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Abstract Worldwide, there is a dramatic decline in

freshwater eel populations (Anguilla spp.), resulting in

an urgent need to improve eel management and

artificial reproduction protocols. Unfortunately, eels

in captivity do not reproduce spontaneously as they

remain in a (pre)-pubertal state resulting from a strong

neural blockage. Eel propagation is possible to some

extent by applying extensive, expensive, unnatural

hormonal treatments. However, the success rates are

still far too low to support a sustainable farming

industry, due to low gamete quality and low survival

rates of larvae. Artificial reproduction of eels has been

pursued for almost 80 years, and maturation protocols

have changed little. In order to improve current

protocols it is clear that a different approach towards

stimulating sexual maturation is required. In many fish

species, changes in external environmental cues, such

as photoperiod and temperature, are crucial to induce

gonadal recrudescence and development. Still, the

natural triggers involved in the gametogenesis of eels

are poorly understood. The time-keeping hor-

mone melatonin is a well-known transmitter of exter-

nal cues, and influences various physiological

processes, including reproduction. In eels, we hypoth-

esize that melatonin is an important key player in the

regulation of sexual maturation. Thus far, its mode of

action is still an area which needs to be explored. In

this review, we provide an overview of the current

knowledge of studied natural cues possibly affecting

reproductive function and the plausible role of mela-

tonin in the regulation of puberty in eels.
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Introduction

The enigmatic freshwater eels (Anguilla spp.) are

distributed over a large part of the world. After

spending most of their life in continental waters, they

migrate for hundreds to thousands of kilometers to

their spawning area in oceanic waters (Fig. 1, Schmidt

1923; Tesch 2003; Tsukamoto et al. 2003, 2011; van

Ginneken and Maes 2005; Aoyama 2009; Tsukamoto

2009).Worldwide, populations of the ecologically and
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economically valuable anguillids have shown a dra-

matic decline since the 1980s (Richkus and Whalen

2000; Dekker 2003; Dekker et al. 2003; Stone 2003;

Hanel et al. 2014). Several Anguilla species were

added to the IUCN Red list as endangered or critically

endangered (Jacoby and Gollock 2014; Jacoby et al.

2015), and all species are now considered for inclusion

on that list (Dekker and Casselman 2014). Therefore,

to restore wild populations and reduce pressure from

fisheries, there is an urgent need to improve the

management of natural eel stocks (c.f., ICES 2012)

and to close their life cycle in captivity. However, eels

in captivity do not mature spontaneously and when

prevented from their reproductive migration, remain

in a (pre)-pubertal state (Dufour et al. 2003; Rousseau

et al. 2009).

Eels can be propagated artificially by applying

extensive hormonal treatments, but the success rates

remain far too low for uptake of this technology to

create a sustainable eel aquaculture industry (see

below). In order to improve the currently applied

protocols for artificial maturation of eels with respect

to gamete quality and welfare, but also with respect to

expenses, the hormonal treatments need to be replaced

by manipulation of external cues, which are generally

used to affect reproduction of many other fish species.

This can be achieved by further extending our

knowledge and understanding of the reproductive

physiology of eels. In this review, we present a holistic

overview of the current knowledge about the principal

environmental cues that affect the reproductive system

of freshwater eels and discuss the possible role of one

of the key regulators of onset of puberty, the so-called

‘time-keeping hormone’ melatonin.

Artificial control of reproduction

In captivity, gonadal development in eels does not

spontaneously progress beyond the peri-pubertal stage

due to dopaminergic inhibition and a deficient secre-

tion of key hormones of the reproductive axis, i.e.

Fig. 1 The life cycle of the European eel. After hatching,

presumably in the Sargasso Sea, cylindrical larvae develop into

leaf-shaped leptocephalus larvae, which after drifting on the

Gulf Stream for approximately 1 year metamorphose into glass

eels close to the European coast. The glass eels may stay at the

coast or migrate upriver, where they stay as juveniles (elvers and

yellow eels) for many years (depending on the region: males

4–6 years, females 8–12 years). Finally, they develop into

migrating silver eels; the cause and timing of silvering is not

well understood. They mature during or after migration to the

spawning grounds. Reproduced and with permission from

Henkel et al. (2012a)
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gonadotropin-releasing hormone (Gnrh), follicle-

stimulating hormone (Fsh) and luteinizing hormone

(Lh) (Fig. 2; Dufour et al. 1988, 1993; Vidal et al.

2004; Weltzien et al. 2006, 2009; Rousseau et al.

2013). To some extent, full sexual maturity can be

induced artificially by circumventing this strong

neural blockage using expensive hormonal treatments,

i.e. administering salmon or carp pituitary extracts

(SPE or CPE) to females and human chorionic

gonadotropin (hCG) to males (e.g. Fontaine 1936;

Fontaine et al. 1964; Yamamoto and Yamauchi 1974;

Boëtius and Boëtius 1980; Ohta et al. 1996, 1997;

Lokman and Young 2000; Tanaka et al. 2001, 2003;

Pedersen 2003, 2004; Palstra et al. 2005; Oliveira and

Hable 2010; Burgerhout et al. 2011a; Butts et al.

2014, 2016; Okamura et al. 2014; Sørensen et al.

2016). In general, achieving full sexual maturity

appears to be easier in male eels than in female eels.

A single hCG injection can result in acquisition of

sperm (e.g. Miura et al. 1991; Peñaranda et al. 2010),

whereas up to 29 weekly injections with pituitary

extracts are required to obtain fully mature female eels

(e.g. Lokman and Young 2000; Pedersen 2004). Over

the last decades, steady progress has been achieved

with regard to the reproduction of eels (reviewed by

Ijiri et al. 2011; Okamura et al. 2014), but the method

of maturing eels using hormonal treatment has

changed little, except perhaps with regard to the use

of slow-release osmotic pumps to provide constant

plasma hormone levels instead of weekly injections in

some studies (Kagawa et al. 2009, 2013). The most

notable advance during the last decade, however, has

Fig. 2 Schematic representation of the proposed neurohor-

monal control of puberty in eels. External cues, such as

photoperiod, temperature and salinity, regulate the daily

synthesis and release of melatonin (MEL), which transmits the

external cues on all levels of the brain–pituitary–gonad (BPG)

axis. Subsequently, MEL stimulates dopamine (DA) synthesis

(Sébert et al. 2008). DA inhibits gonadotropin releasing

hormone (GnRH) and synthesis and release of gonadotropins

follicle-stimulating hormone (FSH) and luteinizing hormone

(LH), which regulate gonadal activity (steroidogenesis and

gametogenesis) (Dufour et al. 1988, 1993; Vidal et al. 2004;

Weltzien et al. 2006, 2009; Rousseau et al. 2013). Sex steroids

(e.g. 17b-estradiol, 11-ketotestosterone, testosterone) exert

positive and negative feedbacks on different levels in the BPG

axis and liver. It is expected that MEL affects the KiSS/GPR54

system (KiSS) and/or GnRH, directly or indirectly via

gonadotropin inhibiting hormone (GnIH), and thereby inducing

puberty (Dufour et al. 2010; Migaud et al. 2010; Falcón and

Zohar 2018). Decreasing melatonin is expected to result in an

inhibition of DA and thereby stimulate sexual maturation
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arguably been the optimization of spontaneous spawn-

ing by artificially matured brood stock—as opposed to

strip-spawning approaches—highlighting that mim-

icking of ‘‘natural’’ cues may well prove effective to

artificially propagate the eel in the future.

Although the life cycle of the Japanese eel (A.

japonica) was recently closed (Masuda et al. 2012),

numbers of offspring that reach the glass eel stage

have remained extremely low, mainly due to low egg

quality and fertilization rates, and high mortality of the

larvae (Adachi et al. 2003; Ijiri et al. 2011; Okamura

et al. 2014; Izumi et al. 2016). These major problems

are most likely caused by the unnatural stimulation of

gametogenesis, resulting in, amongst others, handling

stress, physiological stress associated with greatly

fluctuating hormone levels (Sato et al. 2000, 2003) and

possibly, asynchronous oocyte development (Palstra

et al. 2005). Additionally, the gonadotropins Fsh and

Lh differentially regulate full sexual maturity in eels

and are under positive and negative feedback control

by sex steroids (Quérat et al. 1991; Suetake et al.

2002, 2003; Schmitz et al. 2005; Jeng et al. 2007;

Kazeto et al. 2008). The Lh receptor can only be

activated by Lh, while the Fsh receptor was found to

be activated by both Fsh and Lh (Kazeto et al. 2008;

Minegishi et al. 2012). Besides, Fsh is likely to be the

principal gonadotropin during early stages of vitello-

genesis in eels, at least in wild-caught midvitellogenic

A. dieffenbachii (Saito et al. 2003). As pituitary

extracts often contain both Fsh and Lh (e.g. Suetake

et al. 2002; Aroua et al. 2005; Schmitz et al. 2005),

they may therefore compromise gametogenesis and

potentially contribute to the observed low gamete

quality. Aside from these concerns about gonadotro-

pin signaling, pituitary extracts also contain many

other bioactive compounds (e.g., prolactin, growth

hormone, adrenocorticotropin) that conceivably exert

their effects during gametogenesis. Moreover, it has

already been shown earlier that exposure of teleost fish

to stressors negatively affects the rates of reproductive

success (e.g. Barton and Iwama 1991; Schreck 2010).

Pre-treatment of oogenesis

There is a wide range in responsiveness to hormonal

treatments (Lokman and Young 2000; Pedersen

2003, 2004; Palstra et al. 2005) and often[ 50% of

female broodstock do not reach full maturity (Palstra

and van den Thillart 2009; Burgerhout et al. unpub-

lished data). The differential response to hormonal

treatments is at least in part due to differences in the

initial stage of oogenesis (Ijiri et al. 1995, 1998; Durif

et al. 2006; Okamura et al. 2008; Dirks et al. 2014;

Burgerhout et al. 2016). For example, it was shown

that wild Japanese eels in the yellow stage do not

respond to hormonal treatments, while silver stage 1

and stage 2 eels respond with approximately 80% and

100% efficacy, respectively (Okamura et al. 2008).

The response to hormone treatment in farmed eels is,

in general, slower and egg quality is lower compared

to wild female eels (Ijiri et al. 1995, 1998), also

indicating a difference in initial body and/or ovarian

composition (e.g. Adachi et al. 2003). Recently, it was

found that the response to the hormonal treatment in

wild female European eels may be dependent on the

transcriptional dynamics of ribosomal genes, with the

5S/18S ratio of non-responding fish corresponding to

that of previtellogenic stage fish (Rojo-Bartelomé

et al. 2017).

Over the last decade, studies on the effects of

broodstock diet on egg and larval quality received

increased attention (Furuita et al. 2007, 2009; Heins-

broek et al. 2013; da Silva et al. 2016; Støttrup et al.

2016). Moreover, feminization of eels by administer-

ing 17b-estradiol (E2) with the diet during the early

growth phase resulted in a better response to the

hormone treatments, albeit still below the response

shown by wild female anguillids, as shown for

Japanese eels (Ijiri et al. 1998; Chai et al. 2010). In

addition, pre-treatment with androgens (17-methyl-

testosterone and 11-ketotestosterone (11-KT)) also

has been shown to affect the response to hormonal

treatment in wild New Zealand short-finned eels (A.

australis), as it resulted in a reduced number of CPE

injections needed to reach the pre-ovulatory stage

(Lokman et al. 2015). Similarly, androgen co-treat-

ment in European eel females also resulted in a

reduction of time to spawning, and further, in

increased fertilization, hatching and survival rates (di

Biase et al. 2017; Mordenti et al. 2018). It is, therefore,

of great importance to elucidate the hormonal mech-

anisms and the cues initiating silvering in farmed eels.
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Natural conditions

Although the artificial control of reproduction of

freshwater eels has been pursued for approximately

80 years, it is surprising that the natural cues that may

induce vitellogenesis, final oocyte maturation and

ovulation in eels are still insufficiently studied. This

may be due to the fact that their oceanic life phase is

still largely unknown, and information about the

environmental conditions encountered during the

reproductive migration is scarce.

Full sexual maturity needs to occur during or after

the spawningmigration (Dufour et al. 2003). Recently,

it has been proposed that vitellogenesis and final

maturation may take place at or near the spawning

grounds as swimming exercise suppressed hepatic

vitellogenesis in European eels (A. anguilla) (Palstra

et al. 2010). It was suggested that this suppression may

be a strategy to avoid drag associated with increased

abdominal girth and precocious muscle atrophy during

long-distance swimming (Palstra et al. 2010). How-

ever, several other Anguilla spp., such as the New

Zealand long-finned eel A. dieffenbachii and A.

celebesensis, show developmental stages up to mid-

vitellogenesis (gonadosomatic index (GSI) up to

around 10%) prior to the onset of their migration

(e.g. Lokman et al. 1998; Hagihara et al. 2012). An

advanced stage of gonadal development at the onset of

the spawning migration appears to be negatively

correlated with the migration distance (Todd 1981a;

Dufour et al. 2003). Indeed, vitellogenesis in temper-

ate fish species is a slow process that can comprise

several months (Patiño et al. 2001; Wang et al. 2010),

which appears to correlate with the average period

necessary to artificially mature females by hormone

treatments (ca. 2–6 months, e.g. Ohta et al. 1996;

Lokman and Young 2000; Tanaka et al. 2001; Palstra

et al. 2005; Oliveira and Hable 2010). Additionally, by

applying hormonal treatments, mid-vitellogenic

stages (even GSI[ 10%) can be obtained without an

increase in maximum body girth in European eel

(Burgerhout, Brittijn, Dirks, van den Thillart, unpub-

lished data), suggesting that up to this stage an

increase in drag is most likely not an issue. On the

other hand, some silver A. dieffenbachii (GSI

unknown, but likely to be in the 5–10% range) clearly

show an increased body girth (Fig. 3), which may

suggest the difference between the natural situation

and the laboratory or may indicate species-specific

differences.

Currently, reproduction of many fish species can be

controlled by manipulation of environmental condi-

tions, especially photoperiod and temperature (Tar-

anger et al. 2010; Wang et al. 2010). Major barriers at

several phases of the reproductive cycle, such as the

induction of puberty (e.g. gonadal growth, vitelloge-

nesis), can be expected to be overcome using natural

cues.

The melatonin system and reproduction

Melatonin, the time-keeping hormone, is produced by

the pineal gland and the retina (Ekström and Meissl

1997). Pineal melatonin shows an increased synthesis

and release during the night and corresponding

decreases during the day, as well as season-dependent

fluctuations, thus providing information about time of

day and year (Zachmann et al. 1992a; Falcón et al.

1992, 2007, 2010a, b; Gern et al. 1991; Reiter 1993;

Ekström and Meissl 1997; Migaud et al. 2010; Falcón

and Zohar 2018; Saha et al. 2018). Melatonin is

produced from serotonin via tryptophan and regulated

by the rate-limiting enzyme aralkylamine N-acetyl-

transferase (AANAT, Fig. 4) (Falcón et al. 2010a,b;

Falcón and Zohar 2018). In teleost fish there are two

AANATs present; the retinal AANAT1 and pineal

AANAT2 (Falcón et al. 1996, 2003). Pineal AANAT2

responds to temperature, and therefore is the ampli-

tude of the pineal melatonin production temperature-

dependent (Zachmann et al. 1992b; Falcón et al.

2010a,b; Falcón and Zohar 2018; Saha et al. 2018).

Melatonin produced by the retina, on the other hand, is

not per se dependent on the night; it is catabolized

in situ and used for autocrine/paracrine purposes

(Falcón and Zohar 2018).

Melatonin has a key role in transmitting external

cues (Fig. 2), thereby synchronizing behavioural and

physiological processes, such as gonadal develop-

ment, in all classes of vertebrates (Underwood, 1989;

Falcón et al. 1992, 2010a, b; Zachmann et al. 1992a;

Mayer et al. 1997; Pandi-Perumal et al. 2006; Li and

Zhou 2015; Falcón and Zohar 2018; Saha et al. 2018).

Recently, Falcón and Zohar (2018) reviewed in great

detail the complex actions of melatonin on all levels

within the reproductive system in fish (see particularly

Fig. 2 of that review).
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Substantial evidence from numerous studies on

vertebrates shows that the daily changes in melatonin

levels are crucial for the onset of puberty and final

oocyte maturation (Malpaux et al. 2001). Melatonin

can further affect the secretion of Gnrh and Lh, as well

as the synthesis of testosterone (Fig. 2, Falcón et al.

2007, 2010a, b; Migaud et al. 2010; Li and Zhou 2015;

Falcón and Zohar 2018). Depending on the timing of

the onset of gonadal recruitment (autumn–winter or

spring–summer) either an increase or a decrease in

melatonin is necessary to activate the reproductive

axis (Malpaux et al. 2002; Anand et al. 2007).

Moreover, melatonin is hypothesized to stimulate the

KiSS/GPR54 system (Migaud et al. 2010), which was

shown to be involved in the reproductive cycle acting

upstream of GnRH and subsequently on gonadotro-

pins. Kisspeptin is considered an important gatekeeper

for puberty in mammals, as well as in fish (Elizur

2009; Zohar et al. 2010; Tena-Sempere et al. 2012),

although based on gene knockout studies it was shown

that in zebrafish this system is not essential for the

development of the reproductive system (Tang et al.

2014). Intriguingly, studies in medaka (Oryzias

latipes) showed an important role for kisspeptin

during embryonic development, as severe effects on

morphology and survival resulted from gene knock-

down (Hodne et al. 2013).

Recently, it was shown in zebrafish (Danio rerio)

and male European sea bass (Dicentrarchus labrax)

that melatonin affects the kiss expression levels

(Carnevali et al. 2011; Alvarado et al. 2015). Kis-

speptin selectively inhibited lhb expression in primary

cultures of eel pituitary cells, while no effect was

found regarding fshb and tshb expression. It was

suggested that the inhibitory effect of kisspeptin on lhb

expression may be part of the species specific pre-

pubertal blockage found in eels (Pasquier et al. 2011).

However, kisspeptin may have a different effect

in vivo due to possible feedback mechanisms, which

to date still needs to be elucidated. Gonadotropin

inhibiting hormone (Gnih), a neuropeptide that affects

the expression of Gnrh, appears also regulated by

melatonin (Falcón and Zohar 2018). Currently, there is

no data available regarding the function of Gnih and its

interaction with melatonin in the reproduction of

freshwater eels. Understanding its role within the

reproduction of eels will be of great interest for future

research.

The melatonin mechanism of action in eels is thus

far an unexplored field with only one publication in the

context of reproduction by Sébert et al. (2008). In that

study, the effect of melatonin on puberty in female

European eels was examined. Administration of

melatonin resulted in a stimulation of the dopaminer-

gic system, thereby inhibiting the reproductive func-

tion as shown by a significant decrease in expression

of fshb and lhb in the pituitary and a reduction in levels

of sex steroids in plasma. However, administration of

Fig. 3 Female New Zealand long-finned eel, Anguilla dieffenbachii, at the onset of the oceanic migration showing an increased body

girth (GSI estimated 5–10%). Scale bar: 10 cm. Photo credit: Ms Pauline Jéhannet

Fig. 4 Biosynthetic pathway of melatonin, which is synthe-

sized from tryptophan via four enzymatic steps (Falcón et al.

2010a, b; Falcón and Zohar 2018)
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melatonin to zebrafish resulted in a positive effect on

the reproductive axis, as shown by an increase in GSI,

and increases in mRNA levels of, for example, kiss1,

kiss2, gnrh3 and lhb (Carnevali et al. 2011). Positive

effects of melatonin administration on the reproduc-

tive axis were also found in other fish, including masu

salmon (Oncorhynchus masou) (Amano et al. 2000),

Indian major carp (Labeo rohita/Catla catla) (Chat-

toraj et al. 2005; Maitra et al. 2005), and mummichog

(Fundulus heteroclitus) (Lombardo et al. 2012, 2014).

In male European sea bass, on the other hand, a

catadromous species like the eel, administration of

melatonin resulted in a decrease of expression levels

of gnrh1, gnrh3 and gnrh receptors (Servili et al.

2013). Moreover, melatonin administration resulted in

suppression of gonadogenesis, and a decrease in serum

levels of steroids and gonadotropin (Alvarado et al.

2015). Also, in whole brain of the sapphire devil

(Chrysiptera cyanea) the dopaminergic activity was

increased after treatment with melatonin (Badruzza-

man et al. 2013). The same study showed a decrease in

GSI and in the number of vitellogenic oocytes after

dietary melatonin administration.

Clearly, the melatonin mechanism with respect to

reproduction appears to be species-specific, which

may reflect the differences in life cycles and timing of

spawning of the species. We therefore hypothesized

that in freshwater eels a decrease of melatonin levels

may result in the release of the dopaminergic inhibi-

tion and thereby stimulate the reproductive axis.

Preliminary research based on the recently published

draft genome sequences of the European and Japanese

eels (Henkel et al. 2012a, b; Jansen et al. 2017)

revealed the nucleotide sequences of seven melatonin

receptors (Table 1, unpublished data). In addition,

sequences of the putative genes within the

biosynthetic pathway of melatonin, which is synthe-

sized from tryptophan via four enzymatic steps

(Fig. 4), are now available (Table 2, unpublished

data).

Environmental factors affecting the melatonin

system

Annual cycles of reproduction are often linked to

changes in photoperiod and temperature regimes. For

many fish species, such as salmonids, percids and

cyprinids, the effects of photothermal exposure on the

induction of vitellogenesis or final maturation have

been extensively studied and used to manipulate the

reproductive cycle (Taranger et al. 2010; Wang et al.

2010). In general, photoperiod is assumed to be the

principal and temperature the secondary determinant

to entrain and synchronize reproductive development

in temperate fish (Bromage et al. 2001; Pankhurst and

Porter 2003; Migaud et al. 2010).

The onset of silvering and the eel’s reproductive

migration in autumn appear to coincide with a

decrease in photoperiod and in water temperature,

and with an increase of the river’s water discharge, and

is found dependent on wind speed and lunar phase (for

examples, see Deelder 1954; Todd 1981b; Vøllestad

et al. 1994; Haro 2003; Durif et al. 2005; van Ginneken

et al. 2007a; Bruijs and Durif 2009; Sandlund et al.

2017; Sudo et al. 2017). European eels mostly migrate

between a temperature range of 6 �C to 15 �C, and
migration proceeds more quickly when daylight

decreases. Japanese eels migrate between tempera-

tures of 10 �C and 20 �C (Sudo et al. 2017). It has

further been proposed that decreasing photoperiod

and/or a decrease in temperature accelerates the last

Table 1 Putative melatonin receptor genes of the European eel, Anguilla anguilla (unpublished)

A. anguilla

Scaffold Nr.

Nr. exons Protein size (aa) Assigned gene name Receptor type Best BLASTP hit (Acc. Nr.; species)

1557 2 350 MT1a 7TM GPCR XP_012690673.1; Clupea harengus

28 2 318 MT1b 7TM GPCR XP_018588973.1; Scleropages formosus

14 2 354 MT2a 7TM GPCR XP_018604071.1; Scleropages formosus

87, 57 2 346 MT2b 7TM GPCR XP_018604071.1; Scleropages formosus

409 2 355 Mel1Ca 7TM GPCR XP_018602080.1; Scleropages formosus

73 2 355 Mel1Cb 7TM GPCR XP_018602080.1; Scleropages formosus
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stages of the silvering process (Vøllestad et al. 1994;

Durif et al. 2005; Bruijs and Durif 2009).

During their oceanic migration, eels show

notable diel vertical migrations (DVMs) (Jellyman

and Tsukamoto 2002, 2005, 2010; Aarestrup et al.

2009; Manabe et al. 2011; Schabetsberger et al.

2013, 2015; Béguer-Pon et al. 2015; Chow et al. 2015;

Wysujack et al. 2015; Amilhat et al. 2016), a

behaviour also found in other fish species (see e.g.

Beamish 1966; Neilson and Perry 1990; Watanabe

et al. 1999). Based on the information derived from

these field studies it can be deduced that eels clearly

exhibit a daily rhythm, and thereby encounter daily

fluctuations in temperature, as well as hydrostatic

pressure and presumably, photoperiod, oxygen con-

tent and salinity.

Photoperiod

During the transition from yellow to silver eel, the eye

diameter increases and by switching from freshwater

to seawater, opsin the retinal pigment becomes more

sensitive to blue wavelengths (Beatty 1975; Pankhurst

1982; Pankhurst and Lythgoe 1983; Archer et al. 1995;

Zhang et al. 2000; Durif et al. 2005; Thomson-Laing

et al. 2018). Anadromous salmonids also show

plasticity of the photoreceptors (Cheng and Fla-

marique 2004), reflected in a switch in the composi-

tion of visual pigments towards red during their

reproductive migration from seawater to freshwater

(e.g. Beatty 1966; Flamarique 2005). In eels, the

switch indicates that they pre-adapt to the photic

environments of mesopelagic oceanic waters, which is

also reflected in the clear DVM behaviour associated

with sunrise and sunset (Jellyman and Tsukamoto

2002, 2005, 2010; Aarestrup et al. 2009; Manabe et al.

2011; Schabetsberger et al. 2013, 2015; Béguer-Pon

et al. 2015; Chow et al. 2015; Wysujack et al. 2015;

Amilhat et al. 2016). Interestingly, a recent telemetry

study showed that there was also a direct impact of the

lunar cycle on swimming depths of A. marmorata

(Fig. 5); during full moon eels were found at greater

depths (ca. 230 m) than during new moon (ca. 170 m)

(Schabetsberger et al. 2013). It was shown for other

fish species that moonlight can also alter melatonin

production and expression of melatonin receptors (e.g.

Takemura et al. 2010a; Park et al. 2014). In addition, it

was reported that blue wavelengths decrease plasma

melatonin levels in European sea bass (Bayarri et al.

2002) and zebrafish (Ziv et al. 2007). Although

Table 2 Putative enzymes involved in the melatonin biosynthetic pathway of the European eel, Anguilla anguilla (unpublished)

Predicted cDNA

Contig nr.

Validated

Contig nr

A. anguilla

Scaffold Nr.

Nr.

exons

Protein

size (aa)

Assigned gene name Best BLASTP hit (Acc.

Nr.; species)

17636 25676 3906, 74508,

contig3559887

11 469 Tryptophan 5- hydroxylase

1 (TPH1)

XP_005728010.1;

Pundamilia nyererei

21538 22897 6622 10 451 Tryptophan 5- hydroxylase

(TPH1-like)

XP_018619488.1;

Scleropages formosus

N/A N/A 12667, 8710

(partial)

[ 6 [ 119 Tryptophan 5- hydroxylase

2 (TPH-2)

ADK46901.1; Clarias

gariepinus

3396 20143 210 13 487 Aromatic amino acid

decarboxylase (DDC)

XP_021412916.1;

Oncorhynchus mykiss

N/A 56960 6643 (partial) [ 2 195 Arylalkylamine

N-acetyltransferase 1

(AANAT1)

AAY78956.1; Acipencer

sturio

N/A N/A 639 [ 2 [ 172 Arylalkylamine

N-acetyltransferase 2

(AANAT2)

AKT76090.1;

Dicentrarchus labrax

12683 15867 1865 (partial) [ 14 605 N-acetylserotonin

O-methyltransferase

(ASMLT)

XP_007227926.2;

Astyanax mexicanus

N/A not available
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predator avoidance is supposed to be the primary

driver for the DVM (reviewed by Righton et al. 2012),

this behaviour may well also be involved in enhancing

gonadal development instead of delaying it as sug-

gested by Boëtius and Boëtius (1967).

Through these DVMs, the photoperiod and light

intensity eels encounter may change, coinciding

with a possible reduction in daily melatonin pro-

duction, both with respect to peak levels and

duration. In Atlantic salmon, for example, additional

illumination during night time resulted in a decrease

of melatonin levels during the dark phase, resulting

in a significantly lower number of fish that matured

(Porter et al. 1998). Also, constant illumination or

relatively long photoperiods can delay sexual devel-

opment and ovulation in the likes of Atlantic salmon

(Taranger et al. 1998), Atlantic cod (Hansen et al.

2001; Davie et al. 2003, 2007) and European sea

bass (Bayarri et al. 2004). It is hypothesized that the

inhibition of maturation in Atlantic salmon was

mediated through a reduction in the plasma mela-

tonin amplitude below a certain threshold level

during the dark phase (Porter et al. 1998). In eels,

the opposite to that seen in salmonids may occur,

i.e. the onset of vitellogenesis is induced when the

amplitude of melatonin plasma levels gets below a

certain threshold. An argument for this hypothesis is

that salmonids are typically autumn and winter

spawners (Pankhurst and King 2010), while eels are

considered spring and summer spawners (Schmidt

1923; McCleave 2003; Tsukamoto et al. 2003;

Tsukamoto 2009).

The effect of photoperiod on gonadal recruitment in

wild female European eels was investigated in com-

bination with hormonal stimuli (Mordenti et al. 2012;

Parmeggiani et al. 2015). Briefly, eels were subjected

either to ‘light’ 14:10 L:D (400 lx at the bottom of the

tank without water) or to continuous ‘dark’ (40 lx at

the bottom of the tank without water). For comparison,

the light intensity of a full moon on a clear night

is\ 0.20 lx (e.g. Fraser and Metcalfe 1997), which

eels can sense at over 200 m depth (Schabetsberger

et al. 2013). It was found that under ‘dark’ conditions,

females showed a significantly higher GSI after 16

hormone injections and an increase in the number of

eggs released (Mordenti et al. 2012). Parmeggiani and

co-workers (2015) showed that eels from the ‘dark’

group displayed higher blood plasma E2 and testos-

terone levels, and a higher GSI compared to the ‘light’

group. However, based on histology, no differences

were found on the stage of gonadal development

between the two groups. It is clear that the effects of

photoperiod or light intensity, among the best-known

Fig. 5 Diel vertical migration (a) and night-time upper

migration depths (b) (daily median: thin blue; spline curve:

bold blue) of Anguilla marmorata followed over 3 months using

pop-up satellite tags. The daily and monthly/seasonal rhythms

(new and full moon) are clearly visible, indicating an effect of

photoperiod and or light intensity on the migratory behaviour of

eels. In a, solid vertical lines correspond to sunset and sunrise;

the dotted line indicates midnight. In b, moon phase (dotted

black line), and spectral irradiance at 490 nm (daily Kd

estimates: red dots; spline curve: bold red) along a straight line

between release and pop-up location (Schabetsberger et al.

2013. With permission)
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cues regulating the reproductive axis in fish, should be

investigated in more depth.

Temperature

To entrain and synchronize full sexual maturity,

temperature is considered the secondary determinant

(Bromage et al. 2001; Pankhurst and Porter 2003;

Migaud et al. 2010), and it has been shown that

temperature affects melatonin profiles in fish (e.g.

Zachmann et al. 1992b; Iigo and Aida 1995; Porter

et al. 2001; Vera et al. 2007). The amplitude of the

nocturnal surge of melatonin is controlled by temper-

ature through the rate-limiting enzyme in the biosyn-

thetic pathway, aralkylamine N-acetyltransferase

(AANAT, Fig. 4) (Falcón et al. 2010a, b; Falcón and

Zohar 2018; Saha et al. 2018).

During their oceanic migration, eels encounter

daily fluctuations in water temperatures (Aarestrup

et al. 2009; Jellyman and Tsukamoto

2002, 2005, 2010; Manabe et al. 2011; Schabetsberger

et al. 2013, 2015; Tesch 2003; Chow et al. 2015;

Wysujack et al. 2015; Amilhat et al. 2016). For

example, during the first * 1300 km of their migra-

tion, European eels showed a temperature range

between 8 and 13 �C, with a daily average of

10.1 �C (Aarestrup et al. 2009). Interestingly, during

the migration in the Mediterranean Sea, the temper-

ature did not change despite the DVMs (13.2–13.4 �C;
Amilhat et al. 2016). A much wider temperature range

was found for the Japanese eel (A. japonica), namely

between 4 and 10 �C during the day and 15–24 �C
during the night (Manabe et al. 2011). Also, A.

marmorata shows a range similar to that of the

Japanese eel (Schabetsberger et al. 2013). These

species-specific differences should probably be taken

into account with respect to the artificial control of

reproduction. It was hypothesized that the relatively

low temperatures encountered during parts of the

oceanic journey may delay gonadal development

(Boëtius and Boëtius 1967). However, a so-called

cold or chilling period—a period maintaining a

temperature below a certain threshold, above which

gametogenesis would be impaired—is necessary or

suggested to advance vitellogenesis in several fish

species, such as striped bass, European sea bass and

Atlantic cod (Wang et al. 2010), and was recently also

proposed for pike perch (Hermelink et al. 2011, 2013).

In eels a similar mechanismmay be involved, and as in

other fish species, it appears that temperature affects

melatonin levels. Sébert et al. (2008) reported that low

temperature down-regulates the secretion of mela-

tonin in European eels.

Several studies have addressed the effects of

temperature on artificial induction of full sexual

maturity in male (Gallego et al. 2012; Baeza et al.

2014) and female eels (Sato et al. 2006; Dou et al.

2008; Pérez et al. 2011; Mazzeo et al. 2014) or they

evaluated whether temperature advanced early ooge-

nesis (Zadmajid et al. 2015). It needs to be noted that

temperature manipulations were performed in combi-

nation with hormonal treatments, which stimulate

gonadogenesis unnaturally by circumventing the

endogenous regulatory processes. Still, Sato et al.

(2006) concluded that in Japanese eels: ‘‘… water

temperature is an important factor for the artificial

induction of ovarian maturation, and an effective

temperature for the induction of ovarian development

is 20 �C’’. As compared to 20 �C, ovarian develop-

ment was slow at 10 �C, and final maturation and

ovulation could not be induced within 13 weeks.

However, in the study of Pérez et al. (2011), using

female European eels, a temperature regime from 10

to 20 �C accelerated oocyte development until week 8

(Fig. 6). In addition, higher levels of fshb, lhb and

estrogen receptor 1 (esr1) mRNA, and of plasma E2

were observed. In male European eels, the best results

concerning various sperm parameters, such as volume,

density and motility, were obtained at 20 �C, com-

pared to 10 �C or 15 �C. Hence, it was suggested that

the optimum temperature to induce maturation in male

eels via weekly injections with hCG is around 20 �C
(Gallego et al. 2012).

Simulating change of water temperatures encoun-

tered during migration may be of notable importance

to stimulate the reproductive axis. By changing

temperatures between 5 and 15 �C, one female

Japanese eel showed an increase in gonad develop-

ment (GSI = 8.5%) without hormonal treatment

(Mikawa et al. 2008). After repeating this experiment

in combination with swimming exercise, no apparent

change was found (K. Tsukamoto, pers. comm.). The

effects of temperature decrease on the onset of

vitellogenesis of farmed female Japanese eels were

studied in order to simulate the downstream migration

(Sudo et al. 2011a). It was shown that oocyte diameter

increased and that they had accumulated oil droplets

when the temperature was decreased over a 50-day
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period from 25 to 15 �C. Although fshb and lhb

expression in the pituitary were reduced, blood levels

of 11-KT increased. 11-KT can induce previtellogenic

oocyte growth and is considered an important factor to

stimulate early gonadal development (Lokman et al.

1998, 2007; Rohr et al. 2001; Matsubara et al. 2003;

Sudo et al. 2011b). Further, advancement of oogenesis

(i.e. vitellogenesis) was not observed. Therefore, it

was suggested that other environmental cues partici-

pating in the process, such as photoperiod or salinity,

are required (Sudo et al. 2011a). However, in temper-

ate fish species, vitellogenesis takes up to several

months (Patiño et al. 2001; Wang et al. 2010),

suggesting that during a prolonged chilling period

the growth of oocytes may have occurred. In addition,

there may be a temperature threshold above which

gametogenesis is impaired and a threshold below

which it is stimulated (Wang et al. 2010).

Environmental factors potentially affecting

the melatonin system

In teleost fish, photoperiod and temperature are

proposed as the major environmental cues affecting

the melatonin system (Zachmann et al. 1992a; Falcón

et al. 1992, 2007, 2010a, b; Gern et al. 1991; Reiter

1993; Migaud et al. 2010; Falcón and Zohar 2018).

Eels pre-adapt to mesopelagic oceanic life during

silvering (van Ginneken and Maes 2005; Tsukamoto

2009). Changes in salinity and hydrostatic pressure

could, therefore, also have an effect on the melatonin

Fig. 6 Effect of

temperature on

vitellogenesis during

hormonal treatment in the

European eel. A. Water

temperature treatments

during treatment with carp

pituitary extract (CPE) in

female silver eels. Arrows

indicate the sampling times

at weeks 0th, 4th, 8th and

12th. Line indicates the

period when ovulations

were obtained in T10 group.

B. Percentage of the

different stages of ovarian

development at 0th, 4th, 8th

and 12th weeks of CPE

treatment (n = 10/week) in

each temperature treatment.

PV, previtellogenic stage;

EV, early vitellogenic stage;

MV, mid-vitellogenic stage;

LV, late vitellogenic stage

(Pérez et al. 2011. With

permission)
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system and may contribute to stimulating sexual

maturation in eels.

Salinity

The effect of changing salinity on gonadogenesis has

hardly been studied, most studies instead having been

conducted on eels in seawater. One study assessed the

effect of salinity on induced maturation in female eels

(Kagawa et al. 1998; Kagawa 2003). Briefly, farmed

female Japanese eels were subjected to seawater for

1 week or for 1 or 3 months. After 3 months GSI,

oocyte diameter and oocyte stage (early vitellogene-

sis) had increased compared to groups exposed to

seawater for 1 week or 1 month. When subjected to

hormonal treatment, females held in seawater for

3 months needed a significantly smaller number of

weekly injections to complete vitellogenesis than

those held in seawater for only 1 week or 1 month.

These results indicated that rearing in seawater

advanced gonadal development and increased respon-

siveness to treatment with pituitary extracts in farmed

female Japanese eels. In female European eels, plasma

E2 concentrations had significantly increased

2 months after seawater transfer (Quérat et al. 1987)

and seawater acclimation resulted in an increase in

fshb mRNA levels in the pituitary (albeit not signif-

icantly) in female Japanese eels (Suetake et al.

2002, 2003).

Interestingly, salinity was seen to affect the

production of melatonin and its receptors in European

sea bass. Increasing salinity resulted in a significant

reduction in melatonin plasma levels during the night.

In addition, melatonin receptor densities significantly

decreased in the optic tectum and retina (López-

Olmeda et al. 2009). In eels, acclimation to seawater

triggered early vitellogenesis (Kagawa et al. 1998;

Kagawa 2003), which may have been mediated by a

reduction in plasma melatonin levels. Clearly, addi-

tional studies are needed to clarify the effects of

salinity on gonadal development in eels.

Hydrostatic pressure

Eels show DVMs over several hundreds of meters,

resulting in strong daily fluctuations in hydrostatic

pressures (HP) (Aarestrup et al. 2009; Jellyman and

Tsukamoto 2002, 2005, 2010; Manabe et al. 2011;

Schabetsberger et al. 2013, 2015; Tesch 2003; Chow

et al. 2015; Wysujack et al. 2015). Within approx-

imately an hour, eels are able to descent or ascent

between 200 and 500 m (Chow et al. 2015). Similar

DVM behaviour within the same depth range has

also been observed in, for example, bigeye tunas

(Thunnus obesus) (Dagorn et al. 2000). It has been

shown that eels are able to withstand HP up to 100

ATA, which is equivalent to the pressure at 1000 m

depth (Sébert et al. 1987, 1990; Simon et al. 1992).

The effect of HP on vitellogenesis in eels, has to

date only been explored in two studies (Fontaine

et al. 1985; Sébert et al. 2007). In the first study,

caged female European eels were sunk to a depth of

450 m in the Mediterranean Sea for 3 months,

which resulted in increased GSI and pituitary LH

content (Fontaine et al. 1985). In the second study,

females and males were subjected to 101 ATA for

respectively 3 and 7 weeks. Females of the HP

group showed significantly greater oocyte diameters

and higher E2, 11-KT and vitellogenin levels in

plasma as compared to the control group. In

addition, the lhb/fshb ratio in females of the HP

group was significantly higher; fshb expression was

lower than in the control group, but not significantly

so. Males subjected to HP showed a higher plasma

11-KT level, accompanied by higher pituitary lhb

and lower fshb expression; however, these changes

were not statistically significant. Based on these

results, it was concluded that HP plays a positive

role in the onset of gonadogenesis of eels, but other

factors are needed for completing sexual maturation

(Sébert et al. 2007). Interestingly, in the three-spot

wrasse (Halichoeres trimaculatus), it was found that

dopaminergic activity was decreased when fish were

kept at a depth of 3 m compared to 0 m. Although

this wrasse is a tropical species that spawns daily, it

shows that HP due to daily tidal changes affects the

reproductive axis (Takemura et al. 2010a, b, 2012).

Also, in flounder (Platichthys flesus) subjected to

daily fluctuating HP, a decrease in dopamine levels

was found (Damasceno-Oliveira et al. 2007). More-

over, it was reported that daily fluctuating HP in

female flounder resulted in an increase in pituitary

FSH protein, correlated with vitellogenic oocyte

development (Damasceno-Oliveira et al. 2014).

However, a decrease in levels of metabolites of

the maturation-inducing hormone 17a,20b-dihy-
droxy-4-pregnen-3-one (DHP) was also observed.

Therefore, it was suggested that HP stimulates
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ovarian development, but may delay final oocyte

maturation (Damasceno-Oliveira et al. 2012). Strong

rhythmic, daily changes in HP also occur during the

migration of eels, and evaluation of the daily effects

of HP on the melatonin system and the reproductive

axis would be of great interest.

Combination of environmental factors

Puberty of eels is most likely induced and facilitated

by a combination of the previously discussed envi-

ronmental factors. Thus far, the effects of manipula-

tion of multiple environmental factors on

gonadogenesis in eels has received little attention

(e.g. Boëtius and Boëtius 1967; Nilsson et al. 1981).

Recently, attempts were made to simulate the fresh-

water downstream migration over 2 weeks and the

oceanic migration over 9 weeks (total distance swam

of 3792 km) in order to study the combined effects of

photothermal regime, salinity and swimming exercise

on farmed male and female European eels (Mes et al.

2016). No major changes occurred during this period

with regard to gonadogenesis. While photothermal

regime and salinity are expected to be involved in

inducing gonadogenesis, the effect of swimming

exercise remains unclear. When subjected to swim-

ming exercise, a suppression of vitellogenesis was

found in wild female European eels (Palstra et al.

2008a, 2010) and no changes in reproduction-related

end points, such as GSI and plasma levels of

testosterone and Lh, were found in farmed male

European eels (Burgerhout et al. 2013a). Only a

relatively small study (n = 6 per group) yielded

increased GSI and lhb mRNA levels in wild male

silver European eels subjected to swimming exercise

for 3 months at relatively low speed of ca. 0.12 m s-1

compared to resting eels (Palstra et al. 2008a). The

difference in response found between the study of

Palstra et al. (2008a) and Burgerhout et al. (2013a) is

possibly due to differences in the initial maturity status

of the eels at the start of the trials, as reflected in a

GSI B 0.3 in the former (Palstra et al. unpublished

data) and a GSI B 0.09 in the latter study (Burgerhout

et al. 2013a). This once again reinforces the hypothesis

that the initial maturation status appears to be of great

importance (Durif et al. 2006; Okamura et al. 2008;

Dirks et al. 2014; Burgerhout et al. 2016; Rojo-

Bartolomé et al. 2017).

In addition, it is expected that migrating eels are

actively swimming during their migration and exper-

iments involving swimming exercise are commonly

performed against a current. However, the down-

stream migration of silver eels is found to increase

with increased river discharge, indicating the use of

water currents (Deelder 1954; Durif et al. 2003; Tesch

2003; see also Bruijs and Durif 2009). Moreover,

swimming speeds found for eels equipped with pop-up

satellite tags during their oceanic migration (A.

anguilla: up to 0.29 m s-1 (Aarestrup et al. 2009),

A. dieffenbachii: up to 0.36 m s-1 (Jellyman and

Tsukamoto 2002); A. japonica, up to 0.17 m s-1

(Manabe et al. 2011) were lower than the optimal

swimming speeds (i.e., the speed with the minimal

cost of transport) found under laboratory conditions

(A. anguilla: up to 0.68 m s-1 (Palstra et al. 2008b;

Burgerhout et al. 2011b, 2013b; Tudorache et al.

2014, 2015); A. australis: up to 0.51 m s-1 (Tudo-

rache et al. 2015)). The differences in swimming

speeds observed between eels in the field and in the

laboratory could very well be due to the increased drag

resulting from the tag (Burgerhout et al. 2011b;

Methling et al. 2011; Tudorache et al. 2014). How-

ever, it seems equally plausible that eels use oceanic

currents during their journey, as suggested by Fricke

and Kaese (1995). Although it has been shown that

eels are highly efficient swimmers (van Ginneken and

van den Thillart 2000; van Ginneken et al.

2005, 2007b; Palstra et al. 2008b; Burgerhout et al.

2013a, b), any reduction in energy use during migra-

tion is likely to benefit reproductive success at the

spawning grounds.

Summary and future recommendations

In order to improve current protocols of artificial

control of propagation of freshwater eels, we suggest

that the hormonal treatments need to be replaced by

use of simulated environmental conditions. However,

the environmental cues inducing full sexual maturity

have still been insufficiently studied, which probably

reflects the limited knowledge of the natural condi-

tions encountered during the oceanic spawning migra-

tion. Moreover, the majority of studies involving the

examination of environmental factors are, unfortu-

nately, combined with the hormonal treatments (Pérez

123

Rev Fish Biol Fisheries (2019) 29:1–21 13



et al. 2011; Gallego et al. 2012; Baeza et al. 2014;

Mordenti et al. 2012; Parmeggiani et al. 2015).

The major crux for inducing or advancing gonado-

genesis in eels is overcoming the inhibition by

dopamine, which is rather extreme as compared to

other fish species (Vidal et al. 2004; Dufour et al.

2005, 2010). Knowledge of the (neuro)-endocrine

pathways that control spontaneous gonadal develop-

ment is of crucial importance to understand how

dopaminergic inhibition may be exerted, and conse-

quently, to override this inhibition. Information on

entry into vitellogenesis may be obtained by studying

closely related eel species that are far more advanced

at the onset of their oceanic migration, such as New

Zealand longfinned eels, A. dieffenbachii (Lokman

et al. 1998) or the Indonesian A. celebesensis (Hag-

ihara et al. 2012).

Some insights into the dopaminergic inhibition of

the eel BPG axis are provided by administration of

melatonin to female eels, which resulted in stimulation

of the inhibitory tone (Sébert et al. 2008). It is

therefore suggested that a decrease of melatonin

levels, below a certain threshold, may result in the

release of the dopaminergic inhibition and thereby

stimulate maturation. Artificially decreasing mela-

tonin levels using an antagonist would be an exper-

iment we would like to recommend to conduct.

Further, melatonin levels can most likely be decreased

by changes in environmental factors, such as salinity

(López-Olmeda et al. 2009), temperature (Zachmann

et al. 1992a, b; Porter et al. 2001; Sébert et al. 2008),

photoperiod (Taranger et al. 1998; Porter et al. 1998;

Hansen et al. 2001; Bayarri et al. 2004), blue light

(Bayarri et al. 2002; Ziv et al. 2007) or a combination

of multiple parameters. Melatonin is known to be

mainly regulated by photoperiod and temperature, and

therefore it is highly recommended for future studies

to investigate the effects of those two environmental

factors on the induction of full sexual maturity of

freshwater eels.

Thus far, melatonin and its interaction with the

reproductive axis in eels is still a little-explored field.

Understanding the effects of melatonin and the daily

rhythms of the involved natural factors on puberty will

have great potential for creating important new

insights into the eel reproduction problem and may

prove to be essential for eel aquaculture.
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