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Abstract Freshwater eels are of tropical marine

origin and have spread worldwide. Of the 19 recog-

nised species or subspecies, all 6 temperate species are

listed within IUCN Threatened Species categories,

together with 7 tropical species. Many reasons have

been advanced to explain the significant declines of

eels including habitat fragmentation and loss, spread

of parasites and diseases, pollution, impacts of hydro

dams, overfishing and oceanic changes. The present

paper reviews some of the unique life history charac-

teristics of Anguillids—fecundity and semelparous

spawning, adaptability, resilience, and being energet-

ically conservative—but despite such remarkable

adaptations, according to the IUCN the genus is facing

possible extinction. It is suggested that Anguillid life

history strategies rely on two additional components—

environmental determination of sex, and the need for

surplus production (the Surplus Production Hypothe-

sis, SPH). Surplus production is required to counteract

the many hazards that eels face throughout an often

long and complex life history. Recruitment of tem-

perate species has fallen by over 90%, and resulting

lower densities of juvenile eels in tidal and lower river

reaches provides less incentive for upstreammigration

and dispersal. Female eels are generally found further

inland than males, with development of sex associated

with lower densities. With fewer juveniles migrating

to inland areas, the numbers of females will become

reduced, and further compound the reduced spawner

biomass and consequent reduced recruitment of glass

eels. The SPH hypothesis emphasises the importance

of conservative harvest of glass eels, habitat connec-

tivity, the need to ensure maximum female escape-

ment, and the importance of stocking inland

waterways with juvenile eels.

Keywords Anguillids � Threatened species � Surplus
production � Recruitment � Fecundity � Resilience

Introduction

Freshwater eels (Anguillidae) are a highly successful

group of diadromous fish. The genus comprises 19

recognised species or sub-species (Kaifu et al. 2019),

of which 13 are tropical and 6 are temperate. The

marbled eel, A. marmorata has the greatest geographic

range of any anguillid species, being found from the

east coast of Africa to the Galapagos islands

(McCosker et al. 2003), while A. anguilla occupies

over 10,000 km2 (Dekker 2008). The American eel,

(Anguilla rostrata) is found along more than

10,000 km of the western Atlantic coastline, leading

to the claim by Helfman et al. (1987) that it probably

occupies the broadest diversity of habitats of any fish
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species in the world. As well as being widespread, eels

have colonized an extensive range of inshore marine

and freshwater habitats worldwide, including estuaries

and coastal embayments, mainstem rivers, swamps

and wetlands, lowland and inland lakes, ranging from

oligotrophic to eutrophic (Dekker 2008). Thus,

anguillids will have the widest distribution of any

naturally occurring freshwater genus.

Origins and Life history

The genus originated in tropical marine areas but has

since colonised freshwater habitats (Tseng 2016; Arai

2020). Thirteen species live in the Indo-Pacific region

(Tseng 2016), considered to be the ancestral home of

the genus (Minegishi et al. 2005). The ancestor of

Anguilla probably originated in the Tethys Sea 50–100

Mya, but closure of this sea separated the Atlantic eels

from Indo-Pacific eels, leading to the vicariant speci-

ation of other Anguillid species (Tseng 2016). With

the exception of the New Zealand longfin (A. dieffen-

bachii), all anguillids today range at least partially in

tropical and subtropical areas (Nijman and Siriwat

2020).

Being of marine origin, the genus retains marine

spawning, with dispersal of larvae (leptocephali)

being largely passive on favourable ocean currents

that convey larvae to island and continental waters.

For temperate species, distances from spawning areas

to freshwater habitats are measured in 1000’s of km—

the greatest distance traversed is by A. anguilla, the

European eel, where migrations range from

5000–10,000 km (Righton et al. 2016). In contrast,

the spawning ground for A. celebesensis, a tropical

species, is probably less than 100 km from adult

habitat (Aoyama et al. 2003; Arai 2016). However, the

scale of spawning migrations of tropical species varies

considerably with some species undertaking migra-

tions between 1000–3000 km (Arai 2020). While

dependence upon larval dispersal by oceanic currents

has been an effective one for colonisation of wide-

spread regions, it is also a constraint as lack of

suitable currents means freshwater eels are absent

from significant areas of the world, notably western

coasts of Africa and North America, and South

America.

When they arrive over continental shelves, the

larvae metamorphose from the leaf-shaped

leptocephalus to a miniature version of the elongate

and slender adult, the transparent glass eel. This is the

stage of entry to fresh water, and while a proportion of

glass eels may choose to reside in estuarine and

brackish water, most will continue their inland pen-

etration the following summer as pigmented juveniles,

elvers (Jellyman 1977; Naismith and Knights 1988;

Jellyman and Arai 2016). While there are ontogenetic

differences in preferred habitats occupied (Laffaille

et al 2003; Jellyman et al 2003), eels will often inhabit

the same general area for several years. While

freshwater eels are catadromous, this behaviour is

facultative as both yellow and silver eels of temperate

and tropical species are capable of living their entire

lives in coastal marine habitats (e.g. Tsukamoto and

Arai 2001; Daverat et al. 2006; Jessop et al. 2008; Arai

2020). Eventually adult eels undergo a second meta-

morphosis and become silver eels, the stage of

emigration to the spawning grounds. This is a fasting

stage. It is assumed that eels die after spawning due to

the huge energetic demands of both oceanic migration

and spawning, and the severe weight loss and organ

degeneration of post-spawned eels (Kurogi et al.

2011).

Importance and status of species

Ecologically, eels are very important opportunistic

predators and scavengers, and serve as indicator,

umbrella and flagship species for conservation of

freshwater biodiversity (Itakura et al. 2020). Eels can

often dominate fish biomass (Rowe et al. 1999), and, at

least at historic high levels of recruitment, constrained

populations of other species (Burnet 1968; Dorner and

Berg 2016). Eels are also important in the diet of a

range of predators including larger eels (Jellyman

1989), birds (Leukona 2002) and otters (Lutra lutra;

Jenkins and Harper 1980; Kruuk 2014). Additionally,

freshwater eels are commercially important, providing

an international trade of almost 270,000 t in 2014, of

which 98% was cultured (Monticini 2014). Unlike

most commercially important fish species that are

usually harvested as adults, eels are exploited at all

continental life stages i.e. glass eels, elvers, yellow

eels, silver eels. The demand for glass eels for culture

in Asia has led to the prohibition of export of A.

anguilla glass eels beyond EU borders, but unfortu-

nately a lucrative illegal market has developed,

123

702 Rev Fish Biol Fisheries (2022) 32:701–718



trafficking an estimated 100 t (* 350 million fish)

annually (Kaifu et al. 2019). Eels are of great

importance to native peoples, both as a foodstuff but

also as a species of cultural significance (Tsukamoto

and Kuroki 2014)—for example, there are many

legends of the interactions of eels and human ancestry

in the South Pacific (e.g. Downes 1918; Jellyman

2014).

Historically, eels were much more prolific than at

present. In medieval England they were once so

plentiful that they were used as currency (https://www.

historyextra.com/period/medieval/eels-medieval-life-

eel-rent-economy). Ribbons of glass eels migrating

upstream could be seen in many European rivers

(Tesch 2003), and have been described in the United

Kingdom as ‘‘dense ribbons of fish, hundreds deep and

tens of miles long’’ (Righton and Roberts 2014) and

providing a black margin to either bank of the River

Thames (Cornish 1902). A shoal in theWaikato River,

New Zealand (4.5 m wide and 2.5 m deep) took over

8 h to pass a stationary point (Cairns 1941), while

reports of continuous migrations lasting several days

were not uncommon (Jellyman 1979). Glass eels were

so abundant and widely available they were an

important traditional food source in many European

countries (Hunt 2007; McCarthy 2014). Numbers are

staggering—for instance, the peak European glass eel

catch in 1976 of 2700 t would equate to approximately

6.7 billion glass eels (Jellyman and Briand 2016).

However, since 1980, recruitment of A. anguilla glass

eels has fallen to 1–10% of former levels and in recent

decades the yield of A. anguilla from eel fisheries has

gradually declined to *10% of the quantity caught

just half a century ago (Dekker and Beulaton 2016).

Overall, the genus is in a parlous state. Of the

recognised 19 species and sub-species, 4 of the

tropical species are listed by IUCN (2017) as Data

Deficient so cannot be assessed but 7 of the remaining

9 tropical species are within Threatened Species

categories (Near Threatened, Vulnerable, Endan-

gered, Critically Endangered), while all 6 temperate

species are within this Threatened Species classifica-

tion (Table 1). The three species most important to

world economy, are either critically endangered (A.

anguilla) or endangered (A. rostrata, A. japonica).

There is a huge assemblage of scientific studies on

Anguillid eels. For instance, Table 2 shows the genus

Anguilla has 179,000 references in Google Scholar

(Table 2), and while that is exceeded by other

‘‘freshwater’’ species, it exceeds references for com-

monmarine genera. Despite such scientific endeavour,

many of the life history aspects of Anguilla remain

elusive or controversial and key events like spawning

behaviour have only been observed in the laboratory

(Dou et al. 2007). Age and growth studies dominate

the literature from the 1970’s to 2010 for the European

eel (14%), followed by aquaculture (13%), diseases

(10%), migration (10%), abundance (10%), and fish-

eries (8%), but studies on the impacts of climate

change and resource management were low but

increasing (Nikolic et al 2011).

Purpose of this paper

Much has been written about possible causes of the

alarming decline of northern hemisphere eels (e.g.

Dekker 2003, 2008; Haro et al. 2000; Feunteun 2002;

Miller et al. 2009; Kettle et al. 2011; ICES 2014;

Jacoby et al. 2015; Castonguay and Durif 2016;

Drouineau et al. 2018). Possible reasons include

reduction and loss of freshwater habitats, spread of

parasites and diseases, pollution, impacts of hydro

dams, overfishing of all freshwater stages, and oceanic

changes, but most authors concede that it is very likely

a combination of factors are involved (e.g. Dekker

2009). Drouineau et al. (2018) suggest that although

eels are highly adaptable, the rate of anthropogenic

change has exceeded their adaptive capacity, with

resultant drastic declines in northern hemisphere

species. Most reviews have concentrated on the

potential impacts of physical changes to the eel’s

environment and have been less focused on how

unique Anguilla life history strategies might be

involved. The present paper examines aspects of eel

life history to explore why such an apparently

successful genus is now almost universally threatened.

Firstly, the paper highlights some of the unique

adaptations of freshwater eels that have led to their

widespread distribution and success in colonising an

extensive range of habitats. Secondly, the paper

discusses why such strategies that have been success-

ful over geological time scales, appear less successful

in the Anthropocene era.
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Life history features that make major

contributions to the success of Anguillid eels

Eels are amazing creatures and endowed with a unique

set of morphological and behavioural features that

collectively have enabled them to become such a

successful and widespread genus. Five of these

features are foundational to this success i.e. semel-

parous spawning, high fecundity, adaptability, resi-

lience, and being energetic conservative (note that

because semelparous spawning and fecundity are

Table 1 Status of Anguilla species (from IUCN 2017)

Type Species Common

name

Distribution Status

Tropical

species

A. luzonensis Philippine

mottled eel

Northern Philippines VU

A. interioris Highland

longfin

Endemic to northern half of New Guinea DD

A. bengalensis
bengalensis

Indian

mottled eel

South Asia and southeast Asia NT

A. bengalensis
labiata

Indian

mottled eel

East coast of Africa (Kenya to South Africa) NT

A. obscura Pacific

shortfin

Western New Guinea, Solomon Islands, Fiji, French Polynesia DD

A. bicolor
bicolor

Shortfin East Africa, Arabian Peninsula, Indian Ocean Islands, southeast Asia, NT

A. bicolor
pacifica

Shortfin East Asia and Southeast Asia NT

A. marmorata Marbled eel Pacific and Indian Oceans. East Africa, India, Sri Lanka to the Indo-Pacific

region (East Asia, Southeast Asia, the Pacific and South Pacific islands)

LC

A. celebsensis Celebes

longfin

Western Pacific from Indonesia to southern Philippines DD

A. megastoma Pacific

longfin eel

Endemic to the Western and Central Pacific islands (Pitcairn to Papua New

Guinea)

DD

A. reinhardtii Australian

longfin

East Coast of Australia, Tasmania, northern New Zealand LC

A. borneensis Indonesian

longfin

East Sumatra VU

A. mossambica African

longfin

South West Indian Ocean (African east coast and Indian Ocean islands) NT

Temperate

species

A. anguilla European

eel

United Kingdom, Europe, north Africa CR

A. rostrata American

eel

East coast of United States and Canada EN

A. japonica Japanese eel Japan, Korea, Taiwan, China, northern Philippines EN

A. australis
australis

Australian

shortfin

East Coast of Australia, Tasmania, New Caledonia NT

A. australis
schmidtii

New

Zealand

shortfin

New Zealand, Fiji NT

A.
dieffenbachii

New

Zealand

longfin

New Zealand EN

DD = data deficient, LC = least concern, NT = near threatened, VU = vulnerable, EN = endangered, CR = critically endangered
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highly inter-related, they are combined in the follow-

ing discussion).

Semelparous spawning and fecundity

Freshwater eels, like Pacific salmon, are semelparous

species, and invest heavily in a single reproductive

effort, after which the parents die. Much has been

written about the evolution and relative advantages of

semelparity versus iteroparity (e.g. Cole 1954), and for

eels it is characterised by the production of numerous

small eggs rather than fewer larger eggs, presumably

as success of pelagic spawning is more strongly

associated with egg numbers than egg size (Duarte and

Alcaraz 1989). While iteroparity might be sustainable

for tropical eels with shorter marine migrations, it

would not be suitable for temperate species that

undergo extensive migrations unless it were accom-

panied by feeding en route; however, given that eels

are principally benthic ambush carnivores, this would

not be a successful strategy in the open ocean.

Many fish species use a form of ‘‘bet-hedging’’ (e.g.

partial spawning, parental care) to provide some buffer

against such adverse effects as high predation or

significant environmental change. Being complete

spawners, eels do not exhibit bet-hedging at spawning;

however, as sexual maturity is not dependent upon

achieving a specific size or age, the spawning popu-

lation will be comprised of many age cohorts—for

example, ages of silver A. dieffenbachii females can

range between 25 and 60 years (Todd 1980). Such a

mixed age cohort spawning strategy reduces the risk of

overall spawning failure by diluting the impacts of

both poorly and well represented cohorts.

Semelparity is an ‘‘all eggs in one basket’’ strategy,

as eels risk spawning failure due to such factors as

insufficient energy reserves to swim to the spawning

grounds (van den Thillart et al. 2009), high loadings of

the swim bladder parasite, Anguillicola, that can

impair swimming performance (Székely et al. 2009),

predation en route (Béguer-Pon et al. 2012; Wahlberg

et al. 2014), failure to navigate to the spawning

ground, and failure to find a mate. In addition, the

conveying of larvae back to parental habitats requires

stability in the strength and direction of ocean

currents. To compensate for such uncertainties and

risks, eels, like other broadcast spawning fish (e.g.,

tuna, Farley et al. 2013) are highly fecund. Fecundity

in eels is positively related to fish size (Todd 1981;

MacNamara andMcCarthy 2012), and females adopt a

size-maximising strategy (Helfman et al. 1987).

Actual fecundity varies with species and size, but

recorded values range between 0.3–192.9 m eggs per

female (Table 3).

Adaptability

Anguillids display remarkable adaptability during

their freshwater residence. Most will enter fresh water,

but many have extended or permanent residence in

marine or estuarine environments (Tsukamoto and

Arai 2001). The habitats they occupy change with

growth—small individuals often prefer areas of shal-

low water and fine substrates (Jellyman et al. 2003;

Johnson and Nack 2013), but with increasing size, eels

prefer greater depth. At all freshwater stages, eels are

closely associated with the availability of daytime

cover, which can range from riparian shade and tree

roots, debris clusters, undercut banks, macrophytes,

and anthropogenic material like bridge piles, pipes and

other debris. The climbing ability of juvenile eels

(Skead 1959; Jellyman 1977) allows them to negotiate

waterfalls, dams and weirs, and they can also travel

through subterranean aquifers and enter coral atolls

via subsurface outfalls (Castle 1968; Jellyman 1991).

Despite being primarily nocturnally active (Tesch

2003; Glova and Jellyman 2000), eels will actively

feed during the day if food is available. Their diet

changes with size (Jellyman 1989; Tesch 2003; Dörner

and Berg 2016), and while they display ontogenetic

feeding preferences (e.g. Sagar et al. 2005; Jellyman

Table 2 The number of references for selected freshwater and

marine genera retrieved by Google Scholar (as at April 2021,

June 2020)

Species habitat Genus Number of references

Freshwater Salmo 510 000

Tilapia 438 000

Cyprinus 298 000

Anguilla 179 000

Perca 179 000

Marine Gadus 136 000

Thunnus 71 300

Clupea 66 100
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1989), they are opportunist scavengers and eat a wide

range of prey species. This opportunist behaviour is

perhaps best demonstrated during periods of increased

flow, when eels will enter newly inundated areas and

forage widely on terrestrial food like insects and

earthworms (Jellyman 1989). Although their mainte-

nance ration is\ 1% of body weight (Burnet 1952;

Graynoth and Taylor 2000), their stomach is extensi-

ble, and they can consume * 10% of body weight/-

day (Gousset 1992).

Eels have different feeding mechanisms ranging

from suctorial feeding via rapid buccal suction to

grasping and tearing using rotational spinning (Helf-

man and Clark 1986). Typically, eels do not feed every

day (Jellyman 1989), and can survive extended

periods of fasting—for instance, the silver eel migra-

tion of several months is a non-feeding stage, and eels

kept in captivity and not fed have survived for up to

5 years (Olivereau and Olivereau 1997). Growth rates

are highly variable, ranging from achieving 200 g in

6 months in culture (Gousset 1992), to growing

at\ 1 cm/year and reaching[ 100 years old (Jelly-

man 1995).

The determination of sex in eels is labile, and

predominantly a response to growth rates and popu-

lation density (Davey and Jellyman 2005), with high

density favouring development of males, and lower

density favouring females. Hence sex ratios typically

change along the length of a waterway, with males

predominating in lower reaches where densities tend

to be higher but the proportion of females increasing

with increasing distance inland (Tesch 2003; Oliveira

and McCleave 2000; Walsh et al. 2004).

Phenotypic plasticity in eels is demonstrated by

their use of diverse growth habitats (Daverat et al.

2006; Edeline 2007), variable growth rates (Geffroy

Table 3 Summary of anguillid fecundity studies. (Note that a more complete compilation of fecundity data for A. rostrata is

contained in Jessop 2018)

Species References Length

range (mm)

Number of eels

examined

Min–max fecundity

(millions of eggs)

Relative fecundity

(millions of eggs/kg)

A. anguilla Boetius and Boetius

(1980)

519–1339 29 0.7–2.6 1.6

van Ginneken et al.

(2005a)

690–870 7 0.8–4.0

MacNamara and

McCarthy (2012)

465–1003 38 0.6–8.0 3.6

MacNamara et al.

(2016)

465–1003 170 3.6–4.3

A. rostrata Wenner and Musick

(1974)

490–724 41 0.5–2.6 3.8

Barbin and McCleave

(1997)

452–1133 64 1.7–20.7 8.1

Verrault (2002) 743–1117 30 2.9–14.1 2.0–4.4*

Tremblay (2009) 532–1159 150 2.9–22.0 6.5–10.0

A. australis Todd (1981) 516–933 26 0.5–3.0 1.9

A. dieffenbachii Todd (1981) 711–1452 23 1.1–20.8 2.0

A. japonica Matsui (1952) 357–924 7.2–12.7

A. marmorata Sugeha et al. (2001) 940–1725 9 34.8–192.9 14.3

Abdul Kadir et al.

(2017)

904 9 1.0 0.42

A. bengalensis
bengalensis

Abdul Kadir et al.

(2017)

899–1295 7 0.3–1.7 0.34

A. bicolor
bicolor

Abdul Kadir et al.

(2017)

567–810 15 0.6–5.0 3.1

* = estimated from mean size and fecundity data
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and Bardonnet 2012) and length at silvering (Volles-

tad 1992). The seaward migration of silver eels can be

delayed for a year or more should environmental

conditions be unfavourable (Piper et al 2013; Jellyman

and Unwin 2017). Collectively, such physical and

behavioural plasticity results in considerable risk

spreading and is suggested as one of the main reasons

contributing to eel’s widespread distribution and

colonisation of a wide range of marine and freshwater

habitats. In colloquial terms, eels ‘‘go with the flow’’,

and their adaptive abilities enable them to utilise a

wider range of environments and habitats that any

other freshwater genus.

Resilience

Eels are hardy. They can tolerate water quality

conditions that few other species can and survive

droughts and extended periods of fasting. Tropical

species are adapted to warm temperatures, hence the

conclusion of Luo et al. (2013) that A. marmorata and

A. bicolor pacifica survive and grow better at water

temperature of 28–33 �C than at temperatures of

B 23 �C. However, even temperate species display

remarkable tolerance of warm water, and Richardson

et al. (1994) found the upper lethal temperatures for A.

australis were 35.7 �C for juveniles and 39.7 �C for

adults, with equivalent data for A. dieffenbachii being

34.8 �C and 37.3 �C respectively, similar to the upper

limit of 38 �C for A. anguilla (Sadler 1979).

They also survive low temperatures, and between

1 –3 �C, A. anguilla enter a state of torpor (Sadler

1979). While A. rostrata survived at B 5 �C for more

than five weeks, the fish ceased feeding and displayed

a dramatic decrease in oxygen consumption rates

(Walsh et al. 1983). A. rostrata can survive under ice-

covered water, where the temperature is below the

freezing point of fish tissue, probably by using mud

substrate as a thermal refuge (Tomie et al. 2016).

Silver eels are known to use low temperatures during

winter to enter a state of dormancy prior to emigration

(Westerberg and Sjoberg 2014; Jellyman and Unwin

2019).

Eels subject to drought conditions do not aestivate

but are able to lower their metabolic demands by up to

70% during periods of anoxia (van Ginneken et al.

2001), a practice that will enhance survival during

such adverse conditions. In New Zealand, A. australis

often survive loss of surface water by burrowing into

moist mud (Eldon 1968; https://www.stuff.co.nz/the-

press/news/north-canterbury/89068402/mata-kopae-

lagoon-vanishes).

Eels can survive in oxygen-depleted waters (Wood

and Johansen 1973) where more active species cannot.

This survival in hypoxic conditions is due to such

features as their blood having a high affinity for

oxygen, and periodic apnoea (Forster 1981). Eels also

have an exceptional tolerance to elevated CO2 levels

in the blood (hypercapnia; McKenzie et al. 2002),

conditions associated with hypoxic conditions result-

ing from warm temperatures and/or eutrophication.

Further, they can augment gill respiration with cuta-

neous respiration (Forster 1981), and when dissolved

oxygen levels fall below 10%, they will frequently

come to the water surface and gulp air, or leave the

water altogether (Itazawa 1960). The tenacity for life

shown by eels is legendary, and they can even survive

severing of the nerve cord (Flight and Verheijen

1993), so that humane killing requires destruction of

the brain itself. Under adverse environmental condi-

tions like low flows, eels tolerate living in close

proximity. Crowding reaches extremes in culture

where eels can be reared in high densities (e.g.

15 kg/m3 Gousset 1992); agonistic interactions do

occur but can be reduced by size grading (Knights

1987).

So, Anguillids are hardy and resilient fishes, and

frequently survive in conditions that other species

cannot tolerate. This resilience is apparent at all life

stages, but particularly during the yellow eel stage in

coastal or freshwaters where physiological robustness

aided by the eel’s sinuous shape, enables penetration

of aquifers, and even climbing near-vertical surfaces.

Eels rapidly colonise newly available habitats (Briand

et al. 2005) or even temporary habitats like water

storage ponds (author. unpubl. data), and in many

ways exemplify the colloquialism ‘‘when the going

gets tough, the tough get going’’.

Energetically conservative

Many of the features listed in the above sections on

adaptability and resilience result in reduced energy

expenditure by eels—for example, being relatively

inactive during daylight, and able to feed sporadically

and endure prolonged fasts. Their acute olfactory

sensitivity enables them to locate prey with precision,

thus avoiding extensive searching behaviour; for
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larger individuals, adoption of piscivory means util-

ising larger prey species with high energy content,

often captured from ambush using macrophyte beds

for concealment (Burnet 1952), again reducing energy

expenditure. Their use of cover and crevices for

concealment avoids the need to maintain station in

flowing water conditions, and this is even more

evident in juvenile eels that spend most of their time

within substrates (Burnet 1952; Glova and Jellyman

2000).

Eels employ a buccal pump system whereby the

opercular chamber functions as a pump, enabling eels

to respire while being immobile. Thus they can remain

motionless for extended periods, whether diel (Baras

et al. 1998; Jellyman and Sykes 2003) or seasonal

(Westerberg and Sjoberg 2014). Their sinuous swim-

ming action is energetically conservative and efficient

for long distance travel (van Ginneken et al. 2005b). In

swimming tube trials to study the effect of continuous

swimming for 5500 km (equivalent to swimming from

Europe to the Sargasso Sea), van Ginneken et al.

(2005b) found that eels could accomplish this with

expenditure of only 40% of their stored fat reserve

(van Ginneken and van den Thillart 2000), and their

swimming action was 4–6 times more efficient than

non-eel-like fish. To use a human metaphor, eels are

built for a marathon not a sprint.

Eels take advantage of passive transport from

oceanic, tidal and river currents. Thus, leptocephali

are largely carried along by favourable ocean currents,

while glass eels use selective tidal transport to enter

rivers and migrate upstream (Creutzberg 1961; Jelly-

man 1979). Silver eels usually emigrate downstream

during periods of increased flow (e.g. Bruijs and Durif

2009) and mainly use the centre of main river channels

to ensure they derive maximum benefit from currents

(Euston et al. 1998; Jansen et al. 2007; Behrmann-

Godel and Eckmann 2003) and avoid bankside

obstacles. Even at sea, silver eels are known to use

selective tidal stream transport (McCleave and Arnold

1999), and it is speculated that they may use

directional tidal streams to cross the continental shelf

(van Ginneken and Maes 2005).

Overall then, eels largely sedentary mode of life in

freshwater, combined with an efficient swimming

action and their widespread use of currents, means

they are energetically conservative species, yet able to

draw upon considerable reserves of stored energy

when required for long distance migration. In many

ways they epitomise Aesop’s fable of the hare and

tortoise that ‘‘slow and steady wins the race’’.

Exploring the enigma

So, anguillids are a very successful genus, inhabiting

many countries and a wide range of habitats, largely

due to their extraordinary life history features of

semelparous spawning and high fecundity, adaptabil-

ity, resilience, and being energetically conservative.

Given such physical and physiological versatility, it

seems incongruous that the genus is in a parlous state

worldwide. What has changed over the past few

decades that has led to such a dramatic decline in the

fortunes of these highly successful species?

The drastic reductions seen in stocks of many eel

species may be largely a consequence of the reduced

effectiveness of two fundamental life-history drivers,

i.e. environmental determination of sex (EDS), and the

need for surplus production (the Surplus Production

Hypothesis, SPH). While the former process has been

long known and extensively discussed (e.g. Beullens

et al. 1997; Krueger and Oliveira 1999; Davey and

Jellyman 2005; Melia et al. 2006), SPH is a new

hypothesis and suggests that the risks associated with

semelparous marine spawning are offset by surplus

production of juveniles—a type of insurance against

adversity.

In general, EDS is an advantageous mechanism and

can ameliorate the effects of reduced stock levels.

Limiting factors for successful spawning and subse-

quent recruitment to landmasses will be more associ-

ated with abundance of spawning females than

males—theoretically, a few males could inseminate

the total female spawner biomass (although in prac-

tice, spawning behaviour and disparate spawning

locations will inevitably require the presence of many

males). There is little reproductive advantage to males

in achieving large size, and their strategy is one of

growing as rapidly as possible to a size where they

have the ability and enough stored energy to sustain a

long-distance spawning migration (Helfman et al.

1987; Vollestad 1992). As eel stocks diminish,

reduced densities will favour production of females,

a feature of EDS that should provide some buffer

against overall reduced numbers of fish. Thus, with

reduced recruitment, populations have been found to
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change from male-dominated to female-dominated

(Laffaille et al. 2006; Bark et al. 2007).

Surplus Production in Anguilla life history

Surplus production is suggested as an essential and

allied component to EDS in eel life histories. Further,

success of the Anguilla life history strategy is depen-

dent upon a surplus in overall recruitment, and

recruitment failure in turn has led to negative cascades

in eel population size and reduced numbers of female

silver eels.

SPH is demonstrable at spawning and recruitment

of anguillids. High fecundity and mass spawning

events should result in vast numbers of larvae.

Essentially, semelparous spawning at distant locations

is a ‘‘numbers game’’, such that large number of

offspring are required to ensure successful recruit-

ment. Spawning over widespread areas (a 2000 km

wide region for A. anguilla, Miller et al. 2019) could

provide some buffer against localised spawning failure

or development of unfavourable currents to transport

larvae. Little is known about the behaviour and

mortality of leptocephali—they can be found over

vast areas (Miller et al. 2019) and their transparency

presumably reduces the likelihood of predation

(Miller 2009). Although they are capable swimmers

and undergo diel vertical migrations (Miller 2009),

there is no evidence that they form shoals, a feature

that should enhance survival as shoals attract predators

whereas it can be less energetically efficient for

predators to pursue individual fish.

To arrive at continental destinations, leptocephali

must become entrained in favourable currents. This

process can be problematic. For instance, for A.

japonica, the North Equatorial Current is the main

vector transporting larvae westwards, but whether

larvae then get transported north in the Kuroshio

Current or south in the Mindanao Current depends on

where the larvae are located in relation to the current

bifurcation and the location of the salinity front (e.g.

Kim et al. 2007). For A. rostrata, arrival at continental

North America requires detrainment from the Gulf

Stream, and failure to do so would result in continued

transport towards Europe. Recent drift model simula-

tions of larval A. anguilla and A. rostrata have

indicated that the majority of leptocephali may

become trapped in unfavourable areas of the Sargasso

Sea and die, with only a small proportion becoming

entrained in the Gulf Stream (Westerberg et al.

2018).Thus, high fecundity is required to compensate

for the collective risks of larval mortality.

Importance of SPH

SPH would benefit eels in several ways:

• Overall survival Eels are subject to mortality at all

phases of their lives, whether in the open ocean or

in fresh water. To be successful, semelparity

requires a sufficient number of yellow eels to

survive to silvering. Historically it is suggested that

SPH provided an adequate safeguard against

survival uncertainty, but of particular concern at

present is the overlay of anthropogenic mortality

upon an already risk-prone life history.

• Predator satiation The synchronised shoaling

behaviour of large numbers of glass eels and

juvenile pigmented eels (elvers) migrating

upstream will enhance their survival through

predator satiation (e.g. Gill 2003). During such

migrations, these juvenile eels are subject to a

barrage of aquatic and avian predators (Leukona

2002; Jenkins and Harper 1980), but their sheer

numbers will result in predators becoming satiated

and confused (e.g. Ioannou et al. 2008) and

enhance overall rates of survival.

• Mass recruitment into estuarine areas is a trigger

for subsequent upstreammigration and dispersal of

juveniles—the arrival of large numbers of new

recruits into population-saturated areas results in

density-dependent upstream migrations of previ-

ously-resident juveniles (Lobon-Cervia et al. 1995;

Feunteun et al. 2003; Ibbotson et al. 2002; Briand

et al. 2005; Edeline et al. 2007). Agonisitc

behaviour and cannibalism will also reinforce such

annual upstream migrations (Edeline et al. 2009).

Annual upstream migrations will persist in indi-

viduals for several years (e.g. Naismith and

Knights 1988; Jellyman and Ryan 1983). It is

suggested that this process is an essential outcome

of SPH as it results in colonisation of upstream

parts of catchments where the reduced density of

eels will result in a high proportion developing as

females. The urge to migrate upstream will be

reinforced by the odour of conspecifics (Galbraith
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et al. 2017)—reduced numbers of juvenile eels

upstream would provide fewer olfactory cues and

consequently fewer responses from downstream

juveniles.

• Reduced recruitment results in range contraction.

As glass eel recruitment declines, it is most

obvious at the extremes of the natural range—

thus, recruitment to the Baltic Sea (both natural and

by stocking) has declined by 95% between 1981

and 2012 (Westerberg and Wickström 2016). A

number of studies of A. rostrata and A. anguilla

have shown that the size of female silver eels

increases and the proportion of males decreases

with increasing latitude and distance from spawn-

ing areas (Helfman 1988; Oliveira 1999; Jessop

2010; Vøllestad 1992). As recruitment to such

areas declines, the contribution of these large,

fecund eels will be lost.

• SPH ameliorates interannual variability in cohort

strength. Unlike Pacific salmon (Oncorhynchus

spp.) that spawn at pre-determined ages, female

silver eels are comprised of multiple cohorts so the

impact of periodic weak recruitment will not be

discernible as a result of varying growth rates and

ages at silvering.

A diagrammatic comparison of Anguilla historic

(A) and present day (B) life history strategies (Fig. 1)

shows the likely influence of EDS and SPH.

Vulnerability of SPH

A strategy like SPH is particularly vulnerable at two

stages—a reduction in spawner biomass and variabil-

ity in oceanic conditions that convey larvae back to

inshore marine and freshwater habitats. Miller et al.

(2016) proposed that a ‘‘perfect storm’’ of simultane-

ous oceanic changes and continental anthropogenic

impacts could have led to recruitment reductions of

northern hemisphere anguillids, with both sets of

factors possibly acting synergistically. Variability in

oceanic fronts (Miller et al. 2016), latitudes of

bifurcation of currents (Zenimoto et al. 2009), and

temperature and productivity changes associated with

phase shifts in NAO (North Atlantic Oscillation) and

ENSO (El Nino-Southern Oscillation) have all been

associated with subsequent changes in juvenile eel

recruitment (e.g. Knights 2003; Friedland et al. 2007;

Bonhommeau et al. 2008a, b; Kettle et al. 2008; Durif

et al. 2011; Arribas et al. 2012; Miller et al. 2016). The

synchronous decline of northern hemisphere species

over similar time scales points to widespread changes

in oceanic conditions being a primary cause (Bon-

hommeau et al. 2008a; Drouineau et al. 2018). It is

also possible that spawning over widespread areas

means eels are subject to Allee effects whereby the

chances of successful mating become drastically less

as the number of available spawners declines (Poole

et al. 2018), possibly as a result of failure to find mates

or some behavioural aspects of social mating beha-

viour (Dekker 2008). Of course, all such marine life

history lies beyond the sphere of immediate human

influence, meaning that attempts at stock restoration

must focus on the continental phase.

Maximising the production of female silver eels is

proposed as the single most effective management tool

for conservation of the genus, but to achieve this

females have to survive a barrage of threats for many

years. These threats include extensive habitat loss and

fragmentation (e.g. Chen et al. 2014), accumulation of

toxicants (Robinet and Feunteun 2002), transfers of

parasites and diseases (Castonguay et al. 1994),

barriers to movements (e.g. Laffaille et al. 2005; Piper

et al. 2013), targeted fishing/overfishing by commer-

cial and artisanal fishers (e.g. Jellyman 2014, 2016).

Upstream migrations of juvenile eels are often

hindered by the lack of riverine connectivity due to

weirs and dams; for example Busch et al. (1998) state

that more than 15,000 dams have been built in North

Atlantic coast drainages, blocking direct access to

*87% of river and stream reaches flowing into the

Atlantic, which has resulted in a greatly reduced

inland range of the American eel (Miller and Cassel-

man 2014). Restoration of connectivity via dam

removal led Hitt et al. (2012) to conclude that restoring

connectivity to headwater streams could increase eel

population growth rates by increasing female eel

numbers and fecundity.

Not only does reduced recruitment result in less

upstream movement of juvenile eels and fewer

females, but those females that do eventuate and

become silver eels often have to run a gauntlet of

dams, weirs, pumping station etc. before they are able

to enter the sea. Again, much has been written about

turbine mortality of female eels (e.g. McCleave 2001;

Richkus and Dixon 2003; Verreault et al. 2004;

Buysse et al. 2013; Heisey et al. 2019), and being
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relatively large with a tendency to follow paths of

maximum flow (Euston et al. 1998; Jansen et al. 2007),

female eels are very susceptible to entrainment and

injury or death when they enter turbines. Eel size

typically increases with distance inland (e.g. Smogor

et al. 1995) so the largest and most fecund females

travel the greatest distance and are consequently

exposed the greatest risks. While many structural

and behavioural systems have been trialled to prevent

eels entering turbines (e.g. Richkus and Dixon 2003),

unfortunately there is no ‘‘silver bullet’’ that can be

universally applied. Consequently, injury rates and

mortality can be up to 100% for larger eels (Haro et al.

2000; Carr and Whoriskey 2008; Boubée et al. 2008).

Although there is currently no proven stock recruit-

ment relationship (Feunteun 2002; Aström and Dekker

2007), insufficient spawning stock biomass has been

suggested as a reason for recruitment collapse (Dekker

2003).

many larvae

many glass 
eels

extensive 
upstream 
migra�on

development of 
many females

high numbers of 
female silver 

eels

fewer 
larvae

fewer glass 
eels

limited 
upstream 
migra�on

development of 
few females

few female 
silver eels

Fishery

Fishery

Fishery

A

B

Fig. 1 Historic (a) and current (b) life cycles of Anguilla spp. showing suggested impact of reduction in surplus production (thickness

of cycle arrows indicates relative abundance). Hatched lines indicate barriers to migration
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Over geological time scales, eel life histories have

been very successful, enabling species divergence and

colonisation of many landmasses. Presumably SPH

played an important role in providing a numerical

buffer against adverse conditions. However, today the

impact of SPH is much diminished as eels face a

variety of challenges to their survival within freshwa-

ter habitats. Superimposed on such challenges is

variability in the marine environment, with the

impacts of climate change uncertain but likely to be

deleterious through lower primary productivity and

changes in the strength of currents that provide larval

transport (Knights 2003; Bonhommeau et al. 2008a, b;

Miller et al. 2016). Irrespective of the causes, the net

result has been widespread recruitment failure of

several Anguilla spp. throughout much of the Anthro-

pocene era.

In summary, it is proposed that the success of eels is

largely due to a series of unique adaptations and life

history features, of which adaptability, resilience,

energetic conservatism, and environmental determi-

nation of sex are key features. It is suggested that these

features have historically resulted in a significant over-

production of juveniles, and that this SPH effectively

drives the eel life history as the associated high

densities of juvenile eels in freshwater provide the

incentive for inland penetration and the development

of females. Collectively these features have been

sufficient to offset the considerable risks associated

with eel life histories, whether that be arrival of silver

eels at often distant spawning areas and finding

suitable mates, survival by larvae of an extensive

marine journey, accurate navigation to arrive at

continental habitats (Jellyman and Bowen 2009),

survival for many years in those habitats, and eventual

egress to the sea (see summary, Table 4). The present

declines in recruitment of many species reduces the

incentive for such density-dependant upstream migra-

tions, and most juveniles are expected to remain in the

lower reaches of waterways where the propensity for

rapid initial growth and high densities will result in a

high proportion of eels developing as males (Holm-

gren 1996; Davey and Jellyman 2005). Should

recruitment decline even further, it is possible that

the resulting low densities could result in an increased

proportion of eels developing as females in these

lower reaches, a ‘‘last-ditch’ response that may

partially offset the impact of reduced recruitment.

Table 4 Benefits and risks associated with different life history stages of Anguilla spp. Anthropogenic impacts in italics

Habitat Life history

stage

Benefits Risks

Ocean Oceanic

spawning

migration

Extensive area available; diel vertical

migrations reduce predation and promote

maturity

Navigation; unfavourable hydrological

conditions; finding a mate; predation

Larval life Extended; chance to grow; passive transport;

maximise feeding opportunities and reduce

predation via diel vertical migrations

Predation; entrainment in gyres; changes in

oceanic circulation patterns; might miss

target landfall

Inshore (salt,

brackish, and

freshwater)

Recruitment Shoaling and nocturnal activity reduces

predation; passive tidal transport reduces

energy demands

Predation; restricted access via river mouth

closure, tidal gates); human exploitation

Juvenile

upstream

movement

(summer)

Dispersal; encounter new habitats; benthic

lifestyle reduces predation

Instream obstacles (waterfalls, hydro); human
exploitation; low densities may reduce

migration incentive

Adult yellow

eel) settlement

and growth

phase

Colonise preferred habitats; diverse feeding

habits and opportunities; differential

determination of sexes

Competition; predation; displacement by

floods or water recession; human
exploitation; longevity increases exposure

to pollutants and disease; lack of habitat
connectivity

Silver eel

riverine

migration

Use flow (often floods) for downstream

movement; pause at staging places

(physiological adaptation to saline water)

Negotiate instream obstacles—waterfalls,
hydro; human exploitation
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Proving the validity of SPH may be elusive. The

hypothesis is intuitive and fits with observations of

vast historical recruitment but drastically reduced

recruitment of many species over recent decades, and

also the longitudinal distribution of sexes within

catchments. However, obtaining proof could require

finding correlations between the strength of glass eel

recruitment and subsequent upstream migration of

juveniles. Additional support could come from exam-

ining a time series of otolith microchemistry of

estuarine dwelling in yellow eels where a significant

increase in the extent and duration of estuarine/lower

river dwelling might indicate significant changes in

life history patterns associated with levels of recruit-

ment. Studying changes in the density and proportion

of female eels following dam removal would also be

informative.

The SPH hypothesis underscores the importance of

conservative harvest of glass eels, habitat connectiv-

ity, and the need to ensure maximum female escape-

ment. Where extensive stocking of juvenile eels is

practiced, consideration should be given to stocking

areas peripheral to the main geographic locations of

eels, and stocking areas well upstream where eel

densities are low; both techniques should result in

increased development of females, an outcome critical

to the ongoing survival of the genus Anguilla which is

currently being driven towards extinction.
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