
REVIEWS

Fish as proxies of ecological and environmental change
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Abstract Anthropogenic impacts have shifted aqua-

tic ecosystems far from prehistoric baseline states; yet,

understanding these impacts is impeded by a lack of

available long-term data that realistically reflects the

organisms and their habitats prior to human distur-

bance. Fish are excellent, and largely underused,

proxies for elucidating the degree, direction and scale

of shifts in aquatic ecosystems. This paper highlights

potential sources of qualitative and quantitative data

derived from contemporary, archived and ancient fish

samples, and then, using key examples, discusses the

types of long-term temporal information that can be

obtained. This paper identifies future research needs

with a focus on the Southern Hemisphere, as baseline

shifts are poorly described relative to the Northern

Hemisphere. Temporal data sourced from fish can

improve our understanding of how aquatic ecosystems

have changed, particularly when multiple sources of

data are used, enhancing our ability to interpret the

current state of aquatic ecosystems and establish

effective measures to safeguard against further

adverse shifts. The range of biological, ecological

and environmental data obtained from fish can be

integrated to better define ecosystem baseline states on

which to establish policy goals for future conservation

and exploitation practices.

Keywords Aquatic ecosystems � Fish � Historical
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Introduction

Global changes to marine and freshwater ecosystems

caused by anthropogenic activities have led to wide-

spread impacts to many species of fish. To understand

present and estimate future conditions of aquatic

environments, as well as potential adaptive responses

of the aquatic fauna, an understanding of historical

trends and conditions of baseline states is needed

(Hobday and Lough 2011; Higgs et al. 2014;
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Schwerdtner Máñez et al. 2014). Moreover, given that

aquatic ecosystems provide habitat for exploited wild

fish populations, the dual interests of exploitation and

conservation are met by restoring and preserving the

structure and function of aquatic habitats to their

baseline state (Pitcher 2005). The reconstruction of

ecosystem baseline states becomes the basis for the

concept ‘‘Back to the Future’’ (Pitcher 2001),

whereby, baseline states provide benchmarks on

which to establish policy goals for future conservation

and exploitation practices (Fig. 1). While shifts in

baseline states may result in the formation of novel

future ecosystems that lack historical analogs (Wil-

liams and Jackson 2007; Hobday 2011), developing an

understanding of biological response to ecosystem

change is still valuable to develop effective conserva-

tion strategies (Chambers et al. 2013; Hobday and

Evans 2013).

For the purpose of this paper, we define prehistoric

ecological and environmental ‘baseline states’ as

those in existence prior to human disturbance, as we

acknowledge that ancient Indigenous cultures

impacted aquatic ecosystems and the associated native

fish populations (e.g. Leach and Davidson 2000; Long

et al. 2014). Following this definition, a ‘shift’ from a

baseline state refers to the modification or degradation

of the structure and function of an ecosystem as a

result of anthropogenic impacts. Hence, time scales on

which prehistoric baseline states were present will

differ dependant on geographic location. Natural

variation is also likely to act synergistically with

anthropogenic mediated impacts, contributing to shifts

in baseline states. In this way, baseline shifts in aquatic

ecosystems are not solely due to exploitation and

habitat modification, but can also be attributed to

changes in atmospheric or hydrological conditions.

Our understanding of baseline states is often

misrepresented due to the psychological tendency to

relate changes to an ecosystem against a prior baseline

that represents a significantly altered form of the

original state of the ecosystem (Pauly 1995; Hobday

2011). In this way, long-term and significant changes

to the environmental structure and ecological func-

tioning of an ecosystem will be unintentionally

disguised, undermining efforts to restore ecosystems

to (near-) prehistoric baseline states (Pauly 1995;

Dayton et al. 1998). Thus, in order to more accurately

represent shifts in baseline states, information from

earlier time periods are required to reconstruct condi-

tions that more realistically reflect the organisms and

their habitats prior to disturbance (Jackson et al. 2001;

Pitcher 2001; Higgs et al. 2014). Dependent on the

availability (and quality) of archival information as

well as differing levels of temporal resolution, time

scales for which ecosystem baselines may be recon-

structed will differ (Fig. 2).

A suite of biological and ecological data can be

gleaned from an individual fish (Fig. 3; Table 1). Hard

parts of fish (e.g. ear bones or otoliths, vertebrae,

scales, as well as fin spines and rays) are useful for

elucidating shifts in biological and ecological pro-

cesses and the physicochemical environment. Quan-

tification of environmentally derived chemical

concentrations incorporated into these hard parts

provide a temporal record of the environmental history

of an individual that can be matched to annual growth

increment patterns (Elsdon et al. 2008). Incremental

patterns of hard parts also provide a means to reveal

the age and growth rates of fish. These structures are

sufficiently robust to be found in sedimentary deposits,

archaeological sites and the fossil record, providing

Fig. 1 Diagram illustrating the ‘‘Back to the Future’’ concept

for the restoration of past aquatic ecosystems. The perfect circle

on the left represents the prehistoric baseline state of an

ecosystem. Through time, shifts in the state of the ecosystem

results in progressively imperfect circles, where the diameter

and complexity of the circle are inversely related to biodiversity

and internal complexity. Timelines of representative species

(ellipses) are shown (as solid horizontal lines), where ellipse size

represents relative abundance. Crosses indicate species extinc-

tions and arrows indicate the introduction of non-native species

(depicted as squares and triangles). A range of potential

alternative future ecosystems (i.e. restoration goals) are drawn

to the right; however, note that due to natural variation and

alteration of ecosystem function, the prehistoric baseline state is

unlikely be perfectly replicated. Figure adapted from Pitcher

(2001)
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temporal records extending back hundreds, thousands,

and even millions of years (Fig. 2). Due to the long-

held cultural significance of fish, as well as the

commercial and recreational importance of many

species, historical accounts and archived collections of

fish are also relatively comprehensive over extended

time scales (Wandeler et al. 2007; Humphries and

Winemiller 2009; Morrongiello et al. 2012).

The overall aim of this paper is to examine the

potential use of fish to establish prehistoric baseline

states againstwhich to judge present and potential future

conditions of ecosystems and the fish species reliant

upon them. This reviewfirst highlights potential sources

of data associated with fish and then details the types of

long-term biological and environmental information

that can be obtained. Knowledge gaps and potential

future research directions are subsequently discussed.

Due to the scope of this review, we do not present an

exhaustive list, but a selection of examples from the

literature.We focus on SouthernHemisphere examples,

which remain poorly described relative to the ‘classic’

Northern Hemisphere examples of shifted baseline

states in aquatic ecosystems, such as historic declines in

Atlantic cod abundances. However, where Southern

Hemisphere examples were not available, we have

presented examples from the Northern Hemisphere.

Sources of data

Here, we briefly describe the types of data sources

associated with fish for detecting shifts in baseline

states, their temporal and spatial scales (Fig. 2), and

limitations of each data source.

Palaeontological data

Palaeontological records, prior to human influence,

provide the ultimate prehistoric baseline to place

current changes into context. Preserved fish remains

and fossilised impressions left on geological substrates

are useful tools to explore ancient fish distributions,

abundances and community structure, as well as

speciation and extinction (Baumgartner et al. 1992;

Finney et al. 2010). Variations in fish populations and

taxa across time and space can be further used to infer

past climate and oceanographic conditions (Monsch

1998; Girone and Nolf 2009). The chemical record

locked within body fossils can reveal information

about past environmental conditions on finer temporal

and spatial scales (Price et al. 2009), as well as fish

movement, habitat use and metabolic rate (Schmitz

et al. 1991; Carpenter et al. 2003; Price et al. 2009).

Fig. 2 The period of modern scientific data (shaded area)

approximately spans the last 50–100 years. The integration of

data derived frommultiple sources extends the temporal breadth

of data sets (and the resultant reconstructions of baseline states)

over several 1000 years into the past; however, palaeontological

and archaeological data may not easily be temporally resolved

(dashed lines). The availability of data from each source varies

temporally (solid line); however, it is likely that temporal

discontinuities exist, such that data availability is not just a

function of time (as depicted here) and subject to a suite of

limiting factors specific to each source of data (refer to text).

Figure adapted from Lotze and Worm (2009)

Fig. 3 Examples of ecological information that can be obtained

from fish to detect shifts in baseline states (note various

components not to scale): (a) otoliths, (b) vertebrae, (c) fin

spines and rays, (d) skin, (e) flesh, (f) viscera, (g) scales, (h) teeth

and skeletal remains (jaw image used with permission from R.

Baldock), and the (1) whole organism, (2) body dimensions
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Furthermore, data on growth rate, ontogenetic events

and age have been obtained through the analysis of

growth increments within fossil otoliths (Woydack

and Morales-Nin 2001). Fossilised soft tissues,

although extremely rare, provide insights into ancient

diet (Wilby and Martill 1992) and reproductive

strategies (Long and Trinajstic 2010).

A specific suite of environmental, biological and

geochemical conditions is required to adequately

preserve fossil remains (Donovan 2002); thus, the

fossil record may under- or over-represent certain

habitats, taxa, body parts, time periods and geographic

regions. Taphonomic (fossilisation) processes that

occur between death, preservation and subsequent

discovery may affect the suitability of fossils for

analyses. For example, a fish carcass may undergo

post-mortem transport prior to final burial (e.g. Long

and Trinajstic 2010), potentially confounding infer-

ences derived from chemical analyses. The degree of

diagenesis (alteration of the fossil’s original chemical

and structural composition) can also affect the accuracy

of chemical analyses (Schmitz et al. 1991; Zazzo et al.

2006) and the visualisation of growth increments in

otoliths (Woydack and Morales-Nin 2001). Useful,

well-preserved fossils are a relatively rare data source,

but if acquired, are excellent for establishing baselines.

Archaeological data

Archaeological fish remains are confined to times of

human habitation, which vary greatly among regions,

and are frequently recovered from archaeological sites

(e.g. Casteel 1976; Disspain et al. 2015). Hence, these

remains reflect selective processes rather than direct

representations of former fish populations (Reitz

2004). In addition, archaeological data may reflect

populations impacted by human predation from

Indigenous people, even at subsistence levels, and

may not accurately represent pre-exploitation baseli-

nes (Mannino and Thomas 2002).

As with palaeontological samples, species identifi-

cation and analyses of the chemical and chronological

properties of fish remains (Disspain et al. 2015)

enables more accurate and in-depth baseline data to be

collected concerning fish species, size, age, habitat use

and movement (Rose 1996; Van Neer et al. 2002;

Balazik et al. 2010), as well as palaeoenvironmental

conditions (Wurster and Patterson 2001; Zazzo et al.

2006). However, consideration of taphonomic pro-

cesses (Zohar et al. 2008), degree of preservation (Bird

1992; Przywolnik 2002), and collection techniques

(Vale and Gargett 2002; Nagaoka 2005) are similarly

required as each may contribute to the loss of material

from the record and influence final interpretations of

ecological baselines (Zohar et al. 2008). Archaeolog-

ical fish remains are also powerful aids to understand-

ing human behaviour and exploitation of the

environment; analyses can explore seasonal exploita-

tion patterns and the movement of people within the

land, methods of capture, diet, food processing

methods, trade routes and cultural practices or pref-

erences (Colley 1990; Higham and Horn 2000).

Table 1 The range of information that may be obtained from individual fish to detect biological, ecological and environmental

baseline shifts

Component of fish Information obtained

Fish biology and ecology Environmental

conditions

D/D M/C S/A Gr R FW GD Sc E/I

Hard parts x x x x x x x x x

Flesh and skin x x x x

Teeth and skeletal

remains

x x x x x x x x x

Viscera x x x

Whole organism x x x x

Body dimensions x x x x

D/D diversity, distribution and abundance, M/C migration and connectivity, S/A size/age structure, Gr growth, R reproduction, FW

diet and food webs, GD genetic diversity, Sc sclerochronology, E/I elements and isotopes
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Historical records

A range of data sources generally categorised as

historical records are associated with periods of explo-

ration, settlement and the expansion of communities.

This past information can be used to profile the

development of fisheries, changes in fishing gear or

effort, as well as fluctuations in catch quantities and

composition (Klaer 2001; Parsons et al. 2009). These

sources can be difficult to reconcile, but are valuable in

understanding long-term patterns of resource use,

because they spanmultiple ecological scales. Historical

references can also be combined with contemporary

fisheries and ecological models to generate estimates of

biomass or distribution prior to or in the early stages of

exploitation (e.g. Rosenberg et al. 2005).

Anecdotes, including qualitative statements in

journals or diaries of explorers and settlers, provide

information on species occurrences prior to historical

exploitation. Individual references can be directly

used as observations (Jackson 1997; Hardt 2009) or

coded into quantitative estimates of perceived abun-

dance (Palomares et al. 2007; Fortibuoni et al. 2010).

Alternative sources of anecdotal (qualitative) infor-

mation include artwork and photographs (e.g. Fig. 4),

which can compare changes in fish sizes over time

(McClenachan 2009), and local restaurant seafood

menus, which, over many consecutive years, may

provide a useful proxy for understanding changes in

fish populations (Van Houtan et al. 2013). The early

development of legislation can indicate when and why

governments became concerned about a species or

area (Kirby 2004), as well as provide a detailed

account of changes in the management of fisheries or

human impacts.

Interviews of fishers have shown there can be

generational differences between historical and con-

temporary fisheries including shifts in the composition

and quantities of catches and changes in the location of

fish or fisheries (Ainsworth et al. 2008; Thurstan et al.

2015). Minutes of evidence obtained during earlier

parliamentary inquiries have also been used to retro-

spectively review past interviews (Thurstan et al.

2013). In some instances fisher knowledge has

uncovered past local or species extinctions that would

otherwise have been undetected (Sadovy and Cheung

2003; Turvey et al. 2010).

Challenges to the use of historical records are the

ability to convert this information into a useable

format, the uptake of these data in conventional

models, and an often patchy or isolated temporal span;

however, using multiple sources of data greatly

reduces uncertainty. Historical records can validly be

included into existing models to extend timelines, for

example the mean trophic level of fisheries (Alleway

et al. 2014) or population models to estimate past

biomass (Rosenberg et al. 2005).

Commercial fisheries catch data

Commercial fisheries catch data (recorded landings,

effort, and estimates of relative abundance) have

been recorded for some fisheries since the mid-

1800s, providing valuable insights into the use of

fish resources and fishing activities (Lotze and

Milewski 2004; Hobday and Evans 2013). Fisheries

catch records provide continuous data sets of

commercial fishing activities, with more recent data

providing greater detail and finer spatial and tem-

poral resolution, although this may vary among

fisheries (Pinnegar and Engelhard 2008). Even over

relatively short time periods (20–50 years), com-

mercial fisheries data can reveal dramatic changes in

fishing effort, declines in catches, and shifts in target

species (Klaer 2001; Ferguson et al. 2013). How-

ever, estimated population abundances extrapolated

from commercial catch data generally represent fish

populations in an already impacted state (Jackson

et al. 2001; Pinnegar and Engelhard 2008; Humph-

ries and Winemiller 2009).

Fig. 4 Commercial catch of Murray cod (Maccullochella

peelii), viewed across the foredeck of P.S. Mayflower (circa

1914) (The State Library of South Australia: Record No.:

PRG1258/1/2600). Murray cod are no longer commercially

fished in the RiverMurray and are listed as nationally threatened
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Due to the fisheries-dependent nature of these data,

there is a strong bias towards commercially exploited

species. Data for incidentally caught species are

generally spatially and temporally patchy due to poor

reporting (Stobutzki et al. 2001). As with target

species, catch records for non-target species likely

represent population abundances and distributions in

an already impacted state; nevertheless, fisheries data

are still invaluable in tracking relative changes in

abundances (Zeller and Pauly 2005).

The collation of long-term data sets from multiple

fishery agencies and across multiple time periods

requires standardisation to minimise the confounding

effects of biological variability and changes in fishing

practices (e.g. changing quotas, methodological

advances: Bishop 2006). Increasing the catchability

of species will erroneously suggest an apparent

abundance in fish resources and underestimate popu-

lation shifts (Quinn and Dersio 1999; Bishop 2006).

However, statistical approaches can standardise catch

data (Quinn and Dersio 1999; Hobday and Evans

2013).

Experimental and monitoring data

Ecological research in the aquatic environment,

including laboratory experimentation, field collections

and observations, and environmental monitoring, has a

relatively short history, extending back only 100 years

or so (Jackson 1997). Nevertheless, such quantitative

data covers a period in time that is marked by an

intensification of anthropogenic pressure on the

aquatic environment (Jackson et al. 2001). Increased

understanding of the correlative and/or causative

influence of extrinsic factors on key biological and

ecological processes provides a framework on which

to interpret and calibrate older, qualitative data

sources (Jackson et al. 2001; Hobday and Evans

2013). For example, experimental data linking water

chemistry with otolith chemistry (Elsdon and Gillan-

ders 2002, 2005) has been used to reconstruct the

environmental conditions experienced by fish in the

mid- to late-Holocene (Disspain et al. 2011).

Monitoring of fisheries resources and aquatic

ecosystems, including assessments of biodiversity,

stock biomass, and population structure (i.e. genetic

structuring, size and age frequencies), provide key

measures of the health of aquatic environments at a

given point in time (e.g. Babcock et al. 2010).

Discontinuities may exist in the timing and spatial

coverage of monitoring data, as well as in the

methodologies used to obtain the data between

sampling periods, resulting in multiple short-term

datasets. However, the value of these quantitative data

cannot be discounted for investigating and tracking

environmental change through time.

Baseline information obtained from data sources

The various data sources associated with fish (refer to

‘‘Sources of data’’ section above) can be broadly

categorised as providing baseline information on (1)

fish biology and ecology and on (2) environmental

conditions. Using some key examples from the

literature, we highlight how data sourced from fish

have detected biological, ecological and environmen-

tal baseline shifts.

Fish biology and ecology

Diversity, distribution and abundance

A range of data sources provides insights into how fish

diversity, abundance and distribution have shifted

over decadal, centennial and even millennial time

scales. Many key examples of baseline shifts in the

aquatic environment demonstrate changes in fish

abundance, largely focusing on exploited species

linked to overfishing (Pauly 1995; Pitcher 2001;

Pinnegar and Engelhard 2008). These fishery-related

studies are primarily focused on periods relevant to

European colonisation and/or the Industrial Revolu-

tion and the associated onset of large-scale commer-

cial exploitation (Jackson et al. 2001; Pinnegar and

Engelhard 2008). During this period, examples exist of

declines in fish abundance, generally in large bodied

species that are slow-growing and late-maturing, for

example Murray cod (Maccullochella peelii) (Row-

land 1989; Humphries and Winemiller 2009; Alleway

et al. 2016) and Australasian snapper (Chrysophrys

auratus) (Parsons et al. 2009; Thurstan et al. 2016),

with the latter species experiencing an estimated 80 %

reduction in biomass in the Hauraki Gulf/Bay of

Plenty region of northern New Zealand (Gilbert 1994).

Declines in such species also result in global or
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localised extinctions, altering community structure

and diversity (Fortibuoni et al. 2010; Turvey et al.

2010; Last et al. 2011). However, substantial variation

observed in ancient fish abundances prior to industrial-

scale fishing have been linked with climatic cycles

(Finney et al. 2010). For example, a 1700 year long

reconstruction of fish scale deposition in sedimentary

cores, found that sardine (Sardinops sagax) and

anchovy (Engraulis mordax) populations in California

had undergone regular 60–100 year cycles of collapse

and recovery (Baumgartner et al. 1992). To our

knowledge, such temporally extensive reconstructions

of a Southern Hemisphere fish species have not been

undertaken.

More recently, scientists have linked long-term

unidirectional shifts in fish distribution and abundance

to anthropogenic climate change (Holbrook et al.

1997; Perry et al. 2005). Such shifts are usually

associated with increases in water temperature and the

subsequent expansion, extension or contraction of a

species natural distributional range (Madin et al.

2012). One of the most well-documented examples in

the Southern Hemisphere relates to the poleward shift

of 45 fish species in south-east Australia, a notable cli-

mate change hotspot (Last et al. 2011). Although

anecdotal evidence exists in relation to temperature-

induced range shifts (Gartside et al. 1999), accurately

identifying the causal links associated with changing

fish distributions is difficult due to the paucity of

historical baseline data (Booth et al. 2011; Madin

et al. 2012). Existing decadal-scale scientific surveys

enable fish distributional patterns to be tracked

(Stuart-Smith et al. 2010), but they cover only

comparatively short time scales and are expensive to

implement. Recently, online citizen science databases

have provided an on-going record of fish diversity,

distribution and abundance, and if maintained will

provide a valuable insight into how these climate-

related baselines are shifting from today into the

future (e.g. http://www.redmap.org.au: see Last et al.

2011).

Undoubtedly, alterations in baseline fish diversity,

abundance and distribution have occurred due to

anthropogenic stressors such as invasive species,

pollution and habitat modification (Bax et al. 2003;

Shahidul Islam and Tanaka 2004). However, few

studies have examined long-term changes in fish

populations in association with these stressors, war-

ranting further investigation.

Migration and connectivity

Although wholesale shifts in fish distributions are

relatively well documented, long-term alterations in

migration and connectivity patterns are not well

known, impeding our ability to detect them through

time. Conventional tag and recapture data as well as

direct observations of fish movements can provide a

measure of fish migration. Monitoring fishways on the

River Murray in Australia showed a drastic decline of

native species moving through the river system,

including reductions of 95 % in silver perch (Bidyanus

bidyanus), 96 % in Murray cod, and 51 % in golden

perch (Macquaria ambigua) spanning 47 years (Mal-

len-Cooper and Brand 2007). These observational data

can also highlight phenological shifts in the timing of

migratory events. While no examples exist for South-

ern Hemisphere fish (Chambers et al. 2013), there are

numerous examples in the Northern Hemisphere,

particularly for salmonids (Poloczanska et al. 2013).

For example, delays of up to 21 days in the seasonal

timing of spawning migrations of Atlantic salmon

(Salmo salar) have been observed over a 39 year

period, and correlated to long-term changes in tem-

perature and flow rates in several North American

rivers (Juanes et al. 2004). In addition, these shifts in

migration may be coincident with changing trends in

life history patterns of fish. However, there are few

instances where appropriate methods have been

implemented over sufficiently extensive time periods

to detect changes in migration and habitat use of fish.

Chemical (element and isotope) analyses of fish

hard parts provide means of reconstructing migratory

patterns over considerable time scales (Carpenter et al.

2003; Disspain et al. 2011). For example, elemental

profiles in ancient otoliths may be contrasted against

modern samples to examine changes in migratory

patterns between collection periods. Hard part chem-

istry has also provided an understanding of meta-

population structure with respect to interchange of

adults and larvae between habitats (Bode et al. 2006).

Size and age structure

Data relating to fish body mass and length can be used

to examine trends in the size frequency of a population

or species over time. These types of data are valuable

as they are relatively easy to source from records of

commercial landings (e.g. Genner et al. 2010) and

Rev Fish Biol Fisheries (2016) 26:265–286 271

123

http://www.redmap.org.au


environmental monitoring (e.g. Bell et al. 1985), and

effects of fishing on fish size are well understood

(Rochet and Trenkel 2003; Jennings and Dulvy 2005).

When contemporary records are combined with

archaeological samples, a broad temporal record can

be examined and shifts in the size frequency might be

detected. For example, a decrease in large predatory

fish assemblages in the Northern Hemisphere is

attributed to fishing in the Roman period (Luff and

Bailey 2000) and in the Southern Hemisphere by

fishing from pre-European New ZealandMaori (Leach

and Davidson 2000). Studies on more recent and

shorter temporal periods are numerous (e.g. Ferguson

et al. 2013) and can show effects of industrialised

fishing on size classes of target species (Babcock et al.

1999; Dulvy et al. 2004). However, problems from

size based techniques may arise from growth and age

at size (i.e. length of fish is often used as a proxy for

age) varying independently of fishing effort (Luff and

Bailey 2000).

Information from growth increments within fish

hard parts can provide an accurate measure of fish age

when validated (Campana 2001), providing a power-

ful biological tool to measure temporal patterns of

recruitment and the health of fish populations (Hsieh

et al. 2006). Analysis of the selective effects of fishing

on age structures has provided contrasting historical

and contemporary data on a short-lived species,

southern garfish (Hyporhamphus melanochir) from

South Australia (Fowler and Ling 2010). Comparisons

of the age structures from commercial catches during

two periods, 50 years apart, indicate a decrease in the

dominate age cohorts from 3? and 4? year olds to

1? and 2? year olds, implying a truncation in the

population age structure. Over similar time scales,

truncated age structures are also evident in longer

lived species (Walsh et al. 2010; Stewart 2011).

Reductions in age classes are concerning, as they can

increase stock vulnerability to environmental change

(Hsieh et al. 2006) and/or show a lack of recruitment

success (Ferguson et al. 2008; Whitten et al. 2013).

However, like size based studies, it is important to

validate data because erroneous age information has

been a factor in the over-exploitation of fish stocks; for

example, initial underestimation of the length-at-age

(and hence rates of growth and mortality) of orange

roughy (Hoplostethus atlanticus) resulted in unsus-

tainable harvesting of the species (Smith et al. 1995;

Campana 2001).

Growth

Relative shifts in somatic growth rates provide a

means of detecting changes in population abundance

as a density dependent response to exploitation

(Ziegler et al. 2007) and/or as a physiological response

to changing environmental conditions (Neuheimer

et al. 2011). Comparisons of growth curves (e.g. von

Bertalanffy growth function, Gompertz growth func-

tion) provide evidence of changing growth rates

through time (e.g. Fig. 5). These studies are largely

fisheries-based and focused on exploited species.

Hence, changes in growth rates are generally assumed

to be the result of length-selective fishing mortality

(Walker et al. 1998), but may also be attributed to

environmental change (Cottingham et al. 2014).

Comparisons of growth rates can be made among

populations of fish sampled discontinuously through

time and at broad spatial scales, allowing contempo-

rary growth to be contrasted against estimates of

growth derived from archaeologically sourced sam-

ples (Disspain et al. 2011). It must be noted that

relative changes in growth (as depicted by growth

curves) may be driven by exploitation and

Fig. 5 Comparisons of von Bertalanffy growth curves for

southern garfish (Hyporhamphus melanochir) in southern

Australia, sampled 47 years apart. Solid line depicts data for

garfish sampled in 1954/55 (n = 2234) (Ling 1958), and the

dashed lines show data for garfish sampled between 1997 and

2000 (n = 2079) (Ye et al. 2002). Reported sizes at first

maturity are also indicated (gray triangle)
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environmental variability, as well as sampling biases

and other methodological considerations (Moulton

et al. 1992;Walker et al. 1998). These factors, working

independently or in combination, may inflate real

shifts in growth rates, necessitating critical assess-

ments of the data when drawing comparisons among

multiple disparate studies.

Alternate approaches to assessing changes in

somatic growth over time are based on annual growth

of an individual either through physical measurements

of the body (i.e. lengths and weights) or via a proxy

(i.e. hard parts). Assessments of length-at-age dynam-

ics are capable of detecting shifts in growth and have

been used to document year-to-year changes in growth

over multiple decades (e.g. Whitten et al. 2013). Even

over relatively short periods of time (i.e. 10 years),

significant increases in growth have been observed in a

commercially targeted population of long-lived

banded morwong (Cheilodactylus spectabilis) from

eastern Tasmania, Australia (Ziegler et al. 2007).

Given that the species can live up to 95 years

(Thresher et al. 2007), growth increases (i.e. 13 % in

the 3-year age cohort) in a 5–10 year period suggest a

density-dependent phenotypic shift in the demography

of the population (independent of genotypic influence)

(Ziegler et al. 2007).

Sclerochronological analyses, the examination of

growth increment patterning in hard parts, provides an

excellent proxy record of growth, assuming that for a

given species a relationship exists between growthof the

hard part (i.e. width of the growth increments) and

somatic growth (Morrongiello et al. 2012). Scle-

rochronology and measured changes in length-at-age

are advantageous over direct comparisons of growth

curves, as they provide time resolved chronologies of

growth that extend back over decadal and centennial

time scales. This facilitates assessments of long-term

correlations to time series data, such as recruitment

indices, catch statistics and instrumental environmental

measures (Morrongiello et al. 2014; Morrongiello and

Thresher 2015), allowing the causative effects of

environment and human induced pressures on fish

populations to be disentangled. However, physiological

regulators of growth, such as species-specific temper-

ature optima, may decouple relationships between

somatic and hard part growth potentially confounding

changes in growth rates (Neuheimer et al. 2011).

Currently, the most extensive sclerochronologies

developed from aquatic environments are based on

increment patterning in coral skeletons and bivalve

shells, with otolith-based chronologies starting to

become more common (Morrongiello et al. 2012).

For example, in the Southern Hemisphere, a number of

recent studies have investigated growth patterns in

freshwater, estuarine and marine fish over centennial

and decadal time scales, linking fluctuations in growth

to environmental variation (Morrongiello et al. 2011;

Gillanders et al. 2012; Doubleday et al. 2015). While

sclerochronologies enable the exploration of inter-

annual changes in mean population growth, correla-

tions between growth and environmental parameters

facilitate the predictive modelling of future growth

under climate change scenarios (Morrongiello et al.

2011). For example, using sclerochronological

approaches, an annually resolved 50 year chronology

(1952–2003) for western blue groper (Achoerodus

gouldii) from south-western Western Australia, was

positively correlated with regional sea surface tem-

perature (Rountrey et al. 2014). Based on this

observed correlation, additive models were used to

predict otolith growth and body size under future

warming scenarios (i.e. a fish 20-years of age in 2099

would have a body size approximately 5 % larger than

a 20-year old fish in 1977).

Reproduction

Changes in rates of growth often coincide with shifts

in the reproductive biology of species (e.g. Fig. 5). For

example, selective pressure (i.e. from fishing or

unfavourable conditions) may encourage rapid growth

and the early onset of sexual maturity due to selection

for that trait (genetic) or compensatory responses, such

as density dependence (Trippel 1995). Increased

growth in Tasmanian banded morwong corresponded

with a decline in female age at 50 % maturity (Ziegler

et al. 2007). Similarly, temporal changes in growth of

gummy shark (Mustelus antarcticus) from south-

eastern Australia, coincided with changes in the

length-at-maturity (Walker et al. 1998; Walker

2007). These changes were assumed to be in response

to increasing fishing mortality such that increased

fishing intensity resulted in the early onset of maturity

(Walker 2007). However, delineating causes of early

maturation is difficult in many species, since changes

to the timing of maturity may be constrained by

species-specific responses to both genetic and com-

pensatory factors (Trippel 1995). The use of
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maturation reaction norms, describing the probability

of fish maturity as a function length, has been used to

assess temporal change in the size and length of

maturation of fish (Heino et al. 2002), and facilitate

exploration of genotypic and/or phenotypic influences

on changes in the time to maturity. Comparisons of

reaction norms for maturation of the Western Aus-

tralian estuary cobbler (Cnidoglanis macrocephalus)

sampled at two periods, 20 years apart, indicated a

significant decrease in the length- and age-at-maturity

over time (Chuwen et al. 2011). The observed shift in

the maturation reaction norm for C. macrocephalus,

independent of growth, which remained stable through

time, implies that changes in the length- and age-at-

maturity represent a genotypic response to historic

fisheries pressure on the population.

In the absence of direct observations of the

reproductive state of fish, stable carbon (d13C) and

oxygen (d18O) isotopes in fish hard parts may provide

some utility in quantifying changes in the timing of

sexual maturity (Schwarcz et al. 1998; Begg and

Weidman 2001). However, these shifts may be

confounded by fluctuations in ambient environmental

concentrations and therefore require further explo-

ration (Schwarcz et al. 1998).

Diet and food web dynamics

Studies examining dietary shifts in fish have con-

trasted dietary patterns (e.g. stomach content analyses)

over relatively short time periods (decades) to better

aid in detecting shifts in the complexity of food webs

and the reduction of the number of trophic levels

present in aquatic ecosystems; though we found few

examples of such studies (and none representative of

the Southern Hemisphere). These studies have docu-

mented significant shifts in the prey composition and

relative importance of targeted species in the diets of

predatory species (Overholtz et al. 2000; Feyrer et al.

2003). Changes in prey exploitation largely reflect

changes in abundances of prey species through time

and provide insights into altered food web dynamics

(Overholtz et al. 2000).

Isotopic signatures preserved within the hard parts

of fish have been recently recognised as valuable

proxies of fish diet and trophic position over long

temporal scales. Nitrogen isotopes (d15N) within

ancient midden otoliths revealed the trophic position

of four fish species living in the Gulf of California

1500–5000 years ago based on the well-described and

predictable relationship between trophic position and

d15N values, traditionally analysed in soft tissue

(Rowell et al. 2010). Validation studies have also

shown the potential of d13C and d15N isotopes,

specifically within the organic component of the

otolith, as powerful tools for reconstructing dietary

and trophic histories (McMahon et al. 2011; Grønkjær

et al. 2013). Furthermore, a global meta-analysis of

otolith d13C values measured in 60 fish species found

that otolith d13C values among species were consis-

tently explained by an index of aerobic swimming

capacity (Sherwood and Rose 2003). These findings

suggest that d13C values in otoliths could be used to

reconstruct historical changes in aerobic activity,

foraging patterns and food web dynamics in fish. In

addition to isotopic records, historical dietary records

of fish could also be used to examine shifts in diet and

food web dynamics, as well as the stomach contents of

preserved or fossilized specimens (although the latter

is exceedingly rare: see Wilby and Martill 1992).

Genetic diversity

Archived and preserved fish remains provide valuable

sources of DNA that represent genetic signatures of

fish populations from decades or centuries past

(Wandeler et al. 2007), providing insights into geno-

typic shifts in populations that are under a range of

selective pressures (e.g. genotype-selective fishing

mortality) (Hauser et al. 2002; Swain et al. 2007). A

review of the suite of genetic methodologies is not

within the scope of this paper and have been covered

elsewhere (e.g. Nielsen and Hansen 2008). Placing

population genetic studies in a historic context is

becoming common, and such studies have identified

the extinction or replacement of native populations

(and their genetic composition) with introduced

lineages (e.g. Nock et al. 2011).

On ecological time scales, comparisons of genetic

variation within fish populations have shown temporal

declines in genetic diversity and decreased heterozy-

gosity for exploited species of fish, such as the orange

roughy (Smith et al. 1991) and Australasian snapper

(Hauser et al. 2002). Decreased genetic diversity may

also result in a reduction of effective population sizes

(Nielsen et al. 1997; Nielsen and Hansen 2008). The

application of seven microsatellite markers obtained

from historical and contemporary scale collections of
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Australasian snapper has helped to explain demo-

graphic declines in abundance, which resulted in 25 %

decline in a New Zealand population of fished snapper

over 35 years (Hauser et al. 2002). In this way,

temporal patterns of genetic diversity can be used to

track trends in a population’s abundance. Assessments

of genetic diversity have also demonstrated selection

at the molecular level, with the pantophysin (Pan I)

locus in gadoid fishes of the Northern Hemisphere

receiving the most attention (Nielsen and Hansen

2008). Selection at Pan I has been linked to shifts in

growth phenotypes among populations and individu-

als (Case et al. 2005; Nielsen et al. 2007), suggesting

fishing-induced selection of genotype frequencies

(Jakobsdóttir et al. 2011). However, evidence shows

that selection at Pan I may also have an environmental

basis (Case et al. 2005). Genetic monitoring of allele

frequencies may therefore enable the assessment of

adaptive responses to exploitation and/or environmen-

tal change through repeated analyses of the same

populations over time.

In spite of dramatic declines in fish abundances and

changes in genetic diversity within populations,

genetic population structure among spatially separated

groups remains temporally stable in fishes based on

archived and contemporary population comparisons

(e.g. Bernal-Ramı́rez et al. 2003; Palstra and Ruzzante

2010), with a few exceptions (Østergaard et al. 2003).

This suggests that applications of genetic data are best

suited to detect temporal changes of within population

genetic diversity and genotype expression.

Environmental conditions

Sclerochronology

Sclerochronologies can be used as proxies to recon-

struct past climatic or oceanographic baselines as well

as examine shifts in the growth of an organism over

time (refer to ‘‘Growth’’ section above) (Thresher et al.

2007; Morrongiello et al. 2012; Thresher et al. 2014).

When sclerochronology is correlated with environ-

mental parameters (e.g. hydrologic, oceanographic,

meteorologic) for a given area, long-term records of

the seasonality of climate-growth relationships and the

effects of temporal environmental variability can be

deduced (Black et al. 2005; Gillanders et al. 2012). For

example, historical annual growth rates over the last

century were reconstructed from the otoliths of a suite

of south-western Pacific fish species. These growth

rates correlated with ocean temperature and exhibited

significant changes based on depth (Thresher et al.

2007).

To further assess the environmental history of an

area, elemental chemistry and stable isotope data

collected from hard parts (see Table 2) can be coupled

with the corresponding sclerochronological and envi-

ronmental records of an area to produce a complete

record of the environment that the fish has been

exposed to over the course of its life time (Campana

and Thorrold 2001; Gao and Beamish 2003; Black

et al. 2005). This in turn allows realistic baselines,

both biological and environmental, to be established

and often, extended further back in time (Andrus 2011;

Disspain et al. 2015).

Elements

Element concentrations in fish hard parts have been

related to the surrounding ambient water chemistry

(Schmitz et al. 1991; Wells et al. 2000). Thus,

elemental quantification provides a means of describ-

ing the environmental histories of fish, as well as

enabling the reconstruction of past environmental

conditions experienced by fish (see Table 2 for

description of elements relating to particular environ-

mental parameters).

Time scales of environmental reconstructions

based on elements in hard parts are restricted by the

longevities of the fish species, with some individuals

living over 100 years of age (e.g. Thresher et al. 2007),

or the age of the samples. For example, comparisons of

mean manganese (Mn) concentrations in Neolithic

otoliths of Baltic cod were used to infer exposure to

hypoxic conditions over a millennial time scale

(Limburg et al. 2011).

The migratory nature of fish, both vertically and

horizontally, may confound efforts to reconstruct past

environmental conditions (Campana and Thorrold

2001). For example, element analysis in archaeolog-

ical otoliths of mulloway (Argyrosomus japonicus)

detected irregular patterns of barium (Ba):Ca, sug-

gesting either considerable environmental changes in

the Murray River system over time or frequent

movements between freshwater and saltwater habitats

(Disspain et al. 2011). Estimates of previous riverine

conditions from archaeologically derived otoliths of

Rev Fish Biol Fisheries (2016) 26:265–286 275

123



Murray cod suggest the species was exposed to

significant fluctuations in temperature and salinity

prior to the development of the barrages and water

management (Disspain et al. 2012).

Isotopes

A range of isotopes have been used to reconstruct past

climates and environmental conditions from archae-

ological andmodern calcium carbonate remains of fish

(see Table 2). Although many of these isotopes are

potentially applicable for use in fish, d18O, 87Sr/86Sr

and radiocarbon (14C) are the mostly widely used to

date. Although isotopes have beenmeasured in a range

of fish hard parts, caution is suggested around the use

of skeletal bone for isotopic analyses, as isotopic

content is likely to degrade after death. Other hard

parts are thought to be less susceptible to changes in

isotopic ratios following death, but little research on

diagenetic changes has been conducted (but see

Lubinski 1996; Andrus and Crowe 2002).

Fish, like other aquatic organisms, precipitate d18O
into calcium carbonate structures as a function of

water temperature and ambient water d18O content.

The latter may vary as a function of salinity in coastal

waters, since the d18O of water reflects evaporation,

condensation, continental runoff and water mixing

(Andrus 2011). If there is a strong seasonal temper-

ature gradient, but little variation in salinity, then

profiles of d18O across otoliths (for example) may be

used to reflect past temperatures (Andrus 2011).

Similarly, if there is little variation in temperature

but marked changes in precipitation, then d18O may

reflect changes in salinity. Therefore, where there is no

a priori knowledge of d18O of water, as for midden

samples, it is difficult to assign temperatures or

salinity (Andrus 2011). Modern experimental studies

are generally required to validate the use of d18O for

reconstructing past environments. Such studies indi-

cate that variation occurs on a species-by-species basis

suggesting a need for many proxy validation studies

(Thorrold et al. 1997; Elsdon and Gillanders 2002).

Clumped isotope geochemistry, or the state of order-

ing of rare isotopes, represents a means of overcoming

the lack of information on palaeo d18O of water,

thereby providing a palaeothermometer. In the case of

carbonates, growth temperatures are based on the

differences in bonds between 13C and 18O within the

same carbonate ion group (Eiler 2011). FurtherT
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information on clumped isotope geochemistry is

provided in Ghosh et al. (2006) and Eiler (2007). This

proxy for temperature has been validated for six

species of fish spanning a latitudinal gradient (Ghosh

et al. 2007), but has yet to be applied beyond use on

modern day fish.

Strontium isotopes can also be used to study salinity

through time but are restricted to low salinity waters.

The 87Sr/86Sr ratio of seawater has essentially

remained the same for the past 400,000 years

(0.709) and is similar across the world’s oceans,

whereas the Sr isotopic composition of river water

reflects the 87Sr/86Sr of the bedrocks in the catchment

area (Ingram and Sloan 1992). Because otolith
87Sr/86Sr is primarily determined by ambient water

chemistry, applications have largely been limited to

modern day fish (e.g. Schmidt et al. 2014). Compar-

isons of Sr isotopes have been made between ancient

fish remains and modern day water samples; however,

most samples could not be assigned to a precise

geographical locality, potentially indicating spatial

heterogeneity within a lake, a dietary contribution or

post-mortem alteration of Sr during fossilisation

(Dufour et al. 2007).

Bomb radiocarbon (D14C) in the aquatic environ-

ment (Fig. 6) can be used as a high-resolution dating

tool, an important tracer of water mass circulation and

to more accurately model the global carbon flux

(Kalish 1994; Grammer et al. 2015). Bomb radiocar-

bon is the deviation of a sample’s 14C/12C ratio from

pre-industrial levels due to worldwide testing of

thermonuclear weapons from the 1950s to the 1970s

(Mahadevan 2001). The D14C ‘‘bomb pulse’’ has been

readily assimilated into both fresh and seawater

masses, as well as in hard parts of aquatic organisms

(Fig. 6; Kalish 1993).

Levels of bomb radiocarbon in corals and bivalves

have been used to trace water masses (Toggweiler

et al. 1991; Schöne and Gillikin 2013). In contrast, fish

hard parts have been underused for similar applica-

tions, with D14C primarily being investigated as a

means of age validation. Regional D14C curves (as

seen in Fig. 6) may be compared with other regional

curves to examine how radiocarbon is responding

temporally within a system. Levels of D14C in marine

environments are also depth dependent and generally

become lower with increasing depth; water masses can

be distinguished relative to the amount of mixing

occurring by depth and region (e.g. Grammer et al.

2015). Changes in the levels of D14C in the otolith

cores of petrale sole (Eopsetta jordani) were corre-

lated with strong, variable upwelling events in the

California Current system along the western coast of

the United States, but rates of upwelling through time

were not estimated (Haltuch et al. 2013).

Discussion

This review has demonstrated the potential for fish

derived data to elucidate the degree, direction and

scale of shifts in aquatic ecosystems. The range of

biological, ecological and environmental data

obtained from fish can aid in reconstructing ecosystem

baseline states on which to establish benchmarks for

restoration. This review sought to highlight baseline

shifts in the Southern Hemisphere using data sources

associated with fish, because there is a paucity of time

series data spanning hundreds of years in comparison

to the Northern Hemisphere (particularly Europe and

North America) (Chambers et al. 2013). Fish can help

Fig. 6 An example of a bomb radiocarbon curve in the aquatic

environment: D14C (±1 SD) from the otoliths of known-age

Australasian snapper (Chrysophrys auratus, gray circle) (Kalish

1993) and nannygai snapper (Centroberyx affinis, black circle)

(Kalish 1995) over the time period 1918–1990. Measurements

of D14C from hermatypic coral (diamond) samples in Fiji are

presented for comparison (Toggweiler et al. 1991). The dashed

box represents the period of significant increase of the D14C in

the aquatic environment, with the 14C signal first detectable in

Southern Hemisphere marine surface waters around 1958 and

peaking in the 1970s
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bridge this knowledge gap by improving our under-

standing of changes to aquatic ecosystems, and as a

result, improve management strategies to restore

shifted baselines (see example in Fig. 7) (Schwerdtner

Máñez et al. 2014). Continuing to focus on recent

modification will perpetuate shifts away from prehis-

toric levels, and while this may slow change, it will

ultimately fail to promote ecosystem restora-

tion (Jackson et al. 2001; Pitcher 2001; Higgs et al.

2014).

Returns to baseline states may be unrealistic, as

natural variation and modification at every level in the

ecosystem will hinder complete restoration (Pitcher

2005; Hobday 2011). Therefore, the real challenge for

conservationists and resource managers, is to use time

series data to better identify conditions and mecha-

nisms that lead to dramatic shifts in baselines as well

as understand patterns of organismal response to

change, with the intent of predicting or safeguarding

against further shifts (Connell et al. 2008; McCle-

nachan et al. 2012; Schwerdtner Máñez et al. 2014).

In order to better utilise fish as a reliable source of

long-term biological and ecological data, we suggest

that future research be aimed at meeting a number of

specific focus areas:

• Apply archived fish samples to bridge temporal

discontinuities in data sets (e.g. Fig. 2). Specific to

the Southern Hemisphere, many sources of data

(e.g. palaeontological and fisheries data) are defi-

cient in availability relative to the Northern

Hemisphere. This discrepancy has likely arisen

due to the long histories of exploration, exploita-

tion and scientific investigation of many Northern

Hemisphere countries (Chambers et al. 2013;

Litzow et al. 2016). Consequentially, there are

few data sets of sufficient temporal breadth to

demonstrate shifts in biological and ecological

aquatic baselines in the Southern Hemisphere (e.g.

phenological shifts: Chambers et al. 2013). How-

ever, many studies highlighted in this review

‘value add’ to data originally collected for other

purposes; for example, using recreational fishing

club records to detect changes in species abun-

dance (Gartside et al. 1999). Encouraging a

cultural shift in the broader research community

Fig. 7 Differences in fisheries management reference points

based on historical and contemporary data. Stock biomass

estimates (±SE) for Australasian snapper (Chrysophrys aura-

tus) in the Hauraki Gulf/Bay of Plenty in New Zealand are based

on historic fisheries and tagging data from two periods that are

24 years apart (Gilbert et al. 2000). Using a basic fisheries

management scenario, catch allowances were established at

80 % of the estimated biomass for 1970 (shaded area) and 1994

(black area). Between the two time periods, catch allowances

differed by 13.3 kilotons (kt), with the 1994 unfished biomass

representing 5.5 % of the total estimated 1970s biomass.

However, snapper in New Zealand have been exploited over

the last 700 years (Parsons et al. 2009), with modelling of stock

biomass to 1850 (circle) indicating a dramatic decline in local

population abundance (Gilbert 1994). The photo shows a

fisherman hauling a catch of snapper caught by Danish seining

in the Hauraki Gulf off Auckland (circa 1940) (The Alexander

Turnbull Library: Reference No.: PAColl-3060-067)
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to think beyond the ‘here-and-now’ will be funda-

mental in identifying and safeguarding data of

potential value for assessing shifts in baseline

states (Rivers and Ardren 1998). Historically

museum and natural history collections have acted

as hubs for the long-term centralisation and

archiving of biological materials (Wandeler et al.

2007). However, research institutions are now

collating biological samples (e.g. otoliths: Mor-

rongiello et al. 2012) and efforts have beenmade to

recover and conserve fisheries data (Zeller et al.

2005) with the intent of quantifying shifts in

aquatic ecosystem states. Similarly, promoting a

culture of data accessibility, for example data

archiving as part of the publication process, will

vastly improve access to published data (Vines

et al. 2013). Yet, there are likely alternate forms of

fish derived data that will become increasing

accessible with methodological advancement

(e.g. DNA extraction of fixed samples, environ-

mental DNA profiling of lake varve samples).

• Apply historical records in contemporary fisheries

and ecological models (e.g. Rosenberg et al. 2005;

Alleway et al. 2014). This review highlights the

increasing number of studies assessing shifts in

aquatic ecosystem baseline states, with the major-

ity of examples provide here focused at changes in

traits of a single species through time. However,

understanding ecosystem-level shifts in baseline

states requires the integration of biological data

sets from multiple species exposed to shared

abiotic and biotic ecosystem-level fluctuations,

with evidence suggesting that studies using\30

biological time series are unlikely to detect

ecosystem-level baseline shifts (Litzow et al.

2016). Similarly, understanding the broadscale

influence of human activity on fisheries stocks or

their structure can require the use of multiple data

sources that may be seemingly disparate or from

alternative disciplines, across greater lengths of

time (e.g. Alleway et al. 2016). Therefore, future

efforts into integrating these multiple sources of

data from several species, coupled with environ-

mental and chemical data sets will vastly improve

our ability to examine shifts in baseline states at an

ecosystem-level.

• Investigate the chemical (elemental and isotopic)

properties of fish hard parts as biochronometers of

past environmental conditions (akin to bivalves

and corals: Schöne and Gillikin 2013). This review

has highlighted the potential sensitivity of fish hard

part chemistries to a suite of ambient environmen-

tal conditions (e.g. Table 2) and biological param-

eters (e.g. reproductive timing, metabolism);

however, few studies look to exploit these prop-

erties to investigate changes in aquatic environ-

ments or population phenologies. This may be due

to issues in disentangling the relative influence of

physiological and environmental effects on hard

part chemistries, and therefore, requires manipu-

lative experimentation that addresses the com-

bined effects of physiology and environmental

factors on the hard part chemical composition (e.g.

Sturrock et al. 2014).

• Investigate biological and ecological responses of

fish to shared abiotic and biotic ecosystem-level

fluctuations will aid in developing a mechanistic

understanding of shifts from baseline states.

Moreover, in situ monitoring provides information

that is valuable for qualifying the current state of

an ecosystem or population, but also provides data

with which to model future scenarios and estimate

prehistoric baseline states (Brander 2010). For

example, assessing the potential for population

recovery based on monitoring data from marine

reserves (Babcock et al. 2010).

Conclusion

There is no doubt that humans have irreparably altered

aquatic ecosystems, but understanding the extent and

timing of these impacts is difficult, largely because

suitable baseline data are lacking. This review has

demonstrated that fish provide unique and largely

underused tools to understand changes in the aquatic

environment. They also have the potential to estimate

baseline states from hundreds to thousands of years. This

can best be achieved through the integration of data (both

qualitative and quantitative) from across a suite of

sources at both the organismal and ecosystem level.

Ultimately, it is only by looking back through time that

wewill be able to adequately interpret the current state of

aquatic ecosystems and establish effective measures to

safeguard it from further adverse shifts.
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