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Abstract Global climate change is predicted to increase

air and stream temperatures and alter thermal habitat

suitability for growth and survival of coldwater fishes,

including brook charr (Salvelinus fontinalis), brown trout

(Salmo trutta), and rainbow trout (Oncorhynchus mykiss).

In a changing climate, accurate stream temperature

modeling is increasingly important for sustainable salmo-

nid management throughout the world. However, finite

resource availability (e.g. funding, personnel) drives a

tradeoff between thermal model accuracy and efficiency

(i.e. cost-effective applicability at management-relevant

spatial extents). Using different projected climate change

scenarios, we compared the accuracy and efficiency of

stream-specific and generalized (i.e. region-specific) tem-

perature models for coldwater salmonids within and

outside the State of Michigan, USA, a region with long-

term stream temperature data and productive coldwater

fisheries. Projected stream temperature warming between

2016 and 2056 ranged from 0.1 to 3.8 �C in groundwater-

dominated streams and 0.2–6.8 �C in surface-runoff

dominated systems in the State ofMichigan. Despite their

generally lower accuracy in predicting exact stream

temperatures, generalized models accurately projected

salmonid thermal habitat suitability in 82% of groundwa-

ter-dominated streams, including those with brook charr

(80%accuracy), brown trout (89%accuracy), and rainbow

trout (75% accuracy). In contrast, generalized models

predicted thermal habitat suitability in runoff-dominated

streams with much lower accuracy (54%). These results

suggest that, amidst climate change and constraints in

resource availability, generalized models are appropriate

to forecast thermal conditions in groundwater-dominated

streamswithin and outsideMichigan and inform regional-

level salmonidmanagement strategies that are practical for

coldwater fisheries managers, policy makers, and the

public. We recommend fisheries professionals reserve

resource-intensive stream-specific models for runoff-

dominated systems containing high-priority fisheries

resources (e.g. trophy individuals, endangered species) that

will be directly impacted by projected stream warming.
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change � Coldwater fisheries � Rainbow trout �
Temperature

Introduction

Streamsand rivers cover 0.30–0.56%of theglobe across

a fluvial area of 485,000–682,000 km2 (Downing et al.
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2012). Climate change is projected to increase stream

and river temperatures and alter their thermal habitat

suitability for growth, reproduction, and survival of

resident fishes (Pilgrim et al. 1998; Lyons et al. 2010;

Carlson et al. 2016). In addition, warmer air tempera-

tures are predicted to increase stream and river temper-

atures indirectly through more variable (and overall

lower) precipitation (Stoner et al. 2013), increased

evaporation (Compagnucci et al. 2001), and thus

decreased groundwater discharge into these river sys-

tems. Salmonids such as brook charr (Salvelinus

fontinalis), brown trout (Salmo trutta), and rainbow

trout (Oncorhynchus mykiss) are coldwater fishes with

laboratory temperature preferenda less than or equal to

20 �C and critical thermal maxima less than or equal to

31 �C (Raleigh 1982a, b; Raleigh et al. 1986; Lyons

et al. 2009). These species support ecologically,

socioeconomically, and culturally important fisheries

in North America, South America, Europe, and parts of

Asia and Australia (MacCrimmon 1971; Budy et al.

2013; Weber et al. 2015). As such, understanding the

effects of climate change on these valuable species will

have economic and social ramifications for the man-

agement of coldwater stream fisheries throughout the

world.

Temperature regulates fish metabolism, growth,

reproduction, and survival (Dodds and Whiles 2010;

Isaak et al. 2012), all of which affect fish recruitment

and fisheries productivity. Temperatures above spe-

cies-specific thermal maxima cause mortality,

whereas temperatures at or below maxima alter

individual growth and reproduction (Magnuson et al.

1997). Predicted climate-driven increases in stream

temperatures are likely to decrease the thermal habitat

suitability of coldwater streams for growth and

survival of brook charr, brown trout, and rainbow

trout because these species have relatively low thermal

tolerances to warm temperatures (Fry et al. 1946;

Raleigh 1982a, b; Raleigh et al. 1986). Despite the

importance of climate change-induced temperature

increases of riverine ecosystems throughout the world

(Kaushal et al. 2010; van Vliet et al. 2013), there is

widespread scarcity in the availability of long-term

stream temperature datasets throughout the world.

This data deficiency impedes or prevents development

of region- and stream-specific temperature models and

inhibits the prediction and mitigation of the ecological

and social effects of stream warming on salmonid

fisheries (e.g. fragmented species distribution, reduced

socioeconomic output). Collectively, the global dis-

tribution and importance of stream salmonids, the

global scope of climate change, and the general dearth

of long-term stream temperature data indicate the

importance of developing accurate, efficient

approaches for projecting effects of climate change

on coldwater streams and designing data-limited

strategies for sustainable salmonid management in a

warming world.

Fisheries management is broadly defined as the

process of using information (e.g. ecological, eco-

nomic, social, political) to develop strategies for

achieving goals established for fisheries resources

(Kruger and Decker 1999). Decision-making is fun-

damental to fisheries management and necessitates

informed choices regarding allocation of finite

resources (e.g. funding, time, personnel) to achieve

the goals set for specific fisheries systems. For

example, to mitigate the effects of climate change on

coldwater stream ecosystems, fisheries professionals

must understand how stream temperature is regulated

by ambient atmospheric conditions (e.g. air tempera-

ture) and also influenced by meteorological (e.g. solar

radiation, wind, humidity) and hydrological (e.g.

discharge, depth, groundwater input) conditions in

stream watersheds (Gu et al. 1998; Pilgrim et al.

1998). With this knowledge, fisheries professionals

can make informed temperature modeling decisions,

including which models and variables to use, amidst

constraints in resource availability and, ultimately,

which thermal habitat management strategies to

implement for mitigation purposes.

Heat budget models generally predict water tem-

peratures with high accuracy (i.e. exactness of

temperature projection) because they prioritize the

relative influence of the various atmospheric, meteo-

rological, and hydrological drivers of stream temper-

ature (O’Driscoll and DeWalle 2006; Wehrly et al.

2009). However, these models generally require

extensive and expensive data collection protocols for

small spatial extents (e.g. stream reaches), limiting

their applicability at the regional scales (e.g. water-

sheds) where fisheries management agencies typically

operate (WDNR 2002; MNDNR 2015). As a result,

alternative approaches such as air-stream temperature

regression models are often less complex, more cost-

effective (i.e. same accuracy at lower cost), and more

spatially appropriate than heat budget models (Moh-

seni et al. 1998; Benyahya et al. 2007), making them
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more useful for fisheries management agencies when

managing for most fish species of interest.

In lieu of heat budget models, fisheries profession-

als currently use two broad approaches to describe the

relationship between air temperature and stream

temperature: stream-specific models and generalized

models. Stream-specific temperature models account

for the unique combination of factors that influence

each stream’s thermal regime (e.g. air temperature,

discharge, groundwater input), whereas generalized

models are region-specific in representing the thermal

regimes of all streams in a particular area. Stream-

specific models treat each stream as a distinct system

with a thermal regime influenced by discrete factors,

whereas generalized models assume that regional

patterns in air temperature, as opposed to system-

specific characteristics, are the primary drivers of

water temperature (Stefan and Preud’homme 1993;

Krider et al. 2013). Each modeling approach has

advantages and disadvantages. Generalized models

may be less accurate than stream-specific models in

predicting exact water temperatures, but their devel-

opment requires significantly lower investments of

funding, time, and personnel as streams do not have to

be monitored individually. In contrast, stream-specific

models are generally more accurate than generalized

models but require significantly more resources to

develop. In addition, fisheries management strategies

(e.g. harvest regulations) implemented based on

stream-specific models may be cumbersome to imple-

ment because they will likely be unique to—and thus

variable among—individual streams reaches.

Many U.S. states (e.g. Michigan, Wisconsin, Min-

nesota; MDNR 2000; WDNR 2002; MNDNR 2015)

already manage streams on a regional basis, aligning

more closely with the generalized, rather than stream-

specific, temperature modeling framework. However,

the tradeoffs associated with stream-specific and

generalized models are important to consider in

evaluating the accuracy and efficiency (i.e. cost-

effective applicability at management-relevant spatial

extents) of each modeling approach to achieve specific

management objectives for sustaining stream salmo-

nid fisheries in a changing climate.

Comparing stream-specific and generalized tem-

perature models necessitates the availability of long-

term (i.e. C10 year) stream temperature data.

Although long time-series stream temperature data

sets are relatively uncommon, fisheries professionals

in the State of Michigan, USA, have monitored

temperatures in many trout streams for 10–20 years,

making it an ideal study area in which to compare

stream-specific and generalized models. Brook charr,

brown trout, and rainbow trout are ecologically and

socio-economically important fishes in Michigan

(Godby et al. 2007), serving as keystone predators in

coldwater streams and supporting valuable recre-

ational fisheries in which more than 585,000 anglers

spent 8.2 million angling days in 2011 (USFWS 2011).

In Michigan, projected air temperature warming is

predicted to increase summer temperatures in cold-

water streams by 0.19–5.49 �C from 2016 to 2056

(Carlson et al. 2016) and decrease thermal habitat

availability and salmonid growth in systems that

exceed thermal optima during the warmest period of

the year (i.e. July; Zorn et al. 2011). Although Carlson

et al. (2016) used stream-specific models to project

future water temperatures in Michigan streams, the

present study expands upon previous work by explic-

itly comparing stream-specific and generalized mod-

els to inform stream salmonid management amidst

climate change and limitations in the availability of

funding, time, and personnel.

The goal of this study was to evaluate the impact of

warming water temperatures on salmonid growth and

survival in coldwater streams in select areas of North

America. Two modeling approaches were used to

predict thermal habitat changes: stream-specific and

generalized models. These models were chosen as

they are spatially and temporally robust and thus can

inform salmonid management approaches amidst a

changing climate and resource limitations. As such,

this study was intended to lay a conceptual foundation

for future studies in other areas of the world with

coldwater streams and fish populations susceptible to

climate change. The specific objectives of this study

were to: (1) measure the accuracy of stream-specific

and generalized models in predicting water tempera-

ture and thermal habitat suitability for salmonid

growth and survival in streams in the State of

Michigan and the eastern USA that span latitudinal

and hydrological gradients and support socioeconom-

ically valuable salmonid populations; (2) forecast

future water temperatures and thermal habitat suit-

ability in these streams in select future years (i.e. 2036,

2056); and, (3) evaluate the accuracy and efficiency of

stream-specific and generalized models to develop a

model comparison approach that can be used for
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salmonid management programs within and outside

Michigan.

Methods

Study area

Fifty-two coldwater salmonid streams were selected

throughout Michigan based on latitudinal, hydrolog-

ical, and recreational criteria (Fig. 1; Table 1).

Streams spanned a latitudinal thermal gradient from

north to south. Base flow, the component of stream-

flow attributable to groundwater, varied among

streams such that they covered a gradient from

surface-runoff to groundwater dominance (see ‘‘Base-

flow measurements’’ below) over which brook charr,

brown trout, and rainbow trout occur in Michigan. In

addition, all streams were important from a fisheries

management perspective as they support productive

recreational fisheries for brook charr, brown trout, or

rainbow trout. These species are widely distributed

throughout Michigan (Zorn et al. 2011, 2012), making

them effective indicator species for evaluating the

impact of climate change on coldwater stream fishes

adapted to groundwater-dominated and surface run-

off-dominated streams. Overall, brook charr were

found in 28 of the streams evaluated, brown trout in 26

streams, and rainbow trout in 21 streams. Seventeen of

the streams studied supported more than one salmonid

species, and six streams supported all three species

(Table 1).

Baseflow measurements

A United States Geological Survey (USGS) report of

base flow (Neff et al. 2005) was used to obtain each

study stream’s base flow index (BFI), a value that

represents the mean rate of base flow (mm*year-1)

divided by the corresponding mean rate of total

streamflow (mm*year-1) and ranges from zero (i.e.

no groundwater) to one (i.e. all groundwater; Wahl

andWahl 1988). All BFI calculations were made using

a digital filter hydrograph separation technique

(Arnold and Allen 1999; Kelleher et al. 2012) whereby

daily streamflow records were partitioned into

Fig. 1 Map of 52 brook

charr, brown trout, and

rainbow trout streams used

for air–stream temperature

modeling in Michigan.

Streams and corresponding

identification numbers are

listed in Table 1. Modified

from Carlson et al. (2016)
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Table 1 Descriptive information about 52 salmonid streams used for temperature modeling in Michigan, USA

Stream Map Type Species BFI Area Elevation

Au Sable River 1 GD BKC, BNT, RBT 0.72 5003.86 401.68

Bark River* 2 RD BNT 0.60 114.74 238.14

Bear Creek* 3 GD BNT 0.65 25.23 256.07

Black River* 4 RD BKC 0.55 1180.62 368.47

Boardman River* 5 GD BKC, BNT 0.63 626.78 319.63

Brule River 6 RD BNT 0.52 2719.49 515.46

Bryan Creek* 7 RD BKC 0.60 175.60 432.32

Canada Creek* 8 RD BKC 0.55 472.24 284.20

Carlton Creek 9 GD BKC 0.73 20.10 235.04

Carp River* 10 RD BKC, BNT, RBT 0.60 675.99 260.19

Cedar Creek* 11 RD BKC, BNT 0.50 48.17 267.04

Cedar River (SLP)* 12 RD RBT 0.60 114.74 336.84

Cedar River (UP) 13 RD BNT 0.60 735.56 306.49

Chocolay River* 14 RD RBT 0.56 404.04 379.63

Coldwater River 15 RD BNT 0.45 432.53 271.94

Cooks Run 16 RD BKC, BNT 0.52 183.63 529.42

Davenport Creek* 17 RD RBT 0.57 20.12 250.71

Duke Creek* 18 RD BKC, BNT 0.50 85.73 276.93

East Branch Fox River* 19 GD BKC, BNT 0.73 310.80 274.93

Elm River* 20 RD RBT 0.45 31.34 424.23

Escanaba River* 21 RD BKC, BNT 0.44 1012.69 424.08

Falls River 22 RD BKC 0.52 118.62 377.38

Hersey River 23 GD BNC 0.62 297.85 368.40

Iron River* 24 RD BKC 0.52 181.04 488.86

Little Indian River* 25 GD BKC 0.73 220.93 277.80

Little Muskegon River 26 GD RBT 0.62 966.07 313.04

Manistee River* 27 GD BKC, BNT, RBT 0.65 1916.59 406.05

Mann Creek 28 GD BKC 0.65 44.29 202.39

Martin Creek 29 GD BKC 0.61 52.84 259.35

Menominee River 30 RD RBT 0.57 10,308.15 477.73

Miller Creek 31 GD BKC 0.65 2.80 241.26

Mosquito Creek 32 GD BKC 0.62 29.01 193.09

Muskegon River 33 GD RBT 0.62 6604.47 359.73

Ogontz River 34 GD RBT 0.74 53.16 214.53

Paint River 35 RD BNT 0.52 1613.56 496.64

Pere Marquette River* 36 GD BNT 0.61 1901.05 310.87

Pigeon River* 37 GD BNT, RBT 0.65 944.50 380.18

Pine River (SLP)* 38 RD BNT 0.49 1622.37 318.84

Pine River (NLP)* 39 GD BKC, BNT, RBT 0.65 688.94 395.08

Prairie Creek* 40 RD BNT 0.50 270.83 246.30

Rapid River 41 GD BKC, BNT, RBT 0.63 212.64 355.73

Rogue River* 42 RD BNT, RBT 0.50 678.58 278.19
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groundwater and surface-runoff components to deter-

mine the relative contribution of each. A BFI of 0.60

was treated as a threshold for streams to be categorized

as groundwater-dominated (GD; BFI[ 0.60) or sur-

face runoff-dominated (RD; BFI B 0.60; McKergow

et al. 2005; Dukić and Mihailović 2012).

Stream-specific regression models

Historical air and water temperatures were used to

develop stream-specific temperature regression mod-

els (Table 2). Daily air temperatures measured in July

from 1990 to 2010 were obtained using the United

States Department of Energy Historical Climate

Network (CDIAC 2016). Air temperature measure-

ments were reported from the gauging station closest

to each stream’s headwaters, where MDNR gauges

recorded daily stream temperatures in July from 1990

to 2010. July temperatures were used because this

month is typically the warmest and most thermally

stressful for salmonids in Michigan (Zorn et al. 2011)

and likely to be the time period that will first impact

salmonid thermal habitat quality and quantity in a

changing climate. In July, temperatures are typically

more suitable (i.e. cooler) for salmonids that live in

GD, heavily forested headwater reaches of Michigan

streams (Drake and Taylor 1996; Hayes et al. 1998), so

emphasis was placed on these reaches with the

understanding that if they become warmer,

temperatures in downstream reaches will also gener-

ally increase. The National Hydrography Dataset Plus

Version 1 (NHDPlusV1) and the Watershed Boundary

Dataset (USEPA USEPA 2005) were used to identify

each stream’s sub-basin (8-digit Hydrologic Unit

Code [HUC8]) and sub-watershed (HUC 12). In

addition, NHDPlusV1 and the USGS StreamStats

interactive map application (USGS 2015) were used to

measure drainage area (km2) and mean elevation

(m) for each stream. Stream-specific regression mod-

els were developed by pairing mean July air and water

temperatures from recent years (i.e. 2002–2010) for

the 28 streams for which historical stream tempera-

tures were available (Tables 1, 2). To predict future

stream temperatures, the product of air temperature

regression coefficients and air temperature projections

(described below) was calculated and added to model

intercepts (i.e. stream temperature = air temperature

coefficient*projected future air temperature ? inter-

cept). Air temperature coefficients represented indices

of stream thermal sensitivity (i.e. relative susceptibil-

ity to temperature change) because larger positive

coefficients produced warmer stream temperatures

(Kelleher et al. 2012).

Generalized regression models

Stream temperatures were also predicted by convert-

ing sub-basin air temperature projections to water

Table 1 continued

Stream Map Type Species BFI Area Elevation

Salmon Trout River* 43 RD BKC 0.45 104.12 442.89

Silver Creek 44 GD BKC 0.65 8.00 224.22

South Branch Pine River 45 GD RBT 0.72 114.34 273.14

St. Joseph River 46 GD BKC, RBT 0.63 10,722.55 346.56

Sturgeon River 47 GD BKC, RBT 0.74 505.05 276.66

Tahquamenon River* 48 RD BNT 0.55 2027.96 285.95

Tamarack Creek 49 GD BNT, RBT 0.62 375.55 302.21

West Branch Maple River 50 GD BKC 0.65 598.29 282.57

West Branch Sturgeon River* 51 GD BKC, BNT, RBT 0.65 473.97 394.90

Yellow Dog River* 52 RD RBT 0.52 178.71 537.07

Map number refers to stream identifiers in Fig. 1. Type denotes hydrological influence: groundwater-dominated (GD) streams had

base-flow index (BFI) values[ 0.60, whereas surface-runoff dominated (RD) systems had BFI values B 0.60. Species refers to

salmonids present in each stream (i.e. brook charr [BKC], brown trout [BNT], rainbow trout [RBT]). Area is drainage area (km2) and

Elevation is mean catchment elevation (m). Asterisks indicate that streams had historical field-collected air and stream temperatures

for development of stream-specific regression models. SLP, NLP, and UP refer to Michigan’s Southern Lower Peninsula, Northern

Lower Peninsula, and Upper Peninsula, respectively
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temperatures using two generalized regression equa-

tions. The Stefan and Preud’homme (1993, hereafter

referred to as SP) model, developed specifically for

RD streams, estimates weekly stream temperature by:

Tw ¼ 2:9þ 0:86Ta;

where Tw is water temperature (�C) and Ta is air

temperature (�C). The standard deviation (SD) of the

model is 2.16 �C.
The Krider et al. (2013, hereafter referred to as K)

model, developed specifically for GD streams, esti-

mates weekly stream temperature by:

Tw ¼ 6:63þ 0:38 Ta;

where Tw is water temperature (�C) and Ta is air

temperature (�C). The model SD is 4.80 �C.
The K model was used to project GD stream

temperatures, whereas the SP model was used to

predict RD stream temperatures, as these models were

developed specifically for those corresponding

streams types. Although both models were developed

for weekly temperatures, daily and monthly air and

water temperatures have been reported to be associ-

ated through a nearly 1:1 relationship (Ozaki et al.

2003), suggesting a strong positive weekly-to-monthly

relationship and validating use of monthly average air

temperatures to project stream temperatures.

Table 2 Stream-specific

temperature regressions

with standard errors (SE),

F values, P values, and R2

values

SLP and NLP refer to

Michigan’s Southern Lower

Peninsula and Northern

Lower Peninsula,

respectively

Stream Model SE F P R2

Runoff-dominated

Bark River Water = 12.98 ? 0.32*air 0.05 49.41 \0.01 0.86

Bryan Creek Water = 7.69 ? 0.42*air 0.08 28.86 \0.01 0.78

Carp River Water = 12.06 ? 0.28*air 0.04 41.63 \0.01 0.84

Cedar Creek Water = 6.32 ? 0.56*air 0.09 39.10 \0.01 0.83

Cedar River (SLP) Water = 11.42 ? 0.25*air 0.03 97.82 \0.01 0.92

Elm River Water = 2.11 ? 0.82*air 0.06 193.20 \0.01 0.96

Escanaba River Water = 3.03 ? 0.88*air 0.14 39.26 \0.01 0.83

Pine River (SLP) Water = 9.23 ? 0.40*air 0.04 119.15 \0.01 0.94

Prairie Creek Water = 0.95 ? 0.74*air 0.07 106.03 \0.01 0.93

Salmon Trout River Water = 8.23 ? 0.29*air 0.05 33.60 \0.01 0.80

Tahquamenon River Water = 12.29 ? 0.50*air 0.05 115.88 \0.01 0.93

Groundwater-dominated

Bear Creek Water = 11.61 ? 0.23*air 0.03 46.74 \0.01 0.85

Black River Water = 8.74 ? 0.29*air 0.04 57.04 \0.01 0.88

Boardman River Water = 11.99 ? 0.14*air 0.02 72.85 \0.01 0.90

Canada Creek Water = 6.91 ? 0.60*air 0.08 61.72 \0.01 0.88

Chocolay River Water = 10.29 ? 0.23*air 0.03 77.99 \0.01 0.91

Davenport Creek Water = 8.97 ? 0.13*air 0.01 99.55 \0.01 0.92

Duke Creek Water = 4.45 ? 0.48*air 0.08 37.27 \0.01 0.82

East Branch Fox River Water = 7.73 ? 0.33*air 0.04 86.45 \0.01 0.91

Iron River Water = 12.76 ? 0.30*air 0.04 52.58 \0.01 0.87

Little Indian River Water = 14.86 ? 0.06*air 0.01 83.65 \0.01 0.91

Manistee River Water = 10.67 ? 0.13*air 0.02 57.70 \0.01 0.88

Pere Marquette River Water = 12.50 ? 0.18*air 0.02 51.89 \0.01 0.86

Pigeon River Water = 11.93 ? 0.11*air 0.01 60.49 \0.01 0.88

Pine River (NLP) Water = 10.89 ? 0.22*air 0.03 73.41 \0.01 0.90

Rogue River Water = 13.17 ? 0.23*air 0.04 27.46 \0.01 0.77

West Branch Sturgeon River Water = 11.93 ? 0.06*air 0.01 67.49 \0.01 0.89

Yellow Dog River Water = 9.90 ? 0.38*air 0.06 45.58 \0.01 0.85
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Air temperature projections

Mean July air temperatures were forecasted in future

years (2036 and 2056) for each sub-basin evaluated.

Air temperatures were projected using three coupled

climate models: the Third Generation Coupled Global

Climate Model (CGCM3, Canadian Centre for Cli-

mate Modelling and Analysis), the CM2 Global

Coupled Climate Model (CM2, Geophysical Fluid

Dynamics Laboratory at the National Oceanic and

Atmospheric Administration), and the Hadley Centre

Coupled Model version 3 (HadCM3, Met Office,

United Kingdom’s National Weather Service). All

models were based on the World Climate Research

Programme (WCRP) Coupled Model Intercomparison

Project phase 3 (CMIP3) multi-model dataset and had

variable thermal input parameters (e.g. solar radiation,

volcanic activity, trace gases, sulfate aerosols). Spatial

downscaling was performed using the Bias-Correction

Spatial Disaggregation (BCSD) approach to adjust the

resolution of the climate model (*200 km 9

200 km) to a scale appropriate for Michigan streams

(12 km 9 12 km; Maurer et al. 2007). Mean July air

temperatures were obtained for Michigan sub-basins

containing salmonid streams from the United States

Forest Service’s (USFS) Eastern Forest Environmen-

tal Threat Assessment Center (EFETAC) in North

Carolina. Temperatures were projected using the

Special Report of Emission Scenarios A2 and B1

climate forcing scenarios and the CGCM3, CM2, and

HadCM3 models using area-weighted means for all

years. The A2 scenario (hereafter ‘‘high emissions’’)

predicts atmospheric CO2 concentrations to be

820 ppm in 2100 in a world characterized by rapid

economic growth and efficient energy technologies

(IPCC 2007). In contrast, the B1 scenario (hereafter

‘‘low emissions’’) projects atmospheric CO2 concen-

trations to be 550 ppm in 2100 in a convergent world

with a service and information economy and reduced

material consumption (IPCC 2007).

Stream temperature and thermal habitat suitability

projections

Stream-specific and generalized models were used to

backcast July stream temperatures in 2006 and 2012

and forecast July temperatures in 2036 and 2056 based

on air temperature predictions in these years. Back-

casting was performed to evaluate the accuracy of

stream-specific and generalized models by comparing

predicted and actual temperatures in years with pre-

existing stream temperature metrics. Mean air tem-

peratures were calculated from the three CCMs to

account for each model’s uncertainty, unique temper-

ature drivers (e.g. forest canopy density, atmospheric

pressure, soil layering), and range of predicted air

temperatures. Species-specific thermal habitat suit-

ability statuses were assigned for each stream based on

temperature thresholds for growth and survival asso-

ciated with projected July temperatures. Status 1

streams had maximum July average temperatures that

were optimal for growth of brook charr (11.0–16.5 �C;
Raleigh 1982a), brown trout (12.0–17.0 �C; Raleigh
et al. 1986; Hay et al. 2006), and rainbow trout

(12.0–16.4 �C; Wurtsbaugh and Davis 1977; Raleigh

1982b). Temperatures of status 2 streams resulted in

reduced growth of brook charr (16.5–20.5 �C; Raleigh
1982a), brown trout (17.0–20.0 �C; Elliott and Hurley
2000), and rainbow trout (16.4–22.5 �C; Wurtsbaugh

and Davis 1977). Status 3 streams had temperatures

that were too warm for growth to occur: 20.5–25.3 �C
for brook charr (Baldwin 1957; Raleigh 1982a),

20.0–26.2 �C for brown trout (Hay et al. 2006), and

22.5–25.0 �C for rainbow trout (Wurtsbaugh and

Davis 1977; Raleigh 1982b). Finally, status 4 streams

had thermal conditions that create high mortality risk

for brook charr ([25.3 �C; Fry et al. 1946; Raleigh

1982a), brown trout ([26.2 �C; Hay et al. 2006), and

rainbow trout ([25.0 �C; Wurtsbaugh and Davis

1977; Raleigh 1982b).

Analyses

The accuracy of stream-specific regression models

was evaluated by calculating the deviation between

projected and actual stream temperatures and salmo-

nid thermal habitat suitability statuses in 2006.

Similarly, the accuracy of generalized regression

models was assessed by calculating differences

between projected and actual stream temperatures

and salmonid thermal habitat suitability statuses. In

comparing generalized K and SP models, temperature

projections were considered inaccurate if they were

lower (i.e. under-prediction) or higher (i.e. over-

prediction) than actual temperatures by an amount

greater than the standard deviation of the model with

the lowest standard deviation (i.e. SP, SD = 2.16 �C).
The relative accuracy of stream-specific and
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generalized models was evaluated by comparing each

model’s deviation between projected and actual tem-

peratures and salmonid thermal habitat suitability

statuses with those of the corresponding model (i.e.

generalized or stream-specific) in each of the 28

streams with historical water temperatures (Table 1).

Stream-specific models could not be developed for the

24 streams (17 GD, 7 RD) for which historical water

temperatures were not available. However, it was

deemed appropriate to project stream temperatures

and habitat suitability statuses using either the gener-

alized K model (for the additional 17 GD streams) or

the SP model (for the additional 7 RD streams) if the

accuracy of these models in predicting habitat suit-

ability in their respective streams was greater than

80%. Temperature deviations (i.e. between actual

temperatures and model projections and between

stream-specific and generalized model predictions)

were considered biologically significant if they pro-

duced changes in thermal habitat suitability statuses.

Such changes were necessary for biological signifi-

cance as defined in this manuscript, so temperature

deviations rather than absolute temperatures were the

appropriate measurement and were required for

defining management-relevant categories for growth

and survival.

To investigate the applicability of stream-specific

and generalized models in regions outside Michigan,

temperatures and thermal habitat suitability projec-

tions from the two model types were compared with

historical (i.e. 2006) temperatures and habitat suit-

ability statuses in five reported high-quality brook

charr and brown trout streams located in the States of

Connecticut, Maine, North Carolina, and Wisconsin,

USA (Schlee 2014). Historical data for these streams

were obtained from the USGS National Water Infor-

mation System (USGS 2016).

Results

Temperature projections

Stream-specific models projected historical water

temperatures more accurately than generalized models

in all 28 streams that had historical water temperatures

available. In GD streams, the mean deviation of

stream-specific model projections from actual temper-

atures in 2006 was -0.30 �C (SD = 0.35,

range = -0.71–0.79) under the high CO2 emission

scenario and -0.38 �C (SD = 0.41, range = -1.04–

0.79) under the low emission scenario. Compared to

stream-specific model predictions, the mean deviation

of generalized Kmodel projections in GD streams was

larger under high emissions (-1.21 �C, SD = 2.10,

range = -5.40–2.60) and low emissions (-1.36 �C,
SD = 2.13, range = -5.60–2.30). Similarly, the

mean deviation of stream-specific model projections

from actual temperatures in RD streams was-0.70 �C
(high emissions, SD = 0.77, range = -1.78–1.14)

and -0.88 �C (low emissions; SD = 0.75,

range = -1.70–0.84), compared to 2.57 �C (high

emissions, SD = 1.92, range = -0.70–5.30) and

2.10 �C (low emissions, SD = 2.11, range =

-1.50–4.60) for the generalized SPmodel. For streams

in the State of Michigan, stream-specific models

predicted that stream temperatures will increase by

an average of 1.5 �C (GD streams) and 3.1 �C (RD

streams) under high emissions and 1.2 �C (GD

streams) and 3.1 �C (RD streams) under low emissions

from 2016 to 2056. Throughout Michigan, generalized

models projected stream temperatures will increase by

an average of 0.6 �C (GD streams) and 1.5 �C (RD

streams) under high emissions and 0.8 �C (GD

streams) and 1.9 �C (RD streams) under low emissions

from 2016 to 2056.

Thermal habitat suitability projections

Although stream-specific models predicted tempera-

tures of GD and RD streams more accurately than

generalized models, both model types projected

accurate salmonid thermal habitat suitability statuses

in GD streams (Fig. 2). Under high and low CO2

emissions, stream-specific models projected thermal

habitat suitability with 100% accuracy in GD streams

with brook charr, brown trout, and rainbow trout

(Table 3). Deviations between actual temperatures

and stream-specific model projections were not bio-

logically significant as they produced the same

thermal habitat suitability statuses. In comparison,

the overall accuracy of the generalized K model in

projecting thermal habitat suitability was 82% in GD

streams for brook charr (80% accuracy), brown trout

(89% accuracy), and rainbow trout (75% accuracy;

Table 3) under both emissions scenarios.

In contrast to GD streams, differences in temper-

ature predictions between stream-specific and
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Fig. 2 Temperature predictions in representative Michigan

streams in 2006, 2012, 2036, and 2056 using stream-specific

(lines) and generalized (solid lines) temperature models. Plots

are organized by species and emissions scenario: aBrook Charr,
A2 Scenario; b Brook Charr, B1 Scenario; c Brown Trout, A2

Scenario; d Brown Trout, B1 Scenario; e Rainbow Trout, A2

Scenario; f Rainbow Trout, B1 Scenario. In each plot, the upper

stream is surface runoff-dominated, and the lower stream is

groundwater-dominated. Dotted lines represent transitions

between thermal habitat suitability statuses (1 optimal, 2

suboptimal, 3 no growth, 4 high mortality risk). Stream

abbreviations are as follows: BAR Bark River, BOR Boardman

River, CAR Carp River, DAV Davenport Creek, ESR Escanaba

River, MAN Manistee River
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Table 3 Projected and actual temperatures (�C) and associated
thermal habitat suitability (THS) statuses for growth and

survival of brook charr (BKC), brown trout (BNT), rainbow

trout (RBT), and all three species (All) in groundwater-

dominated streams (1 = optimal, 2 = suboptimal, 3 = no

growth, 4 = high mortality risk)

Stream Species Year Projected Temperature THS Actual Temperature THS

Bear Creek BNT 2006 16.5, 15.4 1, 1 15.8 1

2012 16.7, 15.1 1, 1

2036 17.8, 16.0 2, 1

2056 18.2, 16.2 2, 1

Black River BKC 2006 14.5, 14.6 1, 1 15.1 1

2012 15.1, 14.3 1, 1

2036 16.3, 15.3 1, 1

2056 16.0, 15.0 1, 1

Boardman River BKC, BNT 2006 14.9, 14.5 1, 1 15 1

2012 14.9, 14.3 1, 1

2036 15.8, 15.3 1, 1

2056 15.5, 14.9 1, 1

Canada Creek BKC 2006 19.4, 14.6 2, 1 20 2

2012 19.5, 14.3 2, 1

2036 22.9, 15.3 3, 1

2056 21.9, 15.0 3, 1

Duke Creek BKC, BNT 2006 14.7, 15.3 1, 1 15.3 1

2012 15.8, 14.9 1, 1

2036 18.5, 15.9 2, 1

2056 19.1, 16.0 2, 1

East Branch Fox River BKC, BNT 2006 13.8, 14.0 1, 1 14.2 1

2012 14.1, 13.8 1, 1

2036 15.6, 14.8 1, 1

2056 15.3, 14.6 1, 1

Iron River BKC 2006 18.5, 14.1 2, 1 18.6 2

2012 17.8, 13.8 2, 1

2036 19.7, 15.0 2, 1

2056 19.2, 14.7 2, 1

Little Indian River BKC 2006 16.1, 14.0 1, 1 16.2 1

2012 16.1, 13.8 1, 1

2036 16.5, 14.8 2, 1

2056 16.4, 14.6 1, 1

Manistee River All 2006 13.3, 14.6 1, 1 13.6 1

2012 13.7, 14.3 1, 1

2036 14.3, 15.3 1, 1

2056 14.2, 15.1 1, 1

Pigeon River BNT, RBT 2006 14.1, 14.4 1, 1 14.5 1

2012 14.2, 14.2 1, 1

2036 14.8, 15.1 1, 1

2056 14.6, 14.8 1, 1

Pine River (NLP) All 2006 15.3, 14.6 1, 1 16 1

2012 15.9, 14.3 1, 1

2036 17.1, 15.3 2, 1
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generalized models in RD systems were more often

biologically significant (Fig. 2). Stream-specific mod-

els were more accurate than generalized models in

predicting salmonid thermal habitat suitability sta-

tuses in RD streams. Compared to 100% accuracy in

GD systems, stream-specific models predicted thermal

habitat suitability with 80% accuracy in RD streams

for brook charr (80% accuracy), brown trout (75%

accuracy), and rainbow trout (100% accuracy;

Table 4) under high CO2 emissions. Under low

emissions, stream-specific models predicted thermal

habitat suitability with 93% accuracy in GD streams

for brook charr (80% accuracy), brown trout (100%

accuracy), and rainbow trout (100% accuracy;

Table 4). In comparison, under high emissions, the

overall accuracy of the generalized SPmodel was 47%

in RD streams for brook charr (60% accuracy), brown

trout (25% accuracy), and rainbow trout (100%

accuracy; Table 4). Under low emissions, the overall

accuracy of the generalized SP model was 60% in RD

streams for brook charr (60% accuracy), brown trout

(50% accuracy), and rainbow trout (100% accuracy;

Table 4).

Generalized K versus SP models

The generalized K model predicted stream tempera-

tures more accurately than the generalized SP model.

The generalized K model predicted historical GD

stream temperatures with 75% accuracy under high

and low CO2 emissions (Table 3), whereas the gen-

eralized SP model backcasted temperatures with only

36% accuracy under high and low CO2 emissions

(Table 4). The generalized SP model over-predicted

temperatures by 2.4–5.3 �C (average 3.8 �C) in seven
RD streams (i.e. Bryan Creek, Cedar Creek, Cedar

River, Elm River, Pine River, Prairie Creek, Salmon

Trout River) under high emissions and by 2.5–4.6 �C
(average 3.7 �C) in six RD streams (i.e. Bryan Creek,

Cedar Creek, Cedar River, Pine River, Prairie Creek,

Salmon Trout River) under low emissions (Table 4).

The generalized SP model predicted thermal habitat

suitability in RD streams with 35% lower accuracy

(high emissions) and 22% lower accuracy (low

emissions) than the generalized K model in GD

systems. Therefore, generalized models are best suited

for use in GD streams.

Data-limited streams

Because the generalized K model projected historical

thermal habitat suitability statuses in GD streams with

relatively high accuracy ([80%), the K model was

used to predict temperature and habitat suitability in

the 17 GD systems for which historical water temper-

atures were unavailable. Under both high and low CO2

emissions, all of these streams were projected to

maintain optimal growing conditions in July for brook

Table 3 continued

Stream Species Year Projected Temperature THS Actual Temperature THS

2056 16.9, 15.1 2, 1

Rogue River BNT, RBT 2006 18.0, 15.3 2, 1 18.4 2

2012 17.9, 14.9 2, 1

2036 19.0, 15.9 2, 1

2056 19.2, 16.0 2, 1

W. Branch Sturgeon River All 2006 13.1, 14.4 1, 1 13.3 1

2012 13.2, 14.2 1, 1

2036 13.5, 15.1 1, 1

2056 13.4, 14.8 1, 1

Yellow Dog River RBT 2006 17.3, 14.1 2, 1 18 2

2012 19.7, 13.9 2, 1

2036 21.8, 15.0 2, 1

2056 21.3, 14.8 2, 1

Predictions are derived from stream-specific and generalized models (separated by commas) under the A2 carbon dioxide emissions

scenario and are similar to those from the B1 scenario (not included here). NLP denotes the Northern Lower Peninsula of Michigan
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Table 4 Projected and

actual temperatures (�C)
and associated thermal

habitat suitability (THS)

statuses for growth and

survival of brook charr

(BKC), brown trout (BNT),

rainbow trout (RBT), and

all three species (All) in

surface runoff-dominated

streams (1 = optimal,

2 = suboptimal, 3 = no

growth, 4 = high mortality

risk)

Predictions are derived

from stream-specific and

generalized models

(separated by commas)

under the A2 carbon

dioxide emissions scenario

and are similar to those

from the B1 scenario (not

included here). SLP denotes

the Southern Lower

Peninsula of Michigan

Stream Species Year Projected

Temperature

THS Actual

Temperature

THS

Bark River BNT 2006 18.9, 20.4 2, 3 19.9 2

2012 19.7, 19.8 2, 2

2036 21.8, 22.2 3, 3

2056 21.2, 21.6 3, 3

Bryan Creek BKC 2006 15.3, 19.9 1, 2 16.7 2

2012 17.2, 19.3 2, 2

2036 19.9, 21.8 2, 3

2056 19.4, 21.2 2, 3

Carp River All 2006 17.1, 19.7 2, 2 17.6 2

2012 17.9, 19.0 2, 2

2036 19.3, 21.4 2, 3

2056 19.0, 21.0 2, 3

Cedar Creek BKC, BNT 2006 18.3, 22.5 2, 3 18.3 2

2012 18.7, 21.7 2, 3

2036 19.9, 23.8 2, 3

2056 20.1, 24.2 2, 3

Cedar River (SLP) BNT 2006 16.6, 20.4 1, 3 17.1 2

2012 16.0, 19.8 1, 2

2036 17.3, 22.2 2, 3

2056 16.9, 21.6 1, 3

Escanaba River BKC, BNT 2006 18.9, 19.9 2, 2 19.9 2

2012 18.6, 19.3 2, 2

2036 21.1, 21.8 3, 3

2056 20.5, 21.2 3, 3

Elm River RBT 2006 17.0, 19.9 2, 2 17.5 2

2012 20.7, 19.4 2, 2

2036 25.4, 22.2 4, 2

2056 24.3, 21.5 3, 2

Pine River (SLP) BNT 2006 17.5, 22.2 2, 3 18.4 2

2012 18.5, 21.4 2, 3

2036 20.5, 23.6 3, 3

2056 20.7, 23.8 3, 3

Prairie Creek BNT 2006 16.6, 22.5 1, 3 18.3 2

2012 17.9, 21.7 2, 3

2036 21.4, 23.8 3, 3

2056 22.0, 24.2 3, 3

Salmon Trout River BKC 2006 13.5, 19.9 1, 2 14.6 1

2012 15.9, 19.4 1, 2

2036 17.8, 22.2 2, 3

2056 17.3, 21.5 2, 3

Tahquamenon River BNT 2006 21.2, 19.3 3, 2 20 3

2012 21.6, 18.7 3, 2

2036 24.0, 21.1 3, 3

2056 23.6, 20.7 3, 3
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charr, brown trout, and rainbow trout until the year

2056 (Table 5).

Model applicability to streams outside Michigan

Thermal habitat suitability projections from stream-

specific and generalized models were compared with

historical habitat suitability statuses in five streams

outside the State of Michigan to gauge the applica-

bility of the two model types in different regions of

the USA. For these streams, generalized models

predicted salmonid thermal habitat suitability with

comparable accuracy to stream-specific models. In

five brook charr streams, 67% of generalized model

predictions were accurate, compared to 0% of

stream-specific model predictions (Table 6). Ther-

mal habitat suitability projections were consistent

between generalized and stream-specific models in

three of the five brook charr streams. In five brown

trout streams outside Michigan, 67% of generalized

and stream-specific model predictions were accurate,

and thermal habitat suitability projections were

consistent between model types in all five streams

(Table 6). The accuracy of generalized model ther-

mal habitat suitability predictions was similar in

streams outside and inside Michigan. At least two-

thirds of predictions were accurate in brook charr

streams (outside Michigan: 67% accuracy; inside

Michigan: 73% accuracy) and brown trout streams

(outside Michigan: 67% accuracy; inside Michigan:

71% accuracy). The relatively high accuracy of

generalized models in predicting thermal habitat

suitability in streams within and outside Michigan

indicates their applicability in coldwater fisheries

management programs in the eastern and north

central United States of America.

Table 5 List of groundwater-dominated streams without

actual (i.e. field-measured) 2006 stream temperatures for

which generalized models were used to predict temperatures

and associated thermal habitat suitability (THS) statuses in

2006, 2012, 2036, and 2056 under A2 and B1 emissions

(separated by commas). (1 = optimal, 2 = suboptimal, 3 = no

growth, 4 = high mortality risk)

Stream 2006 Pr THS 2012 Pr THS 2036 Pr THS 2056 Pr THS

Au Sable River 14.6, 14.4 ALL: 1, 1 14.2, 14.1 ALL: 1, 1 15.2, 15.5 ALL: 1, 1 14.9, 15.1 ALL: 1, 1

Carlton Creek 14.0, 13.7 BKC: 1, 1 13.8, 13.8 BKC: 1, 1 14.8, 15.1 BKC: 1, 1 14.6, 14.6 BKC: 1, 1

Hersey River 14.7, 14.7 BNT: 1, 1 14.4, 14.4 BNT: 1, 1 15.3, 15.7 BNT: 1, 1 15.3, 15.3 BNT: 1, 1

Little Muskegon

River

14.7, 14.7 RBT: 1, 1 14.4, 14.4 RBT: 1, 1 15.3, 15.7 RBT: 1, 1 15.3, 15.4 RBT: 1, 1

Mann Creek 15.4, 15.4 BKC: 1, 1 15.1, 15.1 BKC: 1, 1 16.0, 16.3 BKC: 1, 1 16.2, 16.2 BKC: 1, 1

Martin Creek 14.9, 14.9 BKC: 1, 1 14.6, 14.6 BKC: 1, 1 15.5, 15.8 BKC: 1, 1 15.5, 15.6 BKC: 1, 1

Miller Creek 15.4, 15.4 BKC: 1, 1 15.1, 15.1 BKC: 1, 1 16.0, 16.3 BKC: 1, 1 16.2, 16.2 BKC: 1, 1

Mosquito Creek 14.7, 14.7 BKC: 1, 1 14.4, 14.4 BKC: 1, 1 15.3, 15.7 BKC: 1, 1 15.3, 15.4 BKC: 1, 1

Muskegon River 14.7, 14.7 RBT: 1, 1 14.4, 14.4 RBT: 1, 1 15.3, 15.7 RBT: 1, 1 15.3, 15.4 RBT: 1, 1

Ogontz River 14.1, 13.9 RBT: 1, 1 13.9, 13.9 RBT: 1, 1 14.9, 15.2 RBT: 1, 1 14.7, 14.7 RBT: 1, 1

Rapid River 14.5, 14.5 ALL: 1, 1 14.3, 14.2 ALL: 1, 1 15.3, 15.6 ALL: 1, 1 14.9, 15.2 ALL: 1, 1

S. Branch Pine

River

14.6, 14.4 RBT: 1, 1 14.2, 14.1 RBT: 1, 1 15.2, 15.5 RBT: 1, 1 14.9, 15.1 RBT: 1, 1

Silver Creek 15.4, 15.4 BKC: 1, 1 15.1, 15.1 BKC: 1, 1 16.0, 16.3 BKC: 1, 1 16.2, 16.2 BKC: 1, 1

St. Joseph River 15.6, 15.5 BKC: 1, 1 15.2, 15.2 BKC: 1, 1 16.0, 16.4 BKC: 1, 1 16.4, 16.5 BKC: 1, 2

RBT: 1, 1 RBT: 1, 1 RBT: 1, 1 RBT: 2, 2

Sturgeon River 14.1, 13.9 BKC, RBT: 1, 1 13.9, 13.9 BKC, RBT: 1, 1 14.9, 15.2 BKC, RBT: 1, 1 14.7, 14.7 BKC, RBT: 1, 1

Tamarack Creek 14.7, 14.7 BNT, RBT: 1, 1 14.4, 14.4 BNT, RBT: 1, 1 15.3, 15.7 BNT, RBT: 1, 1 15.3, 15.4 BNT, RBT: 1, 1

W. Branch

Maple River

14.4, 14.3 BKC: 1, 1 14.2, 14.0 BKC: 1, 1 15.1, 15.5 BKC: 1, 1 14.8, 15.1 BKC: 1, 1

Species abbreviations are as follows: ALL brook charr, brown trout, and rainbow trout, BKC brook charr, BNT brown trout, RBT

rainbow trout
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Discussion

Salmonids are ecologically, socioeconomically, and

culturally important throughout the world. However,

their comparatively low thermal optima (Raleigh

1982a, b; Raleigh et al. 1986) combined with global

climate warming and widespread scarcity in long-term

stream temperature data indicate a pressing need for

reliable, cost-effective methods for projecting stream

temperatures with limited data to manage thermal

habitats. Although heat budget models represent a

highly accurate method for predicting stream temper-

atures, they are expensive, data-intensive, and require

physical, hydrological, and meteorological measure-

ments at small spatial extents (e.g. stream reaches;

Mohseni et al. 1998; Benyahya et al. 2007), which

most fisheries management agencies do not have the

resources to collect or analyze. As a result, fisheries

management agencies need efficient, cost-effective

alternatives to accurately project future thermal habi-

tat conditions.

This study demonstrates the utility of stream-

specific and generalized temperature models for

salmonid management amidst global climate change

and resource limitations. This study shows that

stream-specific models, reflecting the unique influence

of thermal drivers in each system (e.g. air temperature,

solar radiation, riparian shading, groundwater input,

discharge, precipitation, evaporation; Bartholow

1989; Gu et al. 1998), predict temperatures more

accurately than generalized, region-specific models.

However, developing temperature profiles for stream-

specific models requires considerable investments of

funding, time, and personnel (e.g. purchase, installa-

tion, and monitoring of temperature gauges for each

stream). Despite the higher accuracy of stream-

specific models for prediction of stream temperatures

in this study, generalized models were comparably

accurate in projecting thermal habitat suitability for

salmonid growth and survival in GD streams. Conse-

quently, generalized models can be useful for fisheries

professionals seeking to optimize the expenditure of

finite resources on research and management efforts

necessary to conserve coldwater stream fisheries with

climate change.

The magnitude of stream warming projected in this

study is similar to previous investigations conducted

in and near the study area in Michigan. Water

temperatures were predicted to increase by

0.1–3.8 �C in GD streams and 0.2–6.8 �C in RD

streams in Michigan due to projected climate change

from 2016 to 2056. These results corroborate pro-

jected stream temperature warming in other Upper

Midwestern states (0.3–6.9 �C in the State of Min-

nesota, USA: Pilgrim et al. 1998; 0.8–4.0 �C in the

State of Wisconsin, USA: Lyons et al. 2010). Previous

research in Michigan indicates that GD streams are

more thermally resilient than RD streams due to

groundwater-driven thermal buffering and flow sta-

bility, which causes coldwater fishes to be more

susceptible to summer growth reductions in RD

systems (Zorn et al. 2012). The present study supports

this finding as the magnitude of temperature warming

was projected to be greater in RD streams than GD

systems with thermal buffering.

Generalized temperature models accurately pro-

jected stream thermal dynamics in GD streams within

and outside Michigan, indicating their broad utility for

salmonid management in other regions of the world

with coldwater streams vulnerable to climate-induced

Table 6 List of brook charr (BKC) and brown trout (BNT) streams located outside Michigan with actual 2006 temperatures (Actual)

and associated thermal habitat suitability (THS) statuses (2 = suboptimal, 3 = no growth, 4 = high mortality risk)

Stream Actual BKT THS BNT THS SS Gen BKT THS BNT THS

Broad Swamp Brook, CT – – 24.9 21.8 3, 3 3, 3

Meduxnekeag River, ME 19.6 2 2 19.8 18.4 2, 2 2, 2

Deep Creek, NC 26.1 4 3 24.1 23.6 3, 3 3, 3

Embarrass River, WI 19.7 2 2 21.3 20.2 3, 2 3, 3

Red River, WI – – 21.1 20.2 3, 2 3, 3

The table also includes projected temperatures (stream-specific [SS] model, generalized [Gen] model) and associated THS statuses in

2006. State abbreviations are as follows: CT Connecticut, ME Maine, NC North Carolina, WI Wisconsin
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warming. Generalized models projected thermal habi-

tat suitability with 82% accuracy in GD Michigan

streams and were as accurate as stream-specific

models in predicting thermal habitat suitability in

systems outside Michigan. This indicates that gener-

alized models are useful for forecasting temperature

ranges for salmonid growth and survival in broad

regions of the eastern and north central USA and

suggests that generalized models are widely applica-

ble in other regions that contain stream salmonid

populations.

These findings are important for stream salmonid

management because by using generalized models,

fisheries professionals can invest fewer resources (e.g.

funding, time, personnel) to achieve a comparable

level of accuracy in projecting thermal conditions for

salmonid growth and survival and may then invest

more in implementing programs that enhance the

thermal resilience of streams that are likely to be

impacted by a warming environment. In addition,

generalized models applied on regional scales would

promote salmonid management strategies (e.g. harvest

regulations) that, by virtue of their regional scale,

would be more practical for fisheries stakeholders

compared to the complex assortment of site-specific

regulations that would result from using stream-

specific models. Moreover, fisheries professionals

can use generalized models as simple tools to inform

anglers and other stakeholders about probable effects

of climate change on coldwater stream fish commu-

nities, including reduced salmonid abundance and

increased abundance of warmwater fishes (e.g. cen-

trarchids; Pease and Paukert 2014). Compared to

stream-specific models, generalized models could be

efficiently incorporated into existing regional-level

stream salmonid management programs in the States

of Michigan (MDNR 2000), Wisconsin (WDNR

2002), Minnesota (MNDNR 2015), and elsewhere

throughout the world (e.g. Spain; Antunes et al. 1999).

Facing cost-benefit tradeoffs, fisheries professionals

may willingly exchange the lower accuracy of gener-

alized models in predicting temperature for their cost-

effectiveness and efficiency, particularly their ability

to project thermal habitat suitability with comparable

accuracy and lower resource expenditure relative to

stream-specific models.

Results from this study have other important

implications for stream salmonid management

throughout the world. As climate change increases

air temperatures and decreases stream thermal habitat

suitability for salmonid growth, reproduction, and

survival (Lyons et al. 2010; Isaak et al. 2012),

managing streams and their salmonid populations for

thermal resilience will become an ever important task

for fisheries professionals. This study indicates that by

using generalized models, fisheries professionals can

reduce costs associated with temperature modeling in

GD streams and may then be able to allocate more

resources toward thermal habitat management. Poten-

tial management actions include protecting riparian

vegetation that provides shading (Blann et al. 2002),

preserving grasslands and other land cover types that

promote groundwater recharge (Siitari et al. 2011),

and maintaining longitudinal stream connectivity that

allows salmonids to move to cooler habitats (e.g.

headwater reaches; Waco and Taylor 2010) during the

warm summer months.

Generalized models are advantageous for water-

shed-level salmonid management as they enable

relatively accurate, cost-effective stream temperature

forecasting at regional scales. Fisheries professionals

can use results from generalized models to develop

climate vulnerability maps that facilitate prioritization

of streams for thermal habitat management in a

changing climate. In addition, fisheries professionals

can integrate generalized model temperature projec-

tions with socioeconomic information (e.g. angler

values and behaviors, stream-specific resource avail-

ability) to design decision-support tools (DSTs) that

streamline decision-making for stream salmonid man-

agement. As the applications of DSTs continue to be

discovered (Azadivar et al. 2009; Bitunjac et al. 2016),

they have proven to be important for ecologically,

sociologically informed fisheries management in a

changing climate (Lynch et al. 2015, 2016). Accurate,

readily interpretable generalized models can enable

fisheries professionals to collaborate with policy

makers to ensure that stream temperature modeling

is used to inform the development of policies that

sustain stream salmonid populations amidst predicted

changes in the world’s climate.

This study provides a foundation for future cold-

water fisheries research throughout the world regard-

ing the effects of increased air and water temperatures

on stream salmonid populations and approaches to

mitigate—and adapt to—the impacts of global climate

change. Although this study focused on relatively

data-rich streams in Michigan, Wisconsin, and the
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eastern United States, it employed methods for

developing and comparing stream-specific and gener-

alized stream temperature models that are widely

applicable in other regions of the world. Stream

temperature data spanning multiple years are neces-

sary for using the methods described herein, thus we

encourage fisheries professionals to expand the spatial

and temporal coverage of air and stream temperature

monitoring networks and thereby enhance their utility

for fisheries management. Increased temperature data

collection and installation of air and stream temper-

ature gauging stations will enable comparisons

between the present study and research conducted in

the western United States, Canada, Europe, and other

regions of the world where stream salmonids are

abundant yet stream-specific and generalized temper-

ature models have not been juxtaposed. In addition to

stream temperature modeling and thermal habitat

management, further research is needed to assess other

potential tools for sustaining stream salmonid popu-

lations and other species amidst climate change. For

instance, the effects of management actions to restore

stream habitat connectivity (e.g. dam removal, fish

ladder installation at roadside crossings and culverts)

on salmonid populations need to be more comprehen-

sively assessed. Further research is needed to deter-

mine whether maintaining a diversity of salmonid

genetic stocks, size classes, and prey species that

tolerate temperatures projected under climate change

(Hansen et al. 2015) is a useful strategy to increase the

resilience of stream salmonid populations.

The goal of this study was to construct and compare

stream-specific and generalized temperature models

for Michigan streams to project future thermal habitat

conditions (i.e. suitability statuses) for salmonid

growth and survival, develop a model comparison

approach that is spatially and temporally robust and

broadly applicable within and beyond Michigan, and

thereby inform salmonid management throughout the

world amidst climate change and resource limitations.

Our purpose was not to assess model performance in

terms of absolute temperatures. Fisheries managers in

Michigan and other regions with coldwater salmonid

streams are primarily concerned with maintaining and/

or improving thermal habitat conditions for salmonid

growth and survival rather than evaluating model

performance in terms of absolute temperatures. In

these management systems, models assessing and

comparing thermal habitat suitability statuses for

growth and survival are more useful than those

looking at absolute temperature. We structured the

present manuscript correspondingly and believe a

thermal habitat suitability approach is most appropri-

ate for communicating with fisheries managers and

other decision-makers who are principally concerned

with thermal habitat conditions. These individuals are

not temperature modelers per se but rather decision-

makers who require information on current and future

thermal habitat conditions. However, we acknowledge

that other fisheries management systems throughout

the world operate differently and may require distinct

thermal modeling approaches, including absolute

temperature assessment, that reflect unique research

goals and objectives.

In summary, this study demonstrates the efficacy of

generalized temperature models for stream salmonid

management in a changing climate, particularly in GD

streams. In RD systems, the lower accuracy of

generalized models than stream-specific models in

predicting water temperature was often biologically

significant, leading to differences in projected thermal

habitat suitability statuses between model types. This

suggests that fisheries professionals can reserve

stream-specific models for systems in which the

accuracy of temperature prediction is especially

important, including streams that support trophy

fishing opportunities, threatened/endangered species,

or other ecologically or socioeconomically valuable

resources. In these streams, the added costs of using

stream-specific models and installing additional air

and stream temperature monitoring stations may be

justifiable for fisheries management agencies, given

that these systems are especially valuable. In regions

that contain both GD and RD streams, integrating

generalized and stream-specific models will be an

effective strategy for balancing model accuracy and

efficiency. Overall, this study illustrates how fisheries

professionals throughout the world can use different

temperature modeling frameworks to optimize the

expenditure of finite resources as they project future

stream thermal conditions and develop more effective

strategies for coldwater fisheries management amidst

global climate change.
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