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Abstract Higher education in America is characterized by widespread access to college

but low rates of completion, especially among undergraduates at less selective institutions.

We analyze longitudinal transcript data to examine processes leading to graduation, using

Hidden Markov modeling. We identify several latent states that are associated with pat-

terns of course taking, and show that a trained Hidden Markov model can predict gradu-

ation or nongraduation based on only a few semesters of transcript data. We compare this

approach to more conventional methods and conclude that certain college-specific pro-

cesses, associated with graduation, should be analyzed in addition to socio-economic

factors. The results from the Hidden Markov trajectories indicate that both graduating and

nongraduating students take the more difficult mathematical and technical courses at an

equal rate. However, undergraduates who complete their bachelor’s degree within 6 years

are more likely to alternate between these semesters with a heavy course load and the less

course-intense semesters. The course-taking patterns found among college students also

indicate that nongraduates withdraw more often from coursework than average, yet when

graduates withdraw, they tend do so in exactly those semesters of the college career in

which more difficult courses are taken. These findings, as well as the sequence method-

ology itself, emphasize the importance of careful course selection and counseling early on

in student’s college career.
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Introduction

This study builds upon the availability of coded undergraduate transcript data and the

recent development of computationally intensive methods for analyzing sequences and

trajectories over time in order to address the college completion puzzle. We use Hidden

Markov Modeling to analyze longitudinal (transcript) data in order to predict degree

completion and noncompletion. The main function of this modeling technique is to identify

the so-called ‘hidden states’ that are associated with both static observable states and—

harder to observe—trajectories leading to particular outcome states. A Hidden Markov

Model (HMM hereafter) becomes particularly useful for sociologists if one assumes that

the complex—yet observable—sequences have underlying dependence associated with the

outcome variable, such as in college completion patterns.

Various versions of HMM’s have been introduced by Langeheine and Van der Pol

(2002), Elzinga et al. (2007), and Vermunt et al. (2008) in the methodological literature.

Furthermore, HMM’s have been applied to a relatively small sample (N = 550) of vio-

lence profiles to reveal trajectories of batterers by Ip et al. (2010). Although these studies

are valuable technical introductions to HMM’s, their focus remains on sequences without

structurally linking these to a dependent (outcome) variable.

We present a substantial extension of the existing approach—a Hidden Markov Model

to reveal states and trajectories among a sample of U.S. 4-year college students, and we

also use the HMM to predict outcome states (graduation or nongraduation)—a technique

that is much more suitable for social science research. We contrast both our techniques and

findings with more conventional modeling approaches to understanding trajectories toward

college graduation. We show how identified states and trajectories can predict graduation

patterns beyond frequently used socio-economic, demographic, and precollege background

information.

The College Completion Puzzle

The higher education system in America is characterized by widespread access to college

but a low rate of degree completion. After graduation, many high school students proceed

immediately to college (68 % in recent cohorts), but a substantial proportion of them do

not complete their degree programs after they enter: about 63 % of entrants to 4-year

colleges complete a bachelor’s degree in 6 years (Aud et al. 2013; Radford et al. 2011).

Although other OECD countries display similar graduation rates, such as Finland (58 %)

for its university sector, Sweden (54 %), France (64 %), and Norway (67 %), as reported

by Adelman (2009), the US college dropout rate is lower than many policy makers would

desire and therefore deserves attention.

A large body of research has examined the determinants of student degree completion.

In broad terms, one can identify four approaches. The first emphasizes the importance of

students’ background characteristics such as family income or wealth, parents’ educational

attainment, plus students’ high school coursework, and their scores on skills tests—factors

that pre-date entry into college but are associated with the likelihood of college graduation

(Achieve 2004; Chen 2005; Complete College America 2011; Horn and Kojaku 2001).

A second stream of research examines nonacademic circumstances that undergraduates

cope with after entry to college: the amount of financial aid (Perna 2010; Perna and Li

2006; Schuh 2005; St. John et al. 2000; Wyner et al. 2007); the number of hours of paid

work they undertake (Bozick 2007); whether they have family responsibilities (Bean and
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Metzner 1985); whether they live on campus or commute (Bozick 2007)—and links these

to degree completion. These factors are conceptualized as competing obligations or

ongoing stresses that affect an undergraduate’s ability to finish a course of study.

A third research approach focuses on differences in graduation rates across institutions

(Hess et al. 2009; Schneider and Yin 2012). Some take these differences to imply that

certain colleges are more efficient than others at graduating students, leading these scholars

to argue that students should try to attend the most selective college possible, since this will

enhance their chances of graduating (Bowen et al. 2009).

The Hidden Markov approach presented below belongs to a fourth body of research that

seeks answers to the noncompletion puzzle in undergraduates’ early semesters in college.

Its core idea is that some have experiences early on in college that discourage them and

lead to stopping out or to dropping out, while others experience successes that build

motivation and commitment and make it more likely that the student will persist and

complete. Tinto (1993) pioneered this approach, conceptualizing the issue as a matter of

‘‘fit’’ between each student’s aptitudes and the demands made by the college. A later wave

of research conceptualized early experiences of undergraduates in terms of their academic

momentum rather than students’ integration. Academic momentum is represented by the

number of course credits and GPA that an undergraduate accumulates during the first year

at college, and their trajectory over time. Adelman (1999, 2006) demonstrated that early

momentum predicts degree completion, using transcript data from nationally representative

panel studies of college students, above and beyond students’ academic preparation and

socio-demographic background. Subsequent research has largely confirmed Adelman’s

insights (Author date; Complete College America 2011).

When understanding college completion (or dropout) patterns, particular courses and

their grades also play an important role. With data from the US Department of Education

(2004), the proportion of withdrawals in college grew substantially between 1970s and

through the 1990s (Adelman 2004). This study also showed that both withdrawals and

failures are concentrated in math courses (mainly algebra) and in remedial courses (writing

and reading). Other researchers have been concerned with course-taking profiles and

cumulating patterns of withdrawals and failures, but for high schools (i.e. Heck et al. 2004).

The availability of coded transcript data that detail student progress toward the degree

(specific courses taken, grades obtained, course-loads each semester, periods of stopping

out, and transfers between colleges) enables further research that seeks to understand fine

details of undergraduate academic trajectories using new data-mining techniques such as

Hidden Markov models. Certain courses of study may be more difficult than others;

particular types of courses may act as gatekeepers and have higher failure rates than others.

From this viewpoint, student progress toward a degree may be thought of as a kind of

track-and-field race over hurdles, where failing to clear certain academic hurdles or

encountering difficult course sequences or getting poor grades in particular courses lead

some students to redirect their efforts, sometimes into another major and sometimes

causing them to stop out of college or to transfer.

Data

Our analyses draw upon a study known as the ‘Beginning Postsecondary Students Lon-

gitudinal Study’ (BPS), directed by the National Center for Education Statistics (NCES). It

tracks a nationally representative cohort of first-time freshmen for 6 years after their initial
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entry into college in 2004. Each student reported every college attended during this period;

both dual enrollment and transfers from one college to another (Wine et al. 2011).

BPS researchers subsequently obtained and coded transcripts from each college a stu-

dent attended, creating a dataset known as the ‘‘2004/2009 Beginning Postsecondary

Students Longitudinal Study Restricted-Use Transcript Data Files’’ or PETS data (NCES

2011). Our analyses use these transcript data to measure student progress semester by

semester, including transfers and final degree attainment. Our conventional analyses—the

(multinomial) logistic regressions—use weights developed by the BPS staff to adjust for

panel attrition and nonresponse. Panel weights are however not applied in our Hidden

Markov models.1 Yet in a separate series of conventional logistic regression analyses (in

which we are interested in background factors such as race and gender), the BPS panel

weights are applied to adjust for sampling errors. In addition, BPS replaced all missing data

using multiple hot-deck imputation.

Within the BPS transcript sample, 8980 students (a rounded figure) registered in a

4-year college for their first semester in Fall 2004.2 These first-time freshmen at bac-

calaureate-granting institutions form the sample for our analyses. Using these longitudinal

data, we address the question: How can students who graduate within 6 years be distin-

guished from those who did not graduate within the same time frame?

Independent Variables: Semester Characteristics

Each data point consists of a student by semester observation, measured as a set of values

of selected variables in a particular fall or spring semester for all 4 years of observation.

All the BPS variables used here are discrete (nominal or ordinal) or they are reconstructed

as such. Hence, every combination of variable values (m1...n) creates our sequence of

‘semester observations’ (X1...n). Table 1 lists all predictors as well as their averages across

all 8 semesters for graduates and nongraduates separately.

As seen in Table 1, nongraduates are more likely to stop out and to enroll less fre-

quently. They also fall behind graduates in terms of credits earned, average GPAs, and are

more likely to take remedial coursework and to withdraw from or fail courses. Surpris-

ingly, they also on an average have a higher degree of involvement in science, technology,

and math (STEM) courses than graduates. These dimensions form the basis of the

stochastic models we will build to predict graduation.

Methodology

The terminology of Hidden Markov Modeling, as introduced in this paper, deviates from

conventional techniques such as logistic regression. Here, we will introduce some central

terms in HMM, before providing a more detailed description of this method in the fol-

lowing sections.

1 Panel weights are not conventionally used in the construction of the HMM itself (the hidden states). An
HMM looks at variation over time within individuals’ sequences rather than representativeness of samples to
a larger population.
2 Around 8190 of these sampled students were 18 or 19 years old when they entered a four-year college for
the first time (790 students were 20 years or older). At the urging of one reviewer, we reran the Hidden
Markov model omitting students who were 20 years or older. These reworked analyses yielded similar
results in terms of state description, transitions probabilities, and prediction accuracy, and are available upon
request.
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HMM seeks to identify processes unfolding over time. At any moment in time, each

individual in the analysis is said to reside in one of the small number of ‘states,’ and any

individual may move from one state at one period into a different state at the next or may

remain in the same state. So, individuals move through a sequence of states over time.

Each state is a kind of latent variable constructed by the HMM out of measured variables.

For example, one state might be characterized as a ‘STEM-withdrawing state’; another

might be a ‘low course-taking state.’ What is of interest to the analyst is first, identifying

the states that best describe the process over time using an ‘observation matrix’; second,

understanding transition probabilities: the likelihood of moving from one state to another at

any point in time; third, fitting longitudinal data to particular sequences of states; and

fourth, associating particular sequences of states to overall outcomes, such as graduating

vs. not graduating.

Hidden Markov Models: An Overview

A Markov Model is a probabilistic model that predicts the trajectory of certain variables

over time. Collectively, those variables are usually termed ‘‘the state of the system.’’ One

important assumption, known as theMarkov Property, is that the state of the system at time

t depends upon, or is only affected by, the state of the system at the immediately prior point

in time—time (t - 1)—and not by values earlier in time such as (t - 2) or (t - 3). In

other words, any effects of earlier states of the system are conceptualized as incorporated

into the state of the system (t - 1) immediately prior to the current state of the system.

Table 1 Predictor variables from 4-year college transcripts

Independent variable Averages across 8 semesters Scale on semester level

Nongraduates Graduates

Student enrolled this semester 68.7 % 97.1 % Dichotomous

Number of credits attempteda 12.5 14.5 5 Categories

Cumulative credits attemptedb 48.1 67.6 27 Categories

Number of credits earned 9.5 13.9 5 Categories

Weighted GPA by semesterc 2.24 3.15 4 Categories

Cumulative GPA 2.33 3.13 4 Categories

Student took remedial English 4.4 % 1.2 % Dichotomous

Student took remedial Math 14.7 % 4.6 % Dichotomous

Student took remedial ‘other’ 33.3 % 20.4 % Dichotomous

Student withdrew from 1 or more courses 23.1 % 8.9 % Dichotomous

Student failed 1 or more courses 43.1 % 5.9 % Dichotomous

Student took at least 1 STEM coursed 64.4 % 58.1 % Dichotomous

a The ‘number of credits’ variable was standardized across colleges by NCES
b Z-score distribution was used to create effective bins
c A standardized GPA (per credit) was used to create this variable. The following NCES codebook was used
to decide on these criteria: http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2012162rev
d STEM refers to courses in Science, Technology, Engineering, and Math. However, remedial or devel-
opmental courses were not counted as STEM courses
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In a simple Markov model, the state of the system might be represented by one or more

observed variables. So, for example, the state might be whether an undergraduate is

enrolled or not enrolled in college, semester by semester, as a probabilistic process

whereby the measured outcome varies over time and is affected by its value at the prior

semester. That kind of simple Markov model might therefore summarize the enrollment

trajectories of students.

However, a Hidden Markov model (HMM), which is used here, involves a more

complex situation where the state is not directly observed. Instead, the state of the system

at any point in time is conceptualized in terms of an ensemble of several ‘‘hidden states’’—

analogous to latent variables. These hidden states are linked in a Markov process, such that

the probability of a particular hidden state at time t is a function of the probabilities of a set

of states at time (t - 1). Parameters known as transition probabilities describe the likeli-

hood of individuals moving from one state to each other state in the next time period. In

HMM modeling, the hypothesized values of the hidden states (represented as Z in the

formulae below) are used to predict the probability of observed variables X0...n rather than

vice versa, as presented visually in ‘‘Appendix 1.’’

The HMM algorithm involves a form of ‘machine learning’: through an iterative pro-

cess, a program estimates certain parameters in the model that yield predictions of the

values of observed variables. Over many cycles, the algorithm converges to represent the

best fit between the model and the data. This ‘training of the model’ produces a stochastic

structure that explains change over time (in this case, semester by semester) and links

system states to observed variables such as grades, number, and types of courses taken.

The core of the HMM model is the following formula that predicts the probability of

finding a particular sequence (of length n) as follows:

P X0...nð Þ ¼ P Z0ð Þ
Yt�1

t¼1

P ZtjZt�1ð Þ
Yt�1

t¼0

P XtjZtð Þ ð1Þ

P(X0...n) is the probability of an observation in a Hidden Markov sequence and is equal

to the probability of any initial hidden state (Z0), multiplied by the product of a temporal

chain of conditioned hidden states ZtjZt�1ð Þ—the transition probability—and by the pro-

duct of observations in that same time frame XtjZtð Þ—the emission probability. Hence, the

algorithm predicts an observation sequence using the sequence estimates of a current state

and the immediately prior state (Eq. 1). The emission probability—P XtjZtð Þ—indicates the

conditional distribution of observations from a specific state.

Knowing this, one could predict a current and future observation or hidden state using

the estimation of our past observation and state. Calculating these probabilities requires

three functions that can be recognized in Eq. (1): an initial state probability P(Z0), a state

transition function P ZtjZt�1ð Þ, and an observation function P( XtjZtð Þ).
Using those three matrices, one can also calculate the probability of finding future

(hidden) states (up to Zn), where n is the length of our observation sequence (X0...n), by a

so-called forward–backward algorithm (based on Baum et al. 1970):

P Ztþ1 ¼ zjz1...t; x1...t; xtþ1ð Þ ¼
X

x

P Ztþ1 ¼ zjXtþ1 ¼ xð ÞPðZtþ1jz1...tÞ ð2Þ

The noncapitalized x’s and z’s refer to past observations and hidden states. The bold z’s

indicate specific values of z (a hidden state).

Any future state—Ztþ1 in Eq. 2—is a function of the actual observation (xtþ1) at that

time, as well as previous series of both the observations and hidden states (x1...t; z1...t). The

454 Res High Educ (2017) 58:449–467

123



right side of Eq. (2) therefore indicates the summation of the probability of finding a

particular hidden state in the next time period (Ztþ1 ¼ z), given the actual observation

(Xtþ1 ¼ x), multiplied by the transition function: P Ztþ1jz1...tð Þ.
Deciding on the appropriate number of states is one early task in any HMM analysis.

Typically, a researcher tries a model with two, three, four, or more states and decides on

the best number according to the goodness-of-fit of these alternatives. This method of

optimal state selection seems most appropriate to the social sciences, in which one aims for

realistic—meaningful—labels that can describe a hidden state. Even though latent states

are represented as probability structures across several predictors, they should preferably

be distinct, recognizable, and informative. If adding or dropping a state reduces these

conditions, one has reached an optimum number of states for the model. Alternatively, one

can use a Bayesian Information Criterion (BIC) to choose the number of states in the model

(Scott 2002; McLachlan and Peel 2000). In practice, however, even when using a BIC, one

would still evaluate models, using different numbers of states, and inspect the qualitative

aspects of the model (e.g., Ip et al. 2010). Ideally, both approaches should lead to the same

decision.

As mentioned earlier, states are not directly observed; they are hypothesized latent

variables. However, one can estimate a state. Hidden states are complex functions of

multiple measured variables (the latter known as ‘features’). This means that, in theory, a

complete semester observation (Xt) can take any form; a series of discrete or finite num-

bers. The algorithm of an HMM estimates the probability of observing certain combina-

tions of feature values at (X0...n), while simultaneously estimating the latent variable Z0...nð Þ
in the same time frame. Therefore, the hidden states (Z0...nÞ of the Hidden Markov Chain

can be described by the probabilities of our directly observed chain of discrete and

nondiscrete feature values—e.g., GPA, number of credits attempted. Consequently, after

an HMM has been fitted successfully to data, one can observe what features are associated

with each hidden state, to gain a retrospective sense of the meaning of each state. But

rather like components obtained from principal components or factor analysis, a concep-

tually confusing mix of measured variables or features may contribute to each state. For a

general introduction to HMM see Rabiner (1989) or Stamp (2015).

HMM Assessment and Predicting Outcomes

Building an HMM takes several steps: variable selection, state description evaluation, and

estimating the number of states from the key activities. This ‘analysis phase’ leads to a

trained model that consists of the initial state distribution (probabilities of being in one of

the states in the first or initial semester; Z0), the transition matrix (a probability matrix with

the likelihood of being in a certain state Ztþ1 given Zt), and an observation matrix

(probabilities of finding certain combinations of observed feature values in each latent

state). In this phase, we attempt to detect and describe educational trajectories.

Our analysis takes an additional step, after HMM sequences are optimized, which

makes it possible to predict a dichotomous, sociologically relevant, dependent variable.

The logic of using an HMM to predict an outcome of interest, such as graduation from

college, contrasts with both more conventional modeling approaches such as logistic

regression and with previous applications of HMM’s using social science data.

An HMM does not directly model or predict a dependent or outcome variable. Instead,

for a theoretically important dichotomous outcome such as completed a degree (yes/no),

one first separates individuals in the sample according to their value on this outcome of

interest. The researcher therefore creates two sequence samples that will be analyzed

Res High Educ (2017) 58:449–467 455
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separately, each with its own Markov chain. In our case, one consists of students who

finished their degree within the 5 years of the study, and the other contains of only

noncompleters. We therefore create (train) two completely separate HMM’s: one for the

graduates and another for nongraduates.

Machine learning usually employs a form of replication known as cross-validation to

assess the validity and accuracy of any model (comparable to the R-square). All cases in

the data are randomly assigned into either a training sample or test sample. In our case,

70 % of the college graduates and nongraduates were randomly selected for training and

the remaining 30 % were assigned to a test sample. This leads to two test samples (one for

college graduates and another for nongraduates) which are held separate and play no role in

developing these HMM’s.

The test sample cases that were held back are then used to test the predictive accuracy

of the two trained HMM models which were previously created using only the training

data. For each individual that we withheld for the test sample, a log-likelihood of the

sequence under both trained HMM’s was produced. The highest log-likelihood between the

two HMM’s should be considered the ‘‘classification’’ on the dependent variable: the

prediction whether that student is a graduate or a noncompleter. The comparison of

likelihoods and log-likelihoods for classification purposes is a standard procedure in

computer science and machine learning. For an introduction to using log-likelihood as a

classification procedure, see Duda et al. (1973, 2000).

An important additional technique applied in our models is to classify students from the

test sample with shorter sequences of observed semester validation data in the HMM’s. A

strong model should effectively recognize a graduating or nongraduating student after only

1 or 2 years of college transcript information.

In sum, all models presented are assessed by their state description efficacy, followed by

testing the accuracy of prediction for graduating, nongraduating, and all students together.3

Analysis

Determining Predictors and Number of States

An HMM ideally uses a small number of predictors because a simple model improves the

ability to assess and replicate the study. In addition, using a relatively small number of

predictors increases the chance of effectively interpreting a latent state; fewer, yet unique,

feature values capture the essence of ‘being in a state’ as a college student. Using a limited

set of potentially predictive variables is common in HMM’s in social science research.

However, it should be noted that, in theory, the initial model estimated by an HMM could

be chosen at random, with an unlimited number of predictors (Rabiner 1989).

In order to have an indication of the relative importance of our semester-based pre-

dictors, all 12 candidate variables were initially included in an HMM one-by-one

(Table 1). We used the Bayesian Information Criterion (BIC) of each of these single-

variable HMM’s to rank the predictive power of the variables. The high importance of

student enrollment in a given semester for both graduating and nongraduating is not

surprising, since one has to attend in order to graduate. We therefore decided to eliminate

this as a separate variable and instead to incorporate this into every other variable as a

3 Murphy’s (2002, 2005) Matlab toolbox is used for all HMM calculations. See Appendix B (for HMM
training) and Appendix C (for classification).
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separate value: ‘not enrolled this semester.’ Taking remedial English is remarkably pre-

dictive in this particular stochastic model, even though only a small percentage of the

students take this course. Another noteworthy finding is that more or less the same vari-

ables are predictive for both graduating and nongraduating students in terms of BIC-rank

(and -2 log-likelihood rank).

Next, we examined various sets of variables in order to optimize the state descriptions in

terms of their coherence. The trade-offs between estimating fewer or more states, on the

one hand, and the process of dropping and adding predictors to the model, on the other

hand, led us to estimate the HMM containing 6 of the 8 strongest variables listed in

Table 1. Moreover, a ‘‘three-state solution’’ turned out to be most effective in creating

coherent and distinct state descriptions.

Interpreting the Observation Matrix

The observation matrix is the connection between the observed world of college transcript

variables and the logic of hypothesized latent states, whereby each predictor category

equals a probability of being associated with one of the three estimated states. This matrix

can be used to derive in which states students can possibly be during a semester. Thus, we

arrive at state descriptions in terms of probability associations with each predictor value.

Together, these characteristics form narrative ‘‘state labels’’ which are listed in the bottom

row of Table 2.

Since we trained two distinct HMM’s, one for graduates and one for noncompleters, we

analyze their two observation matrices separately. Organized by latent state, Table 2

indicates the emission probabilities; the unstandardized effect size of a certain feature on

the state description (‘‘Prob.’’). This is a joint distribution, defined by the probability of

observing a particular feature value, given the estimated underlying hidden state:

P X; Zð Þ ¼ P XjZð ÞP Zð Þ: Furthermore, the normalized probabilities reflect the probability

of observing a particular feature value, given the fact that we estimated our three specific

latent states: PðZijXÞ=
P

P ZjXð Þ: These probabilities are translated into percentages and

add up to 100 % row-wise for both graduates and nongraduates.

Several contrasts can be seen between States 1 thru 3. First, STEM-taking is of great

importance when describing the three states among graduating students. For instance, when

observing a student who takes STEM, the normalized probability of that student being in

State 1 is only 23.8 %, compared to a 40.5 % chance of being in State 2. Another important

feature is the number of credits attempted in each semester. Taking more than 18 credits in

a particular semester is associated with a 43.5 % chance of being in State 1, whereas the

chances of being in the other two states are substantially lower: 32.5 % (State 2) and

24.0 % (State 3). Lastly, whereas State 2 can be described as a ‘regular’ state in which a

student takes STEM and attempts a ‘normal’ number of credits, a student in State 3 seems

to struggle a bit: the chances of Math remedial, stopping out, withdrawing a course, and

above all, failing a course are higher in State 3 than in any other state.

Nongraduating students are described with exactly the same variables because this

allows us to test both our models with new test data. Similar to graduates, STEM-taking

and the number of credits attempted in a semester are important features that describe State

A thru C. However, other factors contribute to the description of nongraduation states, such

as failing or withdrawing a course and taking remedial Math (Table 2).

Failing a course is an important characteristic of all three states (around 35 %—39 %),

but to a lesser extent of State B (26 %). Withdrawing takes place quite frequently across

the three states, but observing this is most associated with State C—a 0.42 probability.
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Furthermore, State A is clearly associated with a high probability of not being enrolled in

that semester and, if enrolled, students in this state enroll in fewer credits; taking less than

12 credits (0.47 probability) and remedial Math (0.26 probability). Therefore, we labeled

this state as ‘‘low activity.’’ Lastly, State C can be identified as the ‘‘STEM-taking’’-state; a

42 % chance of being in this state, as opposed to 35 % (State A) and 28.6 % (State B). An

important difference between state B and C, however, is the number of credits attempted; a

student who takes more than 18 credits, has a 19.6 % chance of being in state B, but a

42.4 % of being in state C. In other words, State C (among nongraduates) is quite com-

parable to State 1 (among graduates), with the important exception of being far more likely

of taking many credits in one semester, instead of a high probability of withdrawing.

Examining College Trajectories: The Transition Matrix

After estimating the composition of hidden states, we can analyze probabilities of future

states given our knowledge of the current state. In other words, if during any point in the

college career a student displays a high likelihood of being in a particular state (1 thru 3 or

A thru C), what is the chance of being in a certain state during the next semester? Again, it

is important to keep in mind that we do not directly observe the hidden state, but instead,

we rely on the probability a student ‘being’ in a latent state.

Table 3 indicates the initial state distribution—the probability of being in one of the

three states across all observations—and the transition matrix for both the sequences of

graduates and nongraduates. The latter is a 3 9 3 since we have defined three states in

which students can possibly be in during a semester. We can model the probability of being

in a certain state Zt, given Zt�1 (see Eq. 2).

With regard to graduating students, the ‘‘high credits’’ State 1 is least likely to be a

starting state. And, once in State 1, move quickly into a different state, such as State 3—the

‘‘STEM/withdrawing’’ state (79 % chance). Furthermore, once in States 2 or 3, the chance

of moving back into a situation of taking high credits (State 1) is unlikely.

The crux of a ‘‘path to graduation’’ should be found in the combination of states 2 and 3.

Starting in State 3 (‘‘STEM/withdrawing’’) is most common, but once a student is in that

Table 3 Initial states and tran-
sition matrix for graduates and
nongraduates

For graduating students: state 1
high credits, state 2 high STEM,
state 3 STEM/withdrawing

For nongraduating students: state
A low activity, state B low
STEM, state C STEM/high
credits

Initial states Transition probabilities

State 1 State 2 State 3

Graduates

State 1 0.077 0.142 0.071 0.787

State 2 0.306 0.172 0.336 0.492

State 3 0.617 0.161 0.566 0.273

Initial states Transition probabilities

State A State B State C

Nongraduates

State A 0.410 0.422 0.143 0.435

State B 0.412 0.445 0.438 0.117

State C 0.178 0.052 0.486 0.462
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state, moving to State 2 (just ‘‘high STEM’’) is more likely than staying in State 3. This

indicates a ‘slow start’ with regard to STEM-taking. However, being in State 2 means that

there is almost a 50 % chance of being (back) in State 3 during the next semester.

The fact that graduating students alternate between the estimated state 2 and 3 has two

implications. First, graduating students rarely take STEM courses in combination with a

large number of credits; they either withdraw from them, supplemented with remedial

Math courses (State 3), or they take fewer credits overall (State 2). Moreover, the price that

has to be paid in State 3 is a high chance of failing a course of about 50 % in terms of

normalized probability. This suggests a trade-off for getting through the ‘harder’ courses in

college (or a ‘‘strategy’’ when assuming that students choose their courses more or less

rationally before the start of each semester). The high probabilities of moving between

State 2 and 3 suggests that students alternate between the two ways of getting through a

semester with a STEM course. Hence, the states and their transitions do not reveal an

exclusive ‘paths to graduation,’ but rather substitute that can be considered to characterize

every semester.

How are the academic activity paths of nongraduates developed? Among this group, a

quite obvious conclusion can be drawn from one of the state descriptions: a high chance of

not being enrolled is a clearly defined state (A) that is logically associated with non-

graduation. However, once in this state, moving to a course-intense state the next semester

is 57.8 %—the combined probability of being in state B or C. Once there, moving back

and forth between being enrolled and not enrolled is common when entering State B (45 %

chance), but very unusual when entering State C (5 % chance). This pattern between State

A and B may indicate a ‘‘stop-out pattern’’: many students who were not enrolled in the

previous semester do in fact return in the next semester, after which students are then not

enrolled in the following semester. Importantly, the ‘stickiness’ of state C among non-

graduating students—the state that looks most similar to a state found among graduates

(‘‘High STEM’’)—is remarkable and not observed among graduates. This suggests that

students who graduate within 6 years are better able to maneuver through the more difficult

courses and tougher semesters.

Predictive Power

Accuracy for Different Spans of Time

After describing the states and the transition trajectories of graduating and nongraduating

students, we can now assess the predictive accuracy of each HMM obtained from training

data using the held back ‘test data’ (30 %). Given a sequence of semesters with specific

features, what is the probability of that chain being associated with graduating within

6 years or not? For answering this question we use the language of machine learning, in the

sense that we phrase the results from our model in terms of ‘predictions’ rather than

‘association,’ as is common in inferential statistics.

Figure 1 below displays the accuracy rates of our best model as presented in this paper.

The accuracy rates are organized by the number of semesters that were used to test the

model (up to 8 semesters). Hence, longer sequences of semesters lead to fewer classifi-

cation errors. This explains the general positive slopes.

The diamond line indicates the overall accuracy of the HMM, which is the average of

correctly predicted graduating and nongraduating students in the test sample. The pre-

diction accuracy is the total percentage of students correctly classified in the test data. This
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varies from 87 % when providing the model with transcripts for 8 semesters, down to 69 %

when providing the model only with the first semester’s transcript.

Two conclusions may be drawn from the discrepancy in correctly predicting graduates

(triangle) version nongraduates (squared). First, a large group of students surprises us.

They seem to fall behind in the first couple of semesters, and their transcripts resemble

those of drop-outs, but they catch up later on—roughly speaking around the fifth semester.

Presumably, these students switch to a state that is associated with a path to graduation.

Second, the state descriptions already indicated that a student who is likely to be in State 3

(‘‘STEM/withdrawing’’), among graduates, could in principle also be in State C (‘‘STEM/

high credits’’), among nongraduates, because the only qualitative difference is the lower

chance of withdrawing from a course. This helps to explain why our HMM has difficulties

distinguishing some of these student-states, leading to somewhat lower accuracy rates for

nongraduates.

Hidden Markov Approaches and Logistic Regressions

The best performing HMM in this study describes a process of college decisions and

experiences; proximal causes of college completion and dropout. While ignoring any

knowledge about a student’s previous and current socio-demographic condition that tra-

ditional sociological studies have long used to predict college graduation (e.g., parent’s

education, number of dependent children), the Hidden Markov model reveals a separate

sociological process: the college trajectory effect. This does not, however, imply that

graduation patterns found using an HMM are necessarily independent of socio-demo-

graphic effects; this is an empirical question.

To examine whether the states of an HMM model do reflect sociological variables, we

ran a multinomial logistic regression on nongraduating students for each of the 8 semesters

observed, with the three states as outcome variables, and the ‘‘inactive/low activity’’ (State

A) as the reference category. We used a set of commonly used socio-demographic pre-

dictors in order to reveal associations between socio-economic factors and college states:
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gender, race, parent’s education, English as first language, high school GPA, having

dependent children, hours worked per week, and age at start of college. The results (not

shown, but available from the authors) only indicate a consistent significant effect of

gender, predicting male students being more likely to be in the ‘‘STEM/high credits’’ state.

Other demographic and high school variables were not significant predictors of the HMM

states. We interpret this to mean that the states in our HMM do not just represent socio-

demographic background; the graduation trajectory as found here is a process that is

largely independent of a student’s demographics.

Not only does an HMM add semester-specific variables and semester-states to the

college graduation puzzle, it also produces a high accuracy of future predictions that can

compete with a logistic regression approach. Table 4 presents the confusion matrices of a

logistic regression on college graduation, using the same sample and set of commonly used

socio-economic predictors, as well as a series of Hidden Markov Models with different

numbers of semester transcripts used. The accuracy rates of the HMM were calculated

using only 30 % of the original sample.

As seen in Table 4, after using just two semester transcripts (1 year of college), the

HMM predicts almost 74 % of these test cases correctly, with a 59 % accuracy for non-

graduates. Moreover, when adding one college year of transcripts at a time to our model

input data, the overall accuracy increases to 79, 83, and 87 % (four college years). In

contrast, the accuracy rate of the more conventional logistic model predicts about 70 % of

cases correctly. Only 43 % of the ‘less frequent case’ (noncompletion) was correctly

classified by a logistic model. In sum, an HMM performs very well on predicting the rarer

Table 4 Confusion matrices of a
logistic regression and different
versions of HMMs on graduation
within 6 years

Logistic regression covariates:
gender (male), race (black,
Latino), parental education
(high), high school GPA, number
of children, work hours, age, and
high school math (trigonometry,
algebra I/II, calculus, with
reference precalculus) displayed
significant association with the
dependent variable in the
expected direction. Panel weights
were applied. Summary statistics:
N = 8981, R2 = 0.143

Prediction Classification %

False Correct Total

Logistic regression

Did not graduate 1813 1672 3485 48.0

Did graduate 839 4657 5496 84.7

Total 2652 6329 8981 70.5

HMM—1 year transcript data

Did not graduate 425 620 1045 59.3

Did graduate 285 1364 1649 82.7

Total 710 1984 2694 73.7

HMM—2 year transcript data

Did not graduate 358 687 1045 65.7

Did graduate 220 1429 1649 86.7

Total 578 2116 2694 78.5

HMM—3 year transcript data

Did not graduate 254 791 1045 75.7

Did graduate 199 1450 1649 87.9

Total 453 2241 2694 83.2

HMM—4 year transcript data

Did not graduate 189 856 1045 81.9

Did graduate 175 1474 1649 89.4

Total 364 2330 2694 86.5
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case—nongraduation—in comparison to the logistic regression. Without using any of the

socio-demographic factors of college students, HMM predictions display much higher

specificity rates than the logistic regression.

The implication is that both a logistic regression, containing socio-demographic inde-

pendent variables, and a trained HMM, with just the first two semesters as data, predict

college student’s graduation with an accuracy of around 70 %. These comparisons of

confusion matrices apply exclusively to the predictive power of logistic regressions and

HMMs, indicating the competitiveness of the latter with regard to model fitness (not its

superiority). Since our observed states are not associated with demographics (except

gender), yet still deliver satisfactory prediction accuracy, we argue that the HMM provides

the educational researcher with an additional technique to capture the logic of college

experiences. In other words, modeling the college trajectory itself—through an HMM—

provides a useful sociological tool to understand trajectory factors of college graduation

beyond previously found structural or sociological factors. It enables the researcher to

explain a phenomenon such as college completion with more fine-grained understanding of

the course and grade sequences upon which these outcomes are based.

Discussion

Scholars have long sought answers to the question of why so many American under-

graduates fail to complete their degrees. For this puzzle, we took an approach that is rarely

applied in the social sciences: Hidden Markov modeling. Based on the empirical results,

our claim is that a HMM reveals longitudinal processes that should be analyzed in addition

to traditional analyses of socio-economic factors. It is a methodological tool that reveals

‘proximal causes’ for a dichotomous dependent variable and, in particular, factors that

collectively lead to latent states.

Using a large longitudinal sample of 4-year college students, we were able to construct

cohesive states among graduates and nongraduates, which helped to follow paths toward

graduation and noncompletion. This method generated important insights about the tra-

jectories of college students, ones that cannot be easily revealed by linear modeling

techniques because these do not capture the complex interactions between experiences of

course-taking across time.

We found that graduating students rarely take STEM courses in combination with a

large number of credits; instead they either withdraw from courses or they take fewer

credits when attempting technical courses. Moreover, they are likely to alternate between

states of ‘difficult courses’ and less intense states. This may be a ‘‘winning strategy’’ for

undergraduates involved with STEM or even those enrolled in programs with a few math

courses. The indication that one’s STEM course-taking pattern is associated with degree

completion or noncompletion has not previously appeared in the literature.

Another finding of the HMM is that noncompleters tend to start their first college

semester(s) in a similar way as completers—sometimes taking many credits and taking

difficult (technical) courses. They however far less frequently switch to other states in the

following semesters, such as a state with a lower credit load or a state in which with-

drawing courses is more common. Hence, a pattern toward noncompletion can be distin-

guished from the ‘‘winning strategy’’ by looking at the likelihood of a student to switch

between states. For average American college students, academic momentum may partially

emerge from the ‘‘right’’ course-taking pattern in the first couple of semesters. This
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emphasizes the importance of careful course selection early on in student’s college

career—a responsibility of students themselves, but also of administrators, faculty, and

counselors.

In this study, we have demonstrated the HMM’s potential for prediction in educational

research, as well as an extension by applying it to a sociologically relevant dependent

variable in general. The predictive accuracy of an HMM with transcript data equals and in

some cases outperforms logistic regression models containing socio-demographic and high

school GPA variables. Moreover, these precollege variables did not predict the hidden

states of the HMM. We claim that semester-by-semester observations on course-taking

reflect decisions or behaviors that are not structurally associated with socio-economic

background. Instead, they reveal college processes that should be analyzed in addition to

existing socio-demographic knowledge about the graduation puzzle.

More generally, we hope that this paper has demonstrated the potential of Hidden

Markov Models for analyzing sequential transcript data. Future applications could con-

centrate on other course and grade sequences in secondary education or community col-

leges, where the sequential mechanisms may be different from 4-year colleges. In addition,

HMMs may be useful in examining particular subpopulations of students or majors. One

application, for example, would be to take an HMM approach to STEM entry, attrition, and

graduation at the college level.
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Appendix 1: Trellis diagram of a Hidden Markov Chain
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Appendix 2: Building an HMM in Matlab

Notes O = number of categories of all variables together, Q = number of expected states,

s_prior0 = random initial distributions, s_transmat0 = random transition proba-

bilities, s_obsmat0 = random observation probabilities, s_prior1 = expected initial

distributions, s_transmat1 = expected transition probabilities, s_obsmat1 = expected

observation probabilities, LL_S = log-likelihood (of the Graduation-HMM).

Appendix 3: Assessing the HMM

Notes The ‘Start’ and ‘End’ indicate test of nongraduating students (N = 1045). The

dmm_logprob function in the HMM toolbox was used to produce two log-likelihoods.

One that matches each individual test case with the prior, transition, and observation

matrices of the Graduation-HMM (LL_S) and one that matches each individual test case

with the prior, transition, and observation matrices of the Non-Completion-HMM (LL_F).
The :,i can be replaced with any selection of length of specific semester transcripts (e.g.,

semester 1 through 4). Finally, the algorithm classifies by comparing the log-likelihoods

LL_F[LL_S

Appendix 4: Encoding and Decoding Transcripts

The input for each student-semester observation (m1...n) is based on a vector (v1...n) that has

all feature values encoded using the following algorithm:

The student-semester observations (m…) include categorical and continuous values.

Some categorical features include the binary features ‘‘did the student take a STEM class?’’

and ‘‘did the student drop any courses?’’ Continuous features include ‘‘number of

attempted credits’’ and ‘‘cumulative GPA.’’ To simplify the modeling process, we repre-

sent all features as independent categorical features. The first step in this process is the

discretization of continuous features. Each continuous value is represented as a categorical

feature as described in Table 1. At this point, each vector (vi) is vector of k categorical

features each of which can take one of m(k) values. The second step in the simplification
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process converts the vectors vi to v’i where v’i is a single categorical variable which can

take one of m= \prod_{i=1}^k m^(k) values. This transformation is accomplished by a

bijection, f(vi) = v’i. Since the HMM assumes that all elements in the original v vector are

independent, no information is lost in via this transformation.

Subsequently, in the analysis phase, the encoded student-semester observation can be

decoded through the inverse function f^-1(v’i) = v_i. Since f(v) is bijective, no information

is lost in this inversion.
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