.010) (0.020) (0.020)

 N 817 490 1135 479 5281 3989 2232 1263
Pass PA w/C or better
 T 0.019 − 0.032 − 0.030 − 0.002 − 0.009 − 0.008 0.066 0.028

(0.071) (0.091) (0.100) (0.125) (0.027) (0.033) (0.050) (0.065)
 Composite 0.035 0.032

(0.023) (0.049)
 Integers 0.001 0.023

(0.022) (0.052)
 Fractions 0.006 0.015

(0.011) (0.020)
 Decimals 0.019 0.014

(0.014) (0.031)
 Constant 0.385*** 0.370*** 0.448*** 0.435*** 0.478*** 0.470*** 0.459*** 0.457***

(0.033) (0.038) (0.035) (0.044) (0.012) (0.013) (0.021) (0.025)
 N 817 490 1135 479 5281 3989 2232 1263

Pass PA w/B or better
 T 0.000 − 0.003 − 0.010 − 0.025 0.005 0.006 0.004 0.007

(0.013) (0.015) (0.021) (0.023) (0.007) (0.008) (0.013) (0.015)
 Composite 0.005 0.003

(0.004) (0.008)
 Integers 0.000 − 0.010

(0.004) (0.010)
 Fractions 0.003 0.004

(0.003) (0.005)
 Decimals 0.007* 0.009

(0.004) (0.007)
 Constant 0.006 0.006 0.010 0.016 0.014*** 0.014*** 0.009 0.008

(0.006) (0.006) (0.007) (0.008) (0.003) (0.003) (0.005) (0.006)
 N 817 490 1135 479 5281 3989 2232 1263
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the results of the binding-score RD, the effect of basic math placement on passing pre-
algebra and on credit completion were mostly negative but not significant.

Table  6 shows that students who missed elementary algebra placement because of 
their fractions skills by one or two points were 26–29 percentage points less likely to 
attempt elementary algebra, and 14–17 percentage points less likely to subsequently 
pass elementary than students who scored no more than two points above the fractions 
cutoff. These are relatively large penalties given that the overall elementary algebra 
attempt rate for students in this specification was just under 70% and the overall pass 
rate was just under 50%. This corresponds to a nearly 40% decrease in the probability of 
attempting the next course, and a 35% decrease in passing the next course.

*p < .05, **p < .01, ***p < .001; BW bandwidth, BM basic math/arithmetic, PA pre-algebra, EA elementary 
algebra. A frontier-score bandwidth (BW) of 2 indicates that the regression includes all observations that 
fall within the range two points above or below each subscore cutoff

Table 5  (continued)

Composite cutoff Integers cutoff Fractions cutoff Decimals cutoff

BW = 2 BW = 1 BW = 2 BW = 1 BW = 2 BW = 1 BW = 2 BW = 1

Complete 60 DA Units
 T − 0.030 0.011 0.001 0.040 − 0.007 − 0.032 − 0.005 − 0.010

(0.047) (0.063) (0.074) (0.094) (0.019) (0.023) (0.036) (0.048)
 Composite − 0.007 0.023

(0.016) (0.034)
 Integers − 0.002 0.018

(0.016) (0.039)
 Fractions 0.002 − 0.012

(0.008) (0.014)
 Decimals − 0.008 − 0.005

(0.010) (0.023)
 Constant 0.133*** 0.122*** 0.164*** 0.154*** 0.157*** 0.158*** 0.166*** 0.164***

(0.022) (0.026) (0.026) (0.033) (0.008) (0.009) (0.016) (0.019)
 N 817 490 1135 479 5281 3989 2232 1263

Total units completed
 T − 1.393 − 1.412 2.686 6.182 − 0.150 − 2.584 − 1.200 − 1.823

(4.052) (5.524) (6.197) (7.724) (1.562) (1.908) (2.917) (3.896)
 Composite 0.181 0.191

(1.333) (2.975)
 Integers 1.041 3.167

(1.339) (3.226)
 Fractions 0.325 − 1.117

(0.655) (1.141)
 Decimals − 0.574 − 0.059

(0.840) (1.871)
 Constant 21.5*** 21.5*** 23.3*** 22.1*** 24.5*** 24.6*** 25.2*** 24.8***

(1.892) (2.274) (2.190) (2.740) (0.686) (0.766) (1.246) (1.506)
 N 817 490 1135 479 5281 3989 2232 1263
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Table 6  The impact of placement in pre-algebra (PA) relative to elementary algebra (EA), frontier-score 
regression discontinuity at one- and two-point bandwidths (BW)

Integers cutoff Fractions cutoff Decimals cutoff

BW = 2 BW = 1 BW = 2 BW = 1 BW = 2 BW = 1

Attempt EA
 Treatment (T) = PA − 0.129 − 0.104 − 0.289*** − 0.260*** − 0.210*** − 0.155*

(0.070) (0.090) (0.050) (0.060) (0.060) (0.070)
 Integers 0.076** 0.112*

(0.020) (0.050)
 Fractions − 0.030 − 0.008

(0.020) (0.040)
 Decimals − 0.024 0.010

(0.020) (0.040)
 Constant 0.584*** 0.562*** 0.684*** 0.681*** 0.689*** 0.683***

(0.030) (0.040) (0.020) (0.020) (0.030) (0.030)
 N 786 541 1475 1011 977 706

Pass EA w/C or better
 T − 0.017 − 0.084 − 0.145** − 0.168* − 0.023 − 0.017

(0.069) (0.090) (0.050) (0.066) (0.060) (0.077)
 Integers 0.056* 0.021

(0.024) (0.049)
 Fractions − 0.017 − 0.040

(0.021) (0.042)
 Decimals 0.005 0.009

(0.023) (0.045)
 Constant 0.413*** 0.421*** 0.479*** 0.487*** 0.466*** 0.465***

(0.032) (0.037) (0.022) (0.025) (0.027) (0.030)
 N 786 541 1475 1011 977 706

Pass EA w/B or better
 T − 0.004 0.009 0.017 0.018 0.038** 0.036*

(0.007) (0.011) (0.010) (0.013) (0.013) (0.018)
 Integers 0.000 0.009

(0.002) (0.006)
 Fractions 0.002 0.002

(0.004) (0.009)
 Decimals 0.002 − 0.004

(0.005) (0.011)
 Constant 0.004 0.000 0.002 0.003 0.000 0.004

(0.003) (0.005) (0.005) (0.005) (0.006) (0.007)
 N 786 541 1475 1011 977 706

Complete 60 DA units
 T 0.048 0.007 − 0.085* − 0.118* 0.010 − 0.016

(0.053) (0.068) (0.039) (0.050) (0.047) (0.060)
 Integers 0.025 − 0.001

(0.019) (0.037)
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In contrast to the null longer-term effects found in the binding-score RD, the frontier-
score RD at the PA/EA cutoff in Table 6 reveals that the penalty to missing the fractions 
cutoff persisted in the long-term. Students missing the fractions cutoff by one point were 12 
percentage points less likely to complete 60 units than students who scored no more than 
one point above the fractions cutoff, a 57% decrease. Ultimately, they completed nearly 8 
fewer credits than their higher-scoring peers.

Interestingly, the PA/EA frontier analysis of the decimals subscore shows a benefit in 
terms of passing elementary algebra with a B or better (see Table 6). Students who missed 
the decimals cutoff by one or two points and assigned to pre-algebra were nearly 4 percent-
age points more likely to subsequently pass elementary algebra than their peers who scored 
just above the decimals cutoff. This suggests that this decimal component of the MDTP 
Algebra Readiness may have been relevant for identifying student readiness for elementary 
algebra and that there was a marginal benefit to taking pre-algebra in terms of earning 
higher elementary algebra grades.

Given that the percentage of students missing elementary algebra placement because 
of the fractions cutoff was about the same as those missing elementary algebra due to the 
decimals cutoff (45 and 44%, respectively), the negative RD estimates at the fractions fron-
tier suggest that the standard associated with this particular skill is perhaps too high. As 
described above, one interpretation of these negative estimates is that the fractions cutoff 

*p < .05, **p < .01, ***p < .001; BM basic math/arithmetic, PA pre-algebra, EA elementary algebra, DA 
degree-applicable. A frontier-score bandwidth (BW) of 2 indicates that the regression includes all obser-
vations that fall within the range two points above or below each subscore cutoff. There were not enough 
observations to conduct the frontier-RD analysis at the composite score cutoff

Table 6  (continued)

Integers cutoff Fractions cutoff Decimals cutoff

BW = 2 BW = 1 BW = 2 BW = 1 BW = 2 BW = 1

 Fractions − 0.035* − 0.061
(0.016) (0.032)

 Decimals 0.003 − 0.022
(0.018) (0.035)

 Constant 0.149*** 0.157*** 0.201*** 0.205*** 0.179*** 0.188***
(0.025) (0.027) (0.017) (0.019) (0.021) (0.024)

 N 786 541 1475 1011 977 706
Total units completed
 T 4.484 2.250 − 7.625* − 9.277* − 0.639 − 3.414

(4.201) (5.520) (3.037) (3.941) (3.565) (4.640)
 Integers 2.656 1.481

(1.474) (3.000)
 Fractions − 2.770* − 3.958

(1.285) (2.553)
 Decimals − 0.36 − 2.895

(1.348) (2.693)
 Constant 23.68*** 23.95*** 28.41*** 28.50*** 27.19*** 28.13***

(1.960) (2.239) (1.355) (1.524) (1.605) (1.820)
 N 786 541 1475 1011 977 706
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could be lowered until the penalty is eliminated or becomes a benefit (Melguizo et al. 2016; 
Robinson 2011).

Robustness and Sensitivity Analyses

RD designs are sensitive to model specification, so it is therefore important to conduct 
several checks to assess the robustness of the estimates. The results in Table 7, which only 
show the outcome of passing a course with a C or better for the PA/EA cutoff, confirm 
that the estimates are not extremely sensitive to bandwidth choice. To assess sensitivity to 
functional form, I included linear, quadratic, and cubic interaction terms between the bind-
ing-score running variable and treatment status. The treatment effect estimates increase in 
magnitude but do not change in significance. The results also do not change when I include 
relevant covariates to the model. The results of these analyses are also consistent for all 
other outcomes and for the BM/PA cutoff (see Appendix).

I assessed sensitivity of the frontier RD results following the recommendation of Porter 
et al. (2017). I included polynomial interactions of the running variable and treatment status, 
and I then also included the other subscores in each regression. In Table 8, I present the 
results only for the first outcome of interest and only for a two-point bandwidth around the 
PA/EA cutoff; the one-point bandwidth results are similar and available in the Appendix. 
These results are robust, showing again that just missing the fractions cutoff significantly 
decreased the probability of completing the EA course.

Compliance

I conducted two supplemental analyses to assess how students’ choices to enroll in the first 
course and then enroll in the second course may be biasing the sharp RD estimates. The 
first considers enrollment compliance with placement assignment. I ran the same binding-
score RD as outlined above but only with those students who complied with their assigned 
course placement. The results of these analyses are shown in the Appendix and can be 
compared to the binding-score results for the PA/EA cutoff and the outcome of passing the 
next math course. Like the main results, complier students also experienced a large penalty 
to PA placement and were about 17 percentage points less likely to pass EA.

Secondly, since a significant negative effect was observed for attempting the higher-
level/second course, it is important to assess whether the negative effects on passing derive 
mostly from the negative effects on attempting. I therefore conditioned the passing out-
come on attempting the second course (e.g., attempting EA). In this specification, the sharp 
RD compares those students around the placement cutoff who eventually enrolled in the 
higher-level course rather than all students around the cutoff. The results at the two-point 
bandwidth suggest that the lower course placement may have been beneficial to students, 
increasing the probability of passing EA with a B or better by nearly 13 percentage points. 
However, the results are not significant at the one-point bandwidth. Conditioning the pass-
ing outcome on course attempt in this manner introduces the possibility of selection into 
the model, since students who choose to persist in the math sequence may be different from 
their peers along unobservable characteristics. Nevertheless, these results suggest that the 
primary effect of PA placement was to deter students from progression through the math 
sequence rather than not preparing them to pass courses.
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Summary and Discussion

This study takes advantage of a distinctive placement policy and diagnostic data available 
in one community college to provide a unique look at how basic math standards affect 
the educational opportunity of incoming community college students. Although College M 
moved away from using the diagnostic test in 2011, this examination of multiple math cut-
offs remains relevant given that the test is still in use in other colleges, and since placement 
tests, though declining in use, continue to be consequential in higher education (Rutschow 
and Hayes 2018). Importantly, I was able to determine the specific math areas that serve as 
gatekeepers to higher-level math courses. The findings reveal that many students missed 
the opportunity to start in pre- and elementary algebra because they missed one question 
regarding fractions. The same pattern emerged for students in upper-level math (intermedi-
ate algebra) with respect to solving word problems and application of math skills.

Various forms of multiple rating-score regression discontinuity design provided a way 
to identify the impact of this skill-based placement in lower-level math remediation. The 
binding-score RD analysis at the cutoff between basic math and pre-algebra indicated nega-
tive effects of placement into the lower-level course on attempting the next course, and null 
effects on other outcomes. This can generally be interpreted as a modest penalty to reme-
dial placement since students at the margin of the cutoff had equivalent outcomes. Stu-
dents placed in the lower-level basic math course likely expended more time and resources 

Table 8  Robustness of frontier-score RD at pre-algebra/elementary algebra cutoff (BW = 2); outcome: pass-
ing EA w/C or better

*p < .05, **p < .01, ***p < .001; BW bandwidth, BM basic math/arithmetic, PA pre-algebra, EA elementary 
algebra. A frontier-score bandwidth (BW) of 2 indicates that the regression includes all observations that 
fall within the range two points above or below each subscore cutoff

Integers cutoff Fractions cutoff Decimals cutoff

(1) (2) (3) (1) (2) (3) (1) (2) (3)

Treatment 
(T) = PA 
placement

− 0.017 − 0.137 − 0.126 − 0.145** − 0.129* − 0.128* − 0.023 − 0.017 − 0.044
(0.069) (0.118) (0.118) (0.050) (0.059) (0.059) (0.060) (0.088) (0.088)

Composite 0.028*** 0.020*** 0.026***
(0.008) (0.006) (0.007)

Integers 0.056* 0.065* 0.031 − 0.008 − 0.001
(0.024) (0.025) (0.027) (0.014) (0.018)

Fractions − 0.022 − 0.017 − 0.026 − 0.030 − 0.037
(0.019) (0.021) (0.027) (0.027) (0.019)

Decimals − 0.058** − 0.023 0.005 0.004 − 0.028
(0.021) (0.016) (0.023) (0.025) (0.026)

T*Integers − 0.114 − 0.111
(0.091) (0.090)

T*Fractions 0.022 − 0.001
(0.044) (0.044)

T*Decimals 0.006 − 0.006
(0.063) (0.063)

Constant 0.413*** 0.404*** 0.219** 0.479*** 0.484*** 0.309*** 0.466*** 0.466*** 0.249***
(0.032) (0.033) (0.071) (0.022) (0.024) (0.052) (0.027) (0.028) (0.066)

N 786 786 786 1475 1475 1475 977 977 977
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to attain these same outcomes. At the pre-algebra/elementary algebra cutoff, the binding-
score RD analysis showed a larger negative effect of pre-algebra placement on attempting 
and completing the elementary algebra course, which was required for associate’s degree 
attainment during the study period.

The dual RD analyses I conducted also demonstrate how binding-score RD can produce 
overall treatment effect estimates that mask heterogeneity in effects across multiple cutoffs. 
The consistent negative frontier-score RD results for the fractions cutoff indicate that there 
was a persistent penalty to missing the cutoff by a fraction or two. These students were 
14–16 percentage points less likely to pass elementary algebra after being placed in pre-
algebra and significantly less likely to earn college credits. Although 44% of students at 
this level “just missed” the decimals cutoff, the negative effects were not as severe as miss-
ing the fractions cutoff.

This finer-grained analysis using a frontier-score RD approach suggests there are some 
areas of possible improvement in math placement policy. Specifically, over-emphasis on 
certain skill areas such as fractions may be unwarranted. In other words, the fractions profi-
ciency cutoff in College M may not have needed to be so high. Given that students just miss-
ing the cutoffs had equivalent chances of attaining each outcome, the practical implication 
for practitioners is to slightly lower each cutoff so that these students do not have to expend 
the additional resources associated with taking lower-level developmental math courses.

Yet shouldn’t we be concerned that entering college students could not answer test ques-
tions about fractions correctly? Shouldn’t these students be in remedial math courses? The 
results of the study raise important broader questions about what community college stu-
dents in developmental education know about mathematics, and how expectations of math-
ematics proficiency, manifested in placement policy, interface with students’ mathematical 
knowledge and skills.

As described earlier, research in mathematics education provides some insight into why 
fractions may be a gatekeeping skill. Community college students in developmental math 
did reveal errors in their procedural knowledge, especially when solving problems related 
to fractions (Stigler et al. 2010). However, many demonstrated reasoning and conceptual 
understanding of mathematics when provided the opportunity to do so (Givvin et al. 2011). 
Since examination of placement test questions revealed a test emphasis on procedural flu-
ency (Stigler et  al. 2010), it is expected that students with faulty procedural knowledge 
will continue to earn low test scores and be assigned to basic math remediation in con-
texts where these tests are used. Therefore, in addition to examining whether reevaluat-
ing expectations of procedural fluency can make a difference for students, one possible 
future research area is in alternative forms of assessment. It is possible that assessments 
that emphasize reasoning and conceptual understanding in addition to procedural fluency 
may better sort students into developmental and college-level mathematics and lessen the 
negative impacts of basic math remediation.

To this point, there are few studies that have investigated how assessment and placement 
policies are actually designed and implemented. One rare qualitative study by Melguizo 
et al. (2014) found that math faculty and staff do not typically feel that they have the techni-
cal support or expertise to set and evaluate their policies. As such, common ways of deter-
mining placement cutoffs were to pretend to be a student and take the exam or to mimic the 
policies of neighboring colleges. The researchers also found that evaluation and calibra-
tion of placement cutoffs as an institutional practice was more the exception than the rule, 
and in a few cases placement policy primarily functioned as an enrollment management 
tool to keep certain students in certain levels of coursework. There may be an incentive, 
for example, to set cutoffs high so that instructors in upper-level courses can focus on the 



512 Research in Higher Education (2019) 60:485–520

1 3

intermediate and advanced math necessary for transfer. This research suggests that place-
ment criteria may be more related to administrative and organizational behaviors rather 
than to concrete understanding of the skills students have and clarity about how they may 
matter for success in coursework. Future research could investigate how math placement 
criteria are selected and how the “disciplinary logic” of mathematics influences the evalua-
tive practices inherent in the placement testing system (Posselt 2015).

Aside from reforming placement testing practices, the findings of the study also provide 
some direction for improving placement testing results. One type of intervention aimed at 
improving student readiness for college-level math consists of shoring up student skills in a 
“bootcamp” or summer “bridge” format (Hodara 2013). Since fractions and word problems 
are the two most troublesome math skill areas identified in the present study, it may behoove 
these intervention and prep programs to focus on the development of these specific skills. 
They may want to emphasize fractions for students likely to be placed in the lowest levels of 
developmental math. They might want to emphasize strategies for solving word problems for 
those at the higher levels of math. This may translate into improved placement testing results.

Conclusion

There is no doubt that mathematics plays a gatekeeping role in higher education, especially 
at the point of assessment and placement when students enroll in community colleges. 
Indeed, the decisions that result from placement testing have significant implications for 
the nature of students’ math experiences and pathways through college. As shown in the 
study, students were held back in lower-levels of math remediation due to lower scores in 
specific skill areas, namely fractions, when it appears they could have passed higher-level 
courses. Developing these skills prior to college placement testing or re-thinking assess-
ment and placement policies may serve to improve math sorting in the transition to college 
and the outcomes of students starting college in basic math courses.

Appendix

See Fig. 7 and Tables 9, 10, 11, 12, and 13.

Fig. 7  Density of the running variable (McCrary density test)
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Table 10  Characteristics of “one-off” students (means)

Columns show the mean characteristics of each “one-off” group

Missed compos-
ite cutoff by 1 
point

Missed integers 
cutoff by 1 point

Missed fractions 
cutoff by 1 point

Missed decimals 
cutoff by 1 point

Basic math/pre-algebra cutoff
 Female 0.61 0.73 0.60 0.67
 Asian/Pacific Islander 0.03 0.04 0.05 0.03
 Black 0.01 0.03 0.02 0.02
 Hispanic 0.92 0.88 0.89 0.91
 White 0.01 0.01 0.01 0.01
 Other 0.04 0.04 0.04 0.03
 English not primary language 0.33 0.38 0.31 0.31
 Permanent resident 0.07 0.08 0.06 0.07
 Other visa 0.08 0.09 0.09 0.08

Pre-algebra/elementary algebra cutoff
 Female 0.61 0.62 0.57 0.56
 Asian/Pacific Islander 0.06 0.05 0.08 0.08
 Black 0.01 0.02 0.01 0.02
 Hispanic 0.90 0.89 0.85 0.85
 White 0.01 0.01 0.02 0.01
 Other 0.02 0.03 0.03 0.03
 English not primary language 0.31 0.34 0.29 0.31
 Permanent resident 0.07 0.08 0.07 0.08
 Other visa 0.08 0.09 0.07 0.08
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Table 12  Robustness of frontier-score RD at pre-algebra/elementary algebra cutoff (bandwidth = 1); out-
come: passing EA w/C or better

*p < .05, **p < .01, ***p < .001; BW bandwidth, BM basic math/arithmetic, PA pre-algebra, EA elementary 
algebra. A frontier-score bandwidth (BW) of 1 indicates that the regression includes all observations that 
fall within the range one point above or below each subscore cutoff. Interactions terms were dropped from 
the one-point bandwidth regression

Integers cutoff Fractions cutoff Decimals cutoff

(1) (2) (1) (2) (1) (2)

T − 0.084 − 0.091 − 0.168* − 0.139* − 0.017 − 0.033
(0.090) (0.090) (0.066) (0.066) (0.077) (0.077)

Composite 0.026** 0.017* 0.031***
(0.010) (0.007) (0.009)

Integers 0.021 − 0.022 − 0.008 − 0.014
(0.049) (0.051) (0.017) (0.022)

Fractions − 0.017 − 0.040 − 0.039 − 0.021
(0.022) (0.042) (0.043) (0.023)

Decimals − 0.063* − 0.008 0.009 − 0.029
(0.024) (0.019) (0.045) (0.046)

Constant 0.421*** 0.261** 0.487*** 0.320*** 0.465*** 0.208**
(0.037) (0.083) (0.025) (0.062) (0.030) (0.075)

N 541 541 1011 1011 706 706
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