Rev Environ Sci Biotechnol (2024) 23:739-799
https://doi.org/10.1007/s11157-024-09695-2

REVIEW PAPER

q

Check for
updates

Breakthrough innovations in carbon dioxide mineralization

for a sustainable future

Ramesh Kumar - Woo Jin Chung -
Moonis Ali Khan - Moon Son * Young-Kwon Park -
Sang Soo Lee - Byong-Hun Jeon

Received: 13 March 2024 / Accepted: 27 June 2024 / Published online: 27 July 2024
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract Greenhouse gas emissions and climate
change concerns have prompted worldwide initia-
tives to lower carbon dioxide (CO,) levels and pre-
vent them from rising in the atmosphere, thereby
controlling global warming. Effective CO, manage-
ment through carbon capture and storage is essential
for safe and permanent storage, as well as synchroni-
cally meeting carbon reduction targets. Lowering CO,
emissions through carbon utilization can develop
a wide range of new businesses for energy security,
material production, and sustainability. CO, miner-
alization is one of the most promising strategies for
producing thermodynamically stable solid calcium
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or magnesium carbonates for long-term sequestration
using simple chemical reactions. Current advance-
ments in CO, mineralization technologies,focusing
on pathways and mechanisms using different indus-
trial solid wastes, including natural minerals as feed-
stocks, are briefly discussed. However, the operating
costs, energy consumption, reaction rates, and mate-
rial management are major barriers to the applica-
tion of these technologies in CO, mineralization. The
optimization of operating parameters, tailor-made
equipment, and smooth supply of waste feedstocks
require more attention to make the carbon mineraliza-
tion process economically and commercially viable.
Here, carbonation mechanisms, technological options
to expedite mineral carbonation, environmental
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impacts, and prospects of CO, mineralization tech-
nologies are critically evaluated to suggest a pathway
for mitigating climate change in the future. The inte-
gration of industrial wastes and brine with the CO,
mineralization process can unlock its potential for

Graphical abstract

the development of novel chemical pathways for the
synthesis of calcium or magnesium carbonates, valu-
able metal recovery, and contribution to sustainability
goals while reducing the impact of global warming.
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Abbreviations

AMD Acid mine drainage

CCUS Carbon capture, utilization,
and storage

CM Carbon mineralization

CCS CO, capture and storage

CO,-eq CO, equivalents

CMS CO, mineralization slag

CFA Coal fly ash

DAC Direct air capture

EOR Enhanced oil recovery

EPA Environmental protection
agency

GWP Global warming potential

GHG Greenhouse gas

ISW Industrial solid waste

IEX Ion-exchange

LCA Life cycle assessment;

PG Phosphogypsum
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1 Introduction

The burning of fossil fuels during industrial opera-
tions is a major source of atmospheric carbon dioxide
(CO,), which leads to an increase in the average tem-
perature on Earth. Carbon emissions can be mitigated
using renewable energy, an effective alternative to
conventional fuels (Liu et al. 2024). However, replac-
ing fossil fuels in industries that are major contribu-
tors to global CO, emissions, such as steel and cement
production, has not yet been fully realized (He et al.
2023). For example, the cement industry accounted
for approximately 7% of the global greenhouse gas
(GHG) emissions (CO,, 2.2 Gt/year) in 2014 (IEA
2018). GHGs have increased in the first two decades
of the twenty-first century owing to the high CO,
emissions from various sectors in China and other
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countries. However, per-capita CO, emissions are rel-
atively high in countries with low populations, such
as Qatar, Saudi Arabia, and the United Arab Emir-
ates. Canada, the United States, and Australia show
considerable per-capita emissions. In 2020, conven-
tional fossil fuel CO, emissions decreased by 5.3%
compared to 2019 owing to the pandemic effect; how-
ever, the emissions returned to 37.9 Gt of CO,, which
is equivalent to the 2019 pre-pandemic era (Crippa
et al. 2022).

The present CO, concentration reached
422.11 mg/L in January 2024 (McGee 2024), with
an annual rise of 2.8 mg/L (Liu et al. 2021). Reduc-
tion in CO, emissions is imperative, and scientists are
trying to replace fossil fuels with alternative renew-
able energy sources such as hydrogen, solar, and wind
energy. However, it is difficult to achieve the target
in a short period, as global energy demand shows an
upward trend, with an approximate demand higher
than 29.6% by 2040 (Kramer and Haigh 2009). CO,
capture and storage (CCS) is an imperative technol-
ogy for handling climate change and securing energy
security by reducing carbon emissions from point and
nonpoint sources, which prevents the release of mas-
sive quantities of CO, into the atmosphere. Kramer
and Haigh (2009) reported that high CO,-generating
industries worldwide, such as power plants and
cement and steel industries, can sequester~7><109
tons of CO, annually by 2050. CO, storage can be
performed by mineral conversion and natural storage,
such as geological and oceanic storage. The geologi-
cal storage of CO, is widely practiced because of its
large storage capability, and enhanced oil and gas
recovery (Bai et al. 2016).

Carbon neutrality is a crucial measure in reducing
the effect of CO, on the global environment and may
be accomplished via carbon capture, utilization, and
storage (CCUS) (Lee et al. 2023; Riahi et al. 2022).
CCUS technologies have numerous potential appli-
cations in various fields, including energy recov-
ery, food production, chemical and fuel production,
refrigeration, fire suppression, and mineral formation
(Qian and Han 2023; Zhou and Metivier 2023). CCS
applications in heavy industries can considerably
and rapidly reduce GHG emissions, as these indus-
tries are responsible for 21% of global emissions,
primarily from cement, iron and steel, petrochemi-
cals, and biofuel production industries (Page et al.
2020). To date, these approaches have demonstrated

50-68% efficiency in CO, capture on a small scale
(Bui et al. 2018). Several studies have highlighted
the importance of CCUS in reducing process-inher-
ent CO, concentrations before they are released
into the atmosphere (Li et al. 2023b; Ostovari et al.
2020; Tyagi et al. 2023). Various approaches, such
as absorption, physical adsorption, chemical loop-
ing, cryogenic techniques, membrane gas separation,
ionic liquid looping processes, biological systems,
and gas hydration, can capture CO, (Bui et al. 2018;
Chakrabortty et al. 2023; Cheng et al. 2023). A sim-
ple approach is to use the entire CCS process at a sin-
gle site. Additionally, there are several alternatives for
capturing CO, from the air, followed by transporta-
tion to various storage sites using ships or pipelines
(IPCC 2018; Liu et al. 2023). For example, geological
shale formations are highly promising storage sites
where CO, is entrapped in nanopores via adsorption
to organic matter and clays, which have a high affinity
for gas molecules (Murugesu et al. 2023).

Among current CCS technologies, carbon min-
eralization (CM) has drawn particular attention as a
promising approach for safe and permanent CO, stor-
age and waste management (Ostovari et al. 2023).
Direct and indirect CO, reduction approaches are
widely used to utilize industrial solid waste (ISW)
(Liu et al. 2021), such as carbonation of ISW (blast
furnace slag (390 Mt), slag from steel industries
(240 Mt), waste gypsum (220 Mt), and ash from coal
combustion (1000 Mt)) (USGS 2020) and the appli-
cation of carbonated products in construction works
to replace conventional carbon-intensive materials
(Liu et al. 2024). Approximately 8% of the global
CO, (generated due to anthropogenic activity) can be
mineralized by the direct carbonation of 4.01 x 10°
tons of ISW, which includes 43.5% steel slags, 16.3%
cement waste, 13.5% mining waste, and 12.3% coal
ashes. The carbonated materials produced by indi-
rect carbonation to replace construction materials
can reduce 3.7 x 10° tons of CO, emissions (Liu et al.
2021). Naturally available minerals such as wollas-
tonite (300 Mt), serpentine (500 Mt), and forsterite
(800 Mt) can be used to mineralize CO,; however,
their mining causes adverse environmental effects and
is energy-intensive.

CM relies on the fundamental chemistry of ionic
interactions between carbonate anions formed by the
dissolution of CO, in water and metal cations (e.g.,
Mg?*, Ca?*, and Fe?*) to produce thermodynamically
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stable metal carbonate minerals as the final products
(Xu et al. 2023b). This technique can potentially
be widely applied in diverse environments such as
brines, mafic rocks, and salt domes because of the
simplicity of the reactions and ubiquity of reactant
cations in nature. However, this alternative (the CM
process) may pose global challenges with minimal
relevance to potentially decisive mitigation options,
such as institutional and regulatory barriers, capture
costs and energy penalties, massive financial invest-
ments, CO, release risks, and environmental and
health issues, if not properly understood and accepted
(Park et al. 2016). Furthermore, a detailed analysis
of the reaction mechanism and economics of miner-
alization by calculating the operating costs and simu-
lating the mineral chemistry of natural carbonation
storage requires large-scale technical implementation
(Kim et al. 2022). Therefore, technological upgrades,
energy analysis, plant-level economics, and envi-
ronmental analysis are necessary for the successful
implementation of CCS in industrial decarbonization.

Several reviews on CO, mineralization have
focused on CM using industrial waste (Liu et al.
2021), CO, recovery and utilization (Godin et al.
2021), utilization of alkaline wastes in CCS (Khud-
hur et al. 2022), CM using terrestrial basalts (Osto-
vari et al. 2023), CM mechanisms during geological
storage (Kim et al. 2023), critical analysis of differ-
ent CCS processes (Liu et al. 2024), and operating
conditions for CM using cementitious materials (Li
et al. 2024b). Here, we review the potential and sig-
nificance of CM for sustainable CO, management
and the restoration of the global carbon cycle over
the next few decades. A critical analysis of contempo-
rary technological developments in CM is presented.
Additionally, efforts have been made to examine the
evolution of various hands-on CCS processes to solve
global CCS problems. The novelty of this review
compared with the existing literature is presented in
Table 1.

2 Methodology for systematic literature review

Several review manuscripts related to CO, storage
through the CM process are available in the literature,
which discuss many objectives, such as pilot-scale
studies (Hanifa et al. 2023), potential feedstock appli-
cation for CM (Stokreef et al. 2022), elaborating the

@ Springer

potential of seawater for CM (Ho and lizuka 2023),
and utilization of specific feedstocks or ISW (Ca-or
Mg-containing natural raw materials, ultramafic tail-
ings, fly ash, iron, and steel slags) (Li et al. 2023a;
Stokreef et al. 2022; Wang et al. 2024a, b). This
review comprehensively describes recent develop-
ments in innovative technologies in CM and their cur-
rent status in large-scale industrial implementation. It
deals with a general mechanistic outline of the CM
process and critically discusses the advantages and
limitations of different CM process routes for long-
term CO, storage. Furthermore, the utilization of var-
ious industrial byproducts or solid wastes, resource
recovery through mineral carbonation, applications of
the CM process, and the sustainability and environ-
mental threats of CM approaches are discussed. This
was performed by a thorough literature search using
different online databases, such as Scopus, Science
Direct, Google Scholars, SciFinder, ResearchGate,
Wiley, SpringerLink, Web of Science, and Espacenet
(patent database), to obtain appropriate journal and
patent publications in the last seven years. To obtain
a wide range of searches, several keywords such as
GHGs, CO,, Mineralization; Carbon capture and stor-
age, sustainable carbonation processes, CO, minerali-
zation, mineral carbonation, mineral trapping, brine
valorization, green concrete, CO, mineralization slag
(CMS), industrial by-products, and life cycle assess-
ment (LCA) were used to obtain relevant research
documents. We selected more than 250 articles and
patents and carefully reviewed them. Only those
deemed relevant, noteworthy, and impactful were
selected and mentioned in this review. Most of the
selected articles were published within the past five
years to ensure an updated assessment of the most
recent and advanced technological developments. A
detailed analysis of the selected articles helped pre-
pare a table of contents for this manuscript to present
the considerably different content available in the
literature.

3 CO, mineralization
3.1 Overview
The CM technology of the CCS process is versa-

tile and can mitigate CO, emissions from indus-
trial sources on a large scale. CM is a versatile and
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thermodynamically downhill route (i.e., a Gibbs free
energy change of <0) that can ensure long-term and
environmentally benign atmospheric CO, fixation,
while reducing the natural CO, conversion timescale
from several years to a few hours (Gadikota 2021; Liu
et al. 2023). Seifritz (1990) proposed CM in the early
90 s to sequester anthropogenic CO, and was subse-
quently evaluated by Lackner and co-workers (Lackner
et al. 1995). CM technologies are based on the reaction
of CO, (gas, liquid, or dissolved in water) with Ca and
Mg ions in various host media (e.g., rocks and sedi-
ments) to transform them into stable carbonate miner-
als (e.g., magnesite and calcite). Although this review
focuses on the above-discussed physicochemical reac-
tions for CO, conversion owing to their commercial
viability, it is worth mentioning that biological routes
play major roles in nature. For example, (1) CO,-fixing
bacteria can adsorb and transform CO, into carbonates
(Qian et al. 2022), (2) microalgae can facilitate the con-
version of CO, into valuable biochemicals (Daneshvar
et al. 2022), and (3) carbonic anhydrase can boost CM
(de Oliveira Maciel et al. 2022).

The major advantages of the CM process are as
follows: host mineral resources are available glob-
ally; this process offers a permanent solution for
CO, fixation by binding CO,-containing fluids and
gases to solid igneous rocks (typically basalt or
peridotite minerals), which is an exothermic reac-
tion that requires no energy input, and is a cost-
effective route for CO, fixation. Apart from these
advantages, there are a few shortcomings of using
CM. According to Park and Fan, gas—solid inter-
actions cannot always be used to effectively create
stable metal carbonates (c.f., kinetics-controlled
formation of metastable hydrated carbonate phases
such as nesquehonite) because the distribution
of optimal mineral resources is only superficially
understood (Park and Fan 2004). Therefore, it is
crucial to understand the fundamental basis of CM
reactions and the practical routes through which this
technology has been applied to various systems.

CM is thermodynamically stable. Theoreti-
cally, it can permanently fix atmospheric CO,
under ambient conditions because the process has a
lower energy state than that of the reactants (CO,
and silicates). However, it is possible that mineral-
ized carbon can dissolve in the presence of strong
acids under ambient conditions. Therefore, there
may be a risk of CO, release into the atmosphere

if precipitated carbonates are exposed to strong acids
(Allen and Brent 2010). Teir et al. (2006) reported
the effect of pH on the CM process and revealed that
carbonated minerals are unstable in nitric acid envi-
ronments at various concentrations. The dissolution
of the Mg and Ca fractions from their respective car-
bonates in separate solutions (initial pH of 1) after
several days of stabilization was 9%, whereas, at an
initial pH>2, the fraction of dissolved minerals in
the solution was<1%. Infrared analysis of the reac-
tor atmosphere revealed a more rapid release of CO,
from CaCO; than MgCO;. The release of CO, gas
was approximately 1.5% from CaCO; and 0.0% from
MgCO; at pH 1. The release of CO, from both car-
bonates was not detected at pH 2. Similarly, tempera-
ture and humidity modulate the stability of carbonated
CM products in the natural environment. Dissolved Ca
ions readily precipitate from the reactive aqueous fluid
at <280 °C once calcite and/or aragonite is supersatu-
rated, whereas dissolved Mg ions precipitate as car-
bonate magnesite and dolomite at~80 °C or higher
(Saldi et al. 2009). At lower temperatures, the precipi-
tation of these minerals is kinetically inhibited.

3.2 General mechanistic outline

Equations (1)-(4) describe the CM process. CM
occurs via the reaction of water containing dis-
solved CO, with metal cations in various media to
form solid metal carbonates (Eq. (1)), and the indi-
vidual reaction steps are considerably influenced by
the solution pH (Demirbas 2007; Lee et al. 2023).
Equations (2) and (4) indicate that the formation of
carbonate ions (CO32_) is favored at an alkaline pH.
The most accessible substance for moving the pH
toward alkalinity is sodium hydroxide (caustic soda).

Ca® /Mgt +CO3, |« Ca/MgCarbonates ,, + Heat

(aq) 3(aq)
ey
COy) +H 0y < HyCO; )
H,COj5,, + OH™ < H,0 + HCO; 3)
HCOj,, +OHL < H,0+CO5, 4)

This process relies on the sources of Ca’"
and Mg?>" ions that interact with CO;2~. Saline
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environments have immense potential for applica-
tions in CM technologies. In particular, natural and
synthetic brines have been identified as appropri-
ate media for CM because of their high Ca and Mg
content (Liu et al. 2019; Power et al. 2017). Under
typical brine conditions, CaCO; forms more readily
than MgCO; because of its greater thermodynamic
stability (Ji et al. 2022) and faster kinetics for the
dehydration of Ca than Mg during nucleation and
crystal growth. In addition, metal cations can be
extracted from geological materials. For example,
mafic and ultramafic rocks contain large amounts
of Mg and Ca silicate minerals (e.g., foresterite,
diopside, and Ca-rich plagioclase). However, metal
extraction from these materials commonly requires
high acidity, which poses considerable environmen-
tal risks.

Simple oxide and hydroxide phases, such as CaO
and Ca(OH),, are considered sources of metals for
CM, as shown in Egs. (5-6). The efficiency of these
processes is mainly determined by the surrounding
relative humidity, temperature, and surface charge
of the particles (Montes-Hernandez et al. 2012).
The CM rate typically increases with increasing rel-
ative humidity because thicker water films formed
on solid surfaces can have higher contents of dis-
solved CO, and Ca*t (Murugesu et al. 2023). Tem-
perature considerably affects the carbonation rate,
as expected from the Arrhenius equation (Stokreef
et al. 2022). Physically, an increase in temperature
facilitates the dehydration of both the substrate sur-
faces (e.g., the surfaces of Ca(OH), particles) and
hydrated ions, which increases the reaction rates
(Lackner et al. 1995).

Ca0 + CO, — CaCO;(AH = —167 kJ/mole) &)

Ca(OH), + CO, — CaCO; + H,O(AH = —68 kJ/mole)
(6)

3.3 CO, mineralization routes

CO, and feedstocks containing metal ions are
required for ex-sifu mineral carbonation to store
CO, as a thermodynamically stable carbonate min-
eral. Point sources of CO, include flue gases from
steel, cement, and electricity manufacturing units
(Lux et al. 2018). Some carbonation processes use
flue gases directly, whereas others require pure CO,.

@ Springer

During the initial stages of CM, Ca, Mg, and Na
generally exist as dissolved ions or primary (hydr)
oxides (Franks et al. 2023). In the subsequent phase,
these intermediates react with dissolved CO, to form
CaCO;, MgCO;, or NaHCO;. Direct and indirect car-
bonation can be considered production processes for
carbonate compounds (Wang et al. 2024b), which
have additional uses in various contexts (Oh et al.
2019). Conversely, mixing and carbonation curing are
discretionary steps in concrete production as a carbon
sequestration medium.

3.3.1 Direct carbonation

Direct carbonation refers to a process in which metal
dissolution and carbonate precipitation co-occur in the
same reactor, or there is only one pathway for the reac-
tion (Li et al. 2023c). Dry gas—solid (moisture <0.2)
and aqueous mineral (gas—liquid and gas-liquid-solid,
i.e., slurry) carbonation are two general routes for
achieving direct carbonation. Direct gas—solid carbon-
ation is an approach in which gaseous CO, is injected
into a reactor to immediately interact with the ground
feedstock (host mineral cation source) (Ho et al.
2020). Direct carbonation pathway is the simplest car-
bonation process, and smooth heat recycling from an
exothermic reaction is a major advantage (Zevenhoven
et al. 2008). In addition, it allows for less consump-
tion of acids or bases and a low water footprint dur-
ing direct solid—gas carbonation for the safe sealing
of CO, in the solid phase while directly capturing and
separating CO, from the gas phase by utilizing min-
erals and solid wastes (Moon et al. 2024). Minerals,
such as wollastonite, serpentine, and forsterite, react
spontaneously with CO, in the dry route of CM with
Gibb’s free energies of —44.6, —16.9, and —43.0 kJ/
mol, respectively (Benhelal et al. 2020). However,
this process is kinetically slow and has a low conver-
sion rate, which results in poor commercial viability.
Several approaches have been proposed to increase
the direct carbonation rate. For example, in-situ, dry
and moist (10% water) gas—solid carbonation was per-
formed using chrysotile (a type of asbestos for Mg-
source) in the presence of CO, (67 mol%) at ambient
pressure, thermal preconditioning (at 300 to 1200 °C),
and doping with alkali metal ions. The presence of
water, cesium as a trace alkali metal, and a tempera-
ture of 375 °C boosted mineral carbonation to form
MgCO; by up to 2.7 times (Larachi et al. 2010).
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Direct aqueous carbonation is the most well-under-
stood technology for gas—liquid-solid multi-phase
reaction systems and provides favorable conditions
for carbonation (Sanna et al. 2014). Direct aqueous
carbonation requires CO, conversion into a carbonic
acid, H*, and CO32‘ solution after dissolution in an
aqueous system, followed by a reaction with Ca**/
Mg** ions (released from dissolved primary or sec-
ondary minerals, e.g., silicates or (hydr)oxides) to
form carbonate precipitates (Miao et al. 2023; Tao
et al. 2021). Hence, it allows three co-occurrences
in the reaction vessel: the development of a mildly
acidic environment owing to the dissolution of CO,
in water to form HCO;", the leaching of Ca/Mg from
solid matrices (minerals or industrial wastes), and the
precipitation of Ca/MgCOj; (Olajire 2013). This pro-
cess exhibits a better reaction rate and carbonation
efficiency than direct gas—solid carbonation because
of the higher degree of mass transfer. Water is used
as a solvent to dissolve CO, and facilitate the ioniza-
tion of Ca or Mg for rapid solid carbonate formation
(Baciocchi et al. 2016). However, the dissolution of
the Ca/Mg-bearing feedstocks acts as a rate-limiting
step during the precipitation of ions into carbon-
ates. Therefore, the use of several types of additives
(e.g., NaCl, NaHCO;, and Na,CO;) and key reaction
parameters (such as pH, solid/liquid ratio, operating
temperature and pressure, particle size, and CO, con-
centration) must be optimized to improve the kinetics
of silicate dissolution (Baciocchi et al. 2010; Polettini
et al. 2016). The addition of carbonate-bearing addi-
tives, such as Na,CO; and NaHCO; can maintain the
pH of the solution and increase Ca**/Mg>" leaching
from the substrate by producing more H* ions in the
solution to enhance the overall carbonation efficiency
(Ji et al. 2017). However, it has a slightly lower net
avoided greenhouse warming potential (384 kg of
CO, per MHh,) than dry gas—solid carbonation
(473 kg of CO, per MHh), owing to the higher
consumption of material and energy (Ghasemi et al.
2017).

3.3.2 Indirect carbonation

An indirect carbonation process is associated with
two or more consecutive reaction steps, that is, the
extraction of the Ca/Mg reactive components using
chemicals at a low pH during the initial step and their
reaction with CO, to form carbonates during the final

step under alkaline conditions in different reactor
vessels (Wang et al. 2022). Hence, a change in pH is
required during indirect carbonation. Ca’* and Mg>*
ions from mineral-rich host rocks were leached out
under acidic conditions during the first step. Simul-
taneously, undesired products such as oxides/hydrox-
ides can precipitate under basic conditions during the
subsequent steps. The effective application of this
route depends on controlling the solution pH, which
directly controls the reaction rates of individual pro-
cesses (Azdarpour et al. 2015). Silicate dissolution
is promoted at low pH values, whereas carbonate
precipitation is favored at high pH values (Ambarita
et al. 2024). Therefore, indirect carbonation is per-
formed in three separate steps: acid ion extraction,
gas—solid carbonation, and pH swing (Pacala et al.
2018). During acid ion extraction, acidic solutions
(introduced before the carbonation reaction) can
improve the reaction rate along with the leaching of
Ca**/Mg>* ions from their host rocks by polarizing
and weakening the bonds within their structure. For
example, inorganic acids, such as hydrochloric or sul-
furic acid, have been tested for their ability to extract
Mg?* ions from serpentine (Lackner et al. 1995;
Maroto-Valer et al. 2005). However, their high energy
consumption and potential environmental impact
limit their applicability.

Organic solvents and chelating additives were
tested for their ability to promote metal extraction.
The economic and ecological feasibility of these
processes can be questioned, as the recycling and
disposal of additives is a challenge. During indi-
rect gas—solid carbonation, the mineralization of
the Ca/Mg-O and Mg/Ca(OH), phases is generally
extremely rapid and efficient (Moon et al. 2024). An
additional step was required for the production of the
relatively reactive Mg/Ca(OH), by the hydration of
Ca/MgO. However, utilization of Mg/Ca(OH), can
expedite the reaction kinetics compared to Ca/MgO
during solid carbonate formation at similar pressure
(> 10 bar) and temperature (>500 °C) (Zevenhoven
et al. 2008). Indirect carbonation yields a high-purity
byproduct compared to the direct carbonation process
under modest reaction conditions (potentially with
the application of a modified pH solution) (Liu et al.
2023; Romanov et al. 2015).
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4 Sustainable technologies for CO, capture,
storage, and applications

The development of CCS technologies at point
sources of CO, emissions is a recent strategy imple-
mented worldwide to capture CO,, followed by its
sequestration, direct utilization, and conversion into
useful chemicals or fuels (Li et al. 2016).

4.1 Current status of CSS processes: patents and
publications

CO, is an inert gas with no combustion heating
value; however, it is a crucial environmental concern
because it is one of the major GHGs (Moon et al.
2024). Different technologies have been documented
in journal articles and patents for capturing CO, for
storage or valuable applications (Yu et al. 2023). CCS
has emerged as a leading-edge technology for alle-
viating GHG emissions from large industrial facili-
ties, oil refineries, and fossil fuel-based power plants
(Khosroabadi et al. 2021). This can expedite a safer
stabilization process for atmospheric GHG concentra-
tion levels and help maintain fossil-based fuels within
the energy matrix. The number of patent filings and
papers covering capture technologies has increased
annually, following the typical exponential trend
observed for emerging technologies (Khosroabadi
et al. 2021). Until 2012, more than 1,000 patents were
granted for solvents, sorbents, and membrane-based
applications, of which 60% were granted after 2000
(Lietal. 2013).

According to Espacenet (patent database), there
are more patents and scholarly publications on
absorption and adsorption than other capture tech-
niques. Although there are only a limited number
of researchers working on enzyme-based capture of
CO,, as reflected by fewer articles/patents published
each year, this is a technological approach with tre-
mendous potential (Quintella et al. 2011). The lack
of patents/papers might be due to a lack of motiva-
tion in researchers with relevant expertise in enzymes
for CO, capture and the challenges associated with
manipulating enzymes in the laboratory. Moreover,
adsorption yields better CO, capture results because
it involves sophisticated technology. The primary
contributors to adsorption include polymers, zeo-
lites, activated carbon, molecular sieves, silica,
and metal-organic frameworks (Khan et al. 2023).
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Fig. 1 Trends of publications and patents worldwide related
to CO, mineralization, a global publications (journals and
patents) counts, b total number of journal publications in top
12 countries (Year- and country-wise journal and patent pub-
lications were obtained from Scopus—Document search and
Espacenet-Worldwide patent search, respectively (data from
2001 to June 6, 2024))

However, enzymes are still in the initial stages of
research and require new technological advancements
to be practical for use in commercial plants. Hybrid
technologies such as membrane-integrated thermo-
dynamics, adsorption and absorption processes, and
absorption and adsorption methods documented in
patents are evolving rapidly, spanning the integration
of conventional areas of CO, collection (Quintella
etal. 2011).

Technologies for CO, mineralization for carbonate
formation methods for CO, reduction are relatively
mature compared with chemical methods. Figure la
shows the overall annual journals and patent publi-
cations for the keywords searched for CO, minerali-
zation processes in Scopus—Document search and
Espacenet-Worldwide patent search, respectively.
Documents (journals and patents) referred to CO,
mineralization were published rapidly starting in
the early 2001s, slackened in the 2010s, and again
showed an increasing publication rate. The steady
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growth in research output can be attributed to global
efforts that have triggered the necessity of reducing
atmospheric CO,. However, a lack of support for CO,
mineralization projects, small investments, and proper
economic incentives eventually stabilize publications
and patents. This leads to more journal publications
compared to patents (Fig. 1a). The grouping of pub-
lications for journals (Fig. 1b) according to the coun-
try/region or affiliation of the first author or patent
assignee indicates that 12 countries have published a
maximum number of journals, with China outnum-
bered in journals.

4.2 CO, capture technologies practiced

CO,-containing polluted gas streams are emitted
during energy conversion pathways such as anaero-
bic digestion, combustion, gasification of carbona-
ceous resources (e.g., coal, plastics, biomass, and
natural gas), and manufacturing industries (e.g.,
cement, steel, fertilizer, fuel cell, and paper and

pulp) (Gadikota 2021). The CO, separation process
may contribute 70-80% of the total CCUS process,
depending on the technology selection that leads to
CO, formation during combustion and its types (Raza
et al. 2019). Conventional processes, such as adsorp-
tion, cryogenic separation, solvent-based absorption,
and membrane-based separation, are practiced to sep-
arate CO, from its mixed gas streams generated from
post-combustion. The feasible and reliable CO, trans-
portation from its capture to storage locations is also
crucial for an efficient CCS process, which includes
high-pressure pipelines (onshore and offshore), ships,
trucks, and railways (Svensson et al. 2004). Figure 2
shows schematic diagrams of fuel combustion-based
industries integrating carbon capture and mineraliza-
tion using different alkaline waste feedstocks (Li et al.
2016).

In the 1970-80 s, CCS facilities were used in
industries such as fertilizer and natural gas process-
ing, where CO, separation was a routine process to
fulfill the demand for CO, mostly in enhanced oil
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recovery (EOR) and to a lesser extent in the decaf-
feination process, fertilizer, food preservation, bever-
age carbonation, fire suppressants, and pharmaceuti-
cals (Liu et al. 2018a). However, innovative reactor
designs, economical process schemes, and advanced
materials are required to achieve successful CO,
capture. CO, capture from the natural gas and ferti-
lizer industries has been practiced for decades and
has recently been operational in coal-based power
industries. To prevent CO, from being released into
the atmosphere, its capture/separation from indus-
trial exhaust gases is the primary step in CCS. Amine
absorption and calcium looping processes have been
installed with natural gas-based power units to cap-
ture CO,, which could reduce carbon emissivity by
82-87% compared with typical power plants (Strojny
et al. 2023). The major carbon capture processes are
pre-combustion, post-combustion, and oxy-fuel pro-
cesses (Strojny et al. 2023; Wang et al. 2020).

Pre-combustion requires fuel conversion steps,
such as the use of a gasifier under a low-oxygen
atmosphere for the conversion of fuels into syngas,
that is, a mixture of H, and CO, which subsequently
undergoes a water—gas shift reaction in a catalytic
reactor, where syngas further reacts with steam
(steam reforming) or oxygen (partial oxidation) to
form more H, and convert CO into CO, (Godin et al.
2021; Leung et al. 2014). The conversion of CO into
CO, by steam reforming or partial oxidation followed
by water—gas shift reactions results in 15-60% of the
CO, in the syngas, which can be separated by physi-
cal adsorption or chemical absorption to achieve an
H,-rich stream (Rackley 2017). Furthermore, smaller
and more compact equipment containing differ-
ent types of solvents can be used to capture concen-
trated and pressurized CO,, serving as a relatively
low energy-intensive process compared to a post-
combustion system (Godin et al. 2021). The high
capital investment required to develop a fuel conver-
sion facility is a major limitation to pre-combustion
carbon capture. A coal-based power plant integrated
with gasification-combined cycles can capture pre-
combustion CO,, although its application in power
plants is challenging owing to a 7-8% efficiency
loss. However, energy loss was improved by the US
(Department of Energy and Electric Power Research
Institute) by enhancing the efficiency of gasifiers
(GCCSI 2012).
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In post-combustion capture, CO, is separated from
flue gas (containing 4% to 15% of CO, along with
NOx, SOx, water, oxygen, and inert gases) after the
complete combustion of fossil fuels (Al-Mamoori
et al. 2017). The post-combustion process is the pre-
ferred option for implementation in existing power
plants, with a CO, recovery rate of up to 800 tons/day
(Wall 2007). However, low CO, concentrations in flue
gas require separation prior to any application, which
requires large equipment and high capital investment
to handle massive volumes of flue gas (Olajire 2010).
Additional separation processes, such as absorption,
adsorption, cryogenic, and membrane-based methods,
are required to recover high-purity CO, (>95.5%)
from combustion exhaust gases because of their high
parasitic loads and low CO, content (4% for gas-fired
and 7-14% for coal-fired). The post-combustion cap-
ture equipment was placed immediately after the con-
ventional industrial purification system to decrease
the number of contaminants and avoid the degrada-
tion of solvents used for CO, capture. The design and
implementation of the equipment pose major chal-
lenges owing to the unfavorable conditions of flue
gas. For example, low CO, partial pressure results
in a low driving force for its capture. This results
in the requirement of a robust separation process,
such as absorption by an amine solvent with a high
energy requirement for desorption and solvent regen-
eration (Al-Mamoori et al. 2017; Chao et al. 2021).
Flexible operation in power plants to capture CO, at
peak hours during high electricity charges and string
solvents for regeneration at off-peak hours can help
reduce overall energy costs (Moioli and Pellegrini
2019). According to the International Energy Agency
report, in 2022, approximately 45 Mt of CO, will
be captured per year from 35 commercial CCS units
installed in various industries, which will increase
to 200 facilities for CCUS with the capacity to cap-
ture 220 Mt of CO, per year by 2030 (Subramanian
and Madejski 2023). According to the US National
Energy Technology Laboratory, approximately 32%
and 65% of electricity consumption costs increase
for CO, capture from post-combustion exhaust gases
in gas- and coal-based thermal power plants, respec-
tively (Kanniche et al. 2010). A post-combustion
CO, capture analysis was performed using a CCS
process integrated with a gas power plant to achieve
negative CO, emissions (Subramanian and Madejski
2023). CO, was absorbed by an amine solvent (30%
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monoethanolamine) from the flue gas generated dur-
ing fuel combustion in a gas turbine and passed
through a heat-recovery steam generator for electric-
ity generation.

In oxy-fuel combustion, the fuel is combusted
using nearly pure oxygen instead of air to obtain
water vapor, particulates, SO,, and CO, from exhaust
gas (Kim et al. 2022). The generated flue gas is
passed through a combustion chamber to control
flame temperature. A large quantity of CO, is sepa-
rated, compressed, and transported after the conden-
sation of water vapor, making this a cost-effective
and less energy-intensive process (Seddighi et al.
2018). Electrostatic precipitation and desulfurization
methods are used to remove particulates and SO,,
respectively, to obtain 80-98% pure CO, based on
the type of combustion fuel used (Yadav and Mon-
dal 2022; Zero 2013). Furthermore, this process
reduces the NO, content and volume of the exhaust
gas, thereby decreasing the desulfurization cost prior
to water vapor condensation. The high operating cost
owing to the consumption of pure oxygen (obtained
from an energy-intensive air separation process)
makes the process 7% more expensive. This process
has an energy penalty compared to a plant without a
CCS facility (Burdyny and Struchtrup 2010; GCCSI
2012). Additionally, a high concentration of SO, in
flue gas can increase the corrosiveness of the system,
which limits the implementation of high-capacity
(10002000 MW) oxyfuel-fired projects, except for
a few coal-based projects with capacities of 25-250
MWe (GCCSI 2012).

4.3 Integrated mineral carbonation for resource
recovery from waste effluents

Integrated mineral carbonation is a process in which
industrial wastes, such as waste rocks, brine solution,
fly ash, and mine tailings, are used as feedstocks for
CO, mineralization.

4.3.1 Recovery of Ca and Mg from the brine solution

Brine wastewater is a saline waste solution with total
dissolved solids (TDS) formed during industrial pro-
cesses, such as oil and natural gas production (oil-
field brines) and desalination plants (Harutyunyan
2014). Modern desalination plants rely heavily on
nonrenewable energy sources, and the released CO,

contributes considerably to global warming. The
processes of receiving saltwater, treating and demin-
eralizing it, disposing brine, and discharging treated
water are energy-intensive steps in a desalination
plant. The energy production chain can be simpli-
fied because of the proximity of seawater desalination
facilities to fossil fuel power plants (Bang et al. 2019;
La Plante et al. 2021). These brine solutions can serve
as liquid components during carbonation. High con-
centrations of Ca and Mg in desalination brine are
promising components of CM. However, Mg*" and
Ca”" interfere and compete with each other during
carbonate precipitation, resulting in a low conversion
ratio of CO, to carbonate. Bang et al. (2019) reported
an improvement in the CO, conversion efficiency
from 12 to 69% through the use of sequential CM
of Ca and Mg using 15% CO, to avoid the competi-
tive and hindrance effects of Mg on the formation of
CaCO; nuclei. A novel method for CM using spent
CaCl, solutions involving combined reaction-extrac-
tion-crystallization processes was proposed by Dong
et al. (2018). Through titration, the effects of Na*,
K*, Mg?*, AP*, NO, ™, and SO,*~ ions present in dis-
tiller waste could affect the CaCl, conversion rate and
the crystalline structure of the final CaCO; product.
The authors verified this experiment using simulated
distiller waste and evaluated it as an essential step
toward scaling up (Dong et al. 2018). A high-TDS
brine (> 120 g/L) obtained from an oil and gas extrac-
tion plant was valorized by treating it with fly ash
(enriched in CaO) to increase the pH to 9 and form
CaCO; by sequestering CO, at a pressure of 14 bar
for a reaction time of 2 h (Soong et al. 2006). This
process can recover Ca (as CaCOs;) from brine and fly
ash. The produced minerals, predominantly CaCO;
or MgCO;, can be used in various industrial applica-
tions, such as construction materials, abrasives, and
fertilizers.

4.3.2 Recovery of lithium using mineral carbonation

Chen et al. (2017) presented a novel coupling tech-
nique for CO, mineralization and solvent extraction
to precipitate Mg from brine with a high Mg/Li ratio.
To extract Mg from brine, an organic amine was used
to remove the HCI produced during the CO, minerali-
zation process and accomplish the continuous conver-
sion of MgCl, to MgCO;. Optimal conditions allowed
for a maximum conversion of 67.41% of Mg and a
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reduction in the Mg/Li ratio of the raffinate from 20
to 5.4 for smooth recovery of Li. To maximize Ni
sulfidization and CM simultaneously, Wang et al.
(2021) explored the possibility of using ex-situ direct
aqueous CO, mineralization of pure olivine. By sup-
plying a gas combination of 95% CO, and 5% H,S,
CO, mineralization in olivine resulted in the release
of Ni** and Co?* from the silicate olivine. In addi-
tion, tests were performed on genuine tailings from
a Minnesota copper-nickel-sulfide mine to further
examine CO, mineralization and boost metal recov-
ery (Wang et al. 2021). The findings showed that CO,
mineralization can be applied to ultramafic mine tail-
ings with improved metal recovery.

Continuous efforts are being made to increase the
product value of CM and investigate its economic
viability. During lithium precipitation, CO, is a via-
ble source for carbonation, replacing other carbon-
ate sources, such as K,CO; and Na,CO; to produce
Li,CO; (Kim et al. 2024). CO, gas is dissolved in a
Li-containing aqueous solution to form H,CO; at
a pH of 6.3, which reacts with Li to produce solu-
ble and ionizable LiHCO;. Subsequently, at pH> 8§,
carbonate species dominate and precipitate to form
Li,CO; (Kumar et al. 2023). In addition, CO, acts as
a leaching agent for the selective recovery of lithium
(by forming carbonic acid) followed by the precipi-
tation of Li,CO; from the spent LiFePO, cathode
materials. Using CO, as a leaching agent can seques-
ter 120 kg CO,/ton of spent LiFePO, batteries while
consuming 2.29 MJ of energy and reducing GHG
emissions by 194 g of GHGs with a revenue of 4.04
USD per kg of LiFePO, cells (Xu et al. 2023a). CO,
mineralization and simultaneous extraction of valu-
able metals from different wastes through integrated
mineral carbonation are currently under development.
However, economic feasibility should be improved,
and process advancement must be upgraded using
new and sustainable technologies that present oppor-
tunities for innovation across various industrial sec-
tors to reduce CO, emissions.

4.3.3 Recovery of rare earth elements from acid mine
drainage
Using alkaline wastes such as acid mine drainage

(AMD) and mine tailings from mining industries for
CM to yield sustainable Ca/MgCO; can help stabilize
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CO, and recover rare earth elements (REEs) (Lee
et al. 2016). Remediation of mining effluent is com-
monly performed by adding lime to neutralize the
solution, making AMD a rich source of Ca, includ-
ing other REEs (Zhang et al. 2023b). Lee et al. (2016)
applied the CO, injection method during the neutrali-
zation of an AMD solution to precipitate CaCO5 with
an estimated carbonation efficiency of 0.54 g of CO,
per kg of AMD. CO, sequestration using the AMD
neutralization method without any pretreatment or
additional unit operation at ambient temperature and
pressure over a short operation time was evaluated
as a sustainable method. Energy requirements and
techno-economic feasibility studies have been con-
ducted for mineral carbonation using flue gas CO,
from an industrial plant and Mg-containing minerals
obtained from serpentine-based mine tailings (Pas-
quier et al. 2016). An energy of 7.8 GJ per ton of
CO, is consumed to store 234 kg of CO, using one
ton of mine-tailing serpentine rock, as estimated by
modeling the laboratory-based experimental results.
The operating process cost of 144 USD per ton of
CO,, with a total revenue of 644 USD per ton of
CO, (income generated by by-product sales and car-
bon credit tax), was estimated in a 1.4-year payback
period (Pasquier et al. 2016).

The electrolytic carbonation approach can use dif-
ferent waste effluents such as brine electrolytes, fly
ash, and CO, to produce high-quality CaCO;. Lu
et al. (2016) reported a 32.4% more dissolution of
fly ash in a brine solution to liberate Ca during elec-
trolysis, which was mineralized into CaCOj; using
CO, with a capture efficiency of 18.42 kg-CO, per
ton of fly ash and an energy consumption of 29.3 kJ
per mol of CO,. Vaziri Hassas (2020) investigated
a novel, eco-friendly, staged precipitation process
using CO, mineralization to recover REEs and criti-
cal elements during AMD treatment. Precipitation
studies were performed using NaOH and CO,/NaOH
to determine the viability of staged precipitation for
recovering REEs from AMD. When NaOH was used,
REEs precipitated in a pattern similar to that of the
tetrad classification of lanthanides. Approximately
70% of the REEs precipitated at the desired AMD
treatment pH, with the remaining 30% released with
the treated water. At pH values below seven, the CO,
mineralization mechanism recovered 90% of the Al
and over 85% of the REEs, while preventing the pre-
cipitation of most of the Fe (i.e., 65%). In contrast,
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the REE carbonate precipitation pattern during CM
corresponded to the trend in the hydration energies of
these elements.

4.4 Green concrete for sustainable construction using
mineral carbonation

Approximately 8% of the man-made contributions
to CO, emissions originate from cement production
(Winnefeld et al. 2022). A promising and economical
route for CM can be developed for the safe sealing of
CO, using carbon sequestration in Ca/Mg-containing
cement-based raw materials (e.g., concrete) at dif-
ferent stages of their lifetime or in Mg-containing
silicate-based olivine rocks. During the mineral car-
bonation of concrete, CO, enters through the pores of
the concrete and forms CaCO; while increasing the
porosity by lowering the pH and replacing CH mol-
ecules. This weakens the concrete mix and reduces
the overall strength of the concrete (Balapour et al.
2018). However, the application of nano-or micro-
sized silica (SiO,) can control the carbonation kinet-
ics by reducing the Ca(OH), content, which subse-
quently reduces the carbonation depth in concrete to
avoid damage (Lim and Mondal 2015). The simul-
taneous addition of nano- and micro-sized silica
(10%) can reduce the carbonation depth by 33% by
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filling the voids between the cement grains (by micro-
sized SiO,) and pores between micro-sized SiO, and
cement grains (by nano-sized SiO,) (Li et al. 2017).
An economical CO, storage route is the production
of green concrete by carbonation curing of cementi-
tious materials obtained from ISW. Several research-
ers have reported that amorphous SiO, and nano-
sized CaCO; produced during mineral carbonation,
i.e., CMS of approximately 100 pm in size, can be a
substitute for sand or additives in concrete to provide
high particle strength for economical and sustainable
building materials (Balapour et al. 2018; Meng et al.
2019; Wang et al. 2018). Yi et al. (2020) suggested
that CMS production via a wet method to replace
cement could decrease the carbon footprint of con-
crete. In addition, the utilization of industrial CO, for
curing concrete can rapidly harden cement because
of the reaction between CO, and cement clinker. A
high CaCO5/SiO, ratio ensures better CaCO5 micro-
crystal nucleation and crystallization, and higher
CO, uptake. The degree of carbonation increased
by 74.2% when the optimal CMS addition ratio was
30%, and the CaCO5/SiO, ratio was 4:1, in contrast
to that of the pure cement paste. When pure CO,
was used to cure the mixture at 40 °C and 1.5 MPa,
the strength increased by 40%, much higher than the
strength obtained via natural curing (28 d) (Yi et al.
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2020). Strengthening of the interfacial transition zone
after CO, curing is thought to be the primary contrib-
utor to the increase in strength. The insights obtained
from this study may help guide the sustainable con-
struction industry in using CMS from CM.

The 2016-patented Solidia Cement is a nonhy-
draulic binder derived from raw materials, similar
to ordinary Portland cement. However, a smaller
fraction of CaCOj; and kiln temperature of approxi-
mately 1200 °C are used, resulting in a 30% decrease
in CO, emissions (Chen et al. 2017). Furthermore,
the Calera, Solidia, and SkyMine™ processes use
hydroxides or electrolysis to increase the pH from <4
to> 8 of the CO,-equilibrated aqueous stream for car-
bonate precipitation, which is economically unattrac-
tive and environmentally polluting. Instead of using
stoichiometric inorganic bases for alkalinity, regener-
able ion exchange (IEX) materials can be a suitable
alternative for shifting the pH to achieve sustainable
and economical CM. H and Na* ions are reversibly
exchanged from a bivalent-free solution (protons are
available after CO, dissolution at a low pH in water)
and the IEX material, shifting the reaction equilibria
in an alkaline CO4>~ solution. This helps increase the
pH and bicarbonate formation in CO,-rich fluids to
facilitate CaCOj; precipitation (Bustillos et al. 2020).
The concentrated alkaline waste solution after miner-
alization can regenerate the IEX materials.

4.5 Global implementation of CCS facilities in
different industries

The current CCS facility portfolio appears more
diverse and has been implemented in coal-based
power plants, iron and steel, cement, and other chemi-
cals and heavy industries as critical business drivers
for CCS, with more comprehensive geological stor-
age options. Carbon capture technologies are widely
employed using low-cost next-generation CCS meth-
ods with safe transportation and secure injection of
CO,, without any evidence of leakage. In total, 19
CCS facilities were in operation (as of November
2019). In addition, 28 CCS units were in various
stages of development, and four were under con-
struction (Fig. 3a). In the USA, 17 projects are under
development, and 10 are in operation, primarily in
the fertilizer, power, natural gas purification, hydro-
gen, and ethanol production industries (Kearns et al.
2021). The National Carbon Capture Center in the
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USA has facilities for testing new CCS-related tech-
nologies (Beck 2020).

The current CCS processing cost is high in some
industries but will gradually decrease on the way to
achieving carbon—neutral development by implement-
ing newly developed CM technologies. CCS tech-
nology is more practical than natural carbon sinks;
however, natural carbon sinks are more economical
(Fig. 3b). The abscissa shows the amount of carbon
sources that various carbon-emission industries, such
as power, coal, prepared materials, and emissions,
can replace. CCS costs are inversely proportional to
the carbon concentrations in emissions, and are ben-
eficial for CCS implementation in industry. Direct
air capture (DAC) of CO, could have a greater scope
and potential in the future (Shen et al. 2023). The
first substantial influx of funding for CO, minerali-
zation occurred in the early 2010s. Although several
CO,-based goods have been manufactured, they have
failed to garner the interest of investors who prefer
to invest their money in businesses using technology
with established profitable business models. Mod-
ern technological advances have led to a resurgence
of interest in CO, mineralization, which has fueled
the increased cost performance of these tools. Com-
pared to conventional CO, collection methods such
as absorption and adsorption, CO, mineralization is
a potential technology with several advantages, such
as mineral security and climate change mitigation
(Franks et al. 2023).

4.6 Current practical approaches of carbonation
using industrial solid waste

Several ISWs, such as slags (from blast furnaces and
steel), waste gypsum, and coal fly ash (CFA), with
annual outputs of ~630 Mt,~300 Mt, and~ 1000 Mt,
respectively, containing 27-50% CaO and 5-15%
MgO, are useful for CO, sequestration. The contri-
butions of different industrial-based alkaline solid
wastes used for CO, mineralization (direct or indirect
carbonation) worldwide are shown in Fig. 4a and b.
Iron and steel slag-based mineralization can reduce
the maximum direct carbonation, followed by con-
crete and cement waste, mining waste, and CFA. In
contrast, cement and concrete waste, fly ash from
coal combustion, and slag from the iron and steel
industries are the top three industrial wastes with
maximum CO, mineralization (Pan et al. 2020). The



Rev Environ Sci Biotechnol (2024) 23:739-799

763

(a) Paper industry
waste, e.g., lime
(11.4%)
Cement

waste (16.3%)

Mining waste,
e.g., red mud
13.5%)

Fly ash from coal
combustion

(12.3%) /

~310 Mt CO,
reduction
(direct
mineralization)

incinerated

ash (2.4%)

(b5)5.7% due to

carbonated

Municipal solid

waste, e.g., fly

4.1% due to
carbonated
paper industry
waste

~3,700 Mt CO,
reduction

(indirect due to

utilization)

.

8.0% due to
carbonated
mining waste

13.6% due to
carbonated iron

. Y
17.4% due to and steel slags

carbonated coal
Iron and steel combustion
slag (43.5%) products
(c) Wordwida direct (d) Worldwide indirect

CO, reduction by mineralization

China
Canada
United States
India
Japan
Germany
France

South Korea
Russia

Australia

30 60 90 120 150
Amounts (Mt)

Fig. 4 CO, mineralization based on types of carbonation,
industrial wastes, and global scenario, a direct mineralization
using different alkaline wastes; b Indirect mineralization using
different alkaline wastes; ¢ Direct CO, carbonation by different

country-wise potential amounts of direct and indirect
carbonation processes indicate that the top 10 coun-
tries represent~87.1% and 89.2% of the global CO,
reduction, respectively, and China alone contributes
approximately four-fold compared to any other coun-
try (Fig. 4c and d).

4.6.1 Slag from iron and steel industries

Industrial alkaline solid wastes, such as steelmaking
slag, fly ash, and bottom ash, are stabilized by rapid
CO, sequestration using a rotating packed bed with a
high-gravity facility to enhance the carbonation kinet-
ics (Chen et al. 2020b). The solid waste (slag) from
iron and steel-making industries contains 60 wt% of
MgO+CaO, which indicates a large CM capacity

CO, reduction by mineralization

China
United States

1,000 1,500 2,000
Amounts (Mt)

0 500

countries; d Indirect CO, carbonation by different countries
(adapted from (Pan et al. 2020) with permission from Springer
Nature License Number 5722361231260)

with 0.36 tons of CO,/ton of slag. The steelmaking
industry produces 1.9 x 10 tons of steel (USGS 2020)
and generates 3.8 x 10° tons of CO,, which contrib-
utes to 7% of the global CO, emissions due to anthro-
pogenic activity. Slag is a major solid waste generated
from blast furnaces and steel production units. It con-
tains Ca,MgSi,O, and Ca,Al,SiO; with considerable
amounts of CaO (~40%), MgO (~10%), and Al,O4
(~12.5%), making it a suitable feedstock for CO,
storage (Grubb and Berggren 2018). Dry carbonation
of CO, using slag from a blast furnace was performed
in a closed chamber for 28 days to obtain calcite with
a calcium carbonation efficiency of 39% (Uliasz-
Bochericzyk and Mokrzycki 2017). Surface-modified
ground granulated slag using an alkaline solution was
shown to have a CO, carbonation efficiency 10 times
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higher than that of slag without alkaline pretreatment
(You et al. 2011). A CM efficiency of 280 kg CO,/
ton of slag was achieved under optimized conditions
of the NaCl (1 M), pressurized CO, flow (30 bar), and
an operating temperature of 150 °C at a reaction time
of 24 h (Ren et al. 2020). The salt solution aided the
leaching of Ca, followed by the CM process.

Li et al. (2024a, b) tested the pozzolanic activ-
ity of mineralized steel slag (under different CM
conditions, that is, at atmospheric and high CO,
pressures) (Li et al. 2024b). Exposure of slag to
atmospheric-pressure CO, increased the particle
size owing to the formation of calcite and expansion
of Ca-silicates, sequestered 14.9% of CO,, reduced
Al and Si leaching, and increased the strength activ-
ity index by 95.8% in 28 days. The mineralized
steel slag increased by 5.49% CO, sequestration
after mixing with cement, owing to the presence
of calcite minerals. In another study, the synergis-
tic effect of carbonation curing and the addition of
CO,-mineralized slag to cement paste was shown
to enhance its comprehensive strength and CO,
sequestration (10.76%) capability owing to micro-
structural and mineral composition changes (Li
et al. 2024a). The low particle size slag (38 pm)
enhanced the CO, sequestration with a high conver-
sion efficiency of Ca at a reaction temperature of
100 °C, CO, pressure of 19 bar, and operating time
of 30 min during direct carbonation (Huijgen et al.
2005).

4.6.2 Fly ash from coal-based power plant

Coal-based power plants can produce 750-1000 mil-
lion tons of fly ash worldwide with different compo-
sitions depending on the type of coal used for com-
bustion (Qin et al. 2019). The chemical composition
of fly ash reveals the presence of MgO, CaO, SiO,,
Fe,0;, and Al,O;, with primary mineral phases
of lime, magnetite, mullite, quartz, and portland-
ite (Meng et al. 2018). Direct carbonation processes
have mainly been studied for CO, sequestration using
fly ash as a feedstock because of its highly alkaline
conditions in the presence of calcite and lime (Shao
et al. 2024; Ukwattage et al. 2015). The carbonation
efficiency using fly ash varies from 7.66 to 210 kg/
ton, owing to variations in the CaO content of the
fly ash. Direct dry carbonation is feasible because
of the presence of highly reactive compounds, such
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as CaO and Ca(OH), which can be operated under
modest (25 to 200 °C) (Dananjayan et al. 2016; Maz-
zella et al. 2016) or high (>600 °C) temperatures
(Liu et al. 2018b) with slow reaction kinetics. Direct
aqueous carbonation, especially in salt brine (ammo-
nium chloride), can accelerate the reaction rate using
fine particles of fly ash (Hosseini et al. 2016). Ji et al.
(2018) proposed a hybrid technology for simultane-
ous CO, absorption using amine-based solvents fol-
lowed by mineralization using fly ash where CO,
migrated from the solvent to precipitate as CaCO;
at a mild temperature of 40 °C with default solvent
regeneration.

4.6.3 Waste gypsum

Industrial solid gypsum wastes (red gypsum, phosph-
ogypsum (PG), and gypsum generated during flue gas
desulfurization) primarily contain CaSO,-2H,0 with
32.6 wt% of CaO that can mineralize 0.26 kg CO,/
ton of waste. High carbonate reactivity with CO, at
atmospheric pressure and ambient temperature was
shown by CaSO,-2H,0, with 100% conversion of Ca
into CaCO; (Lee et al. 2012; Song et al. 2014). The
waste gypsum obtained from the desulfurization of
flue gas is comparatively pure and is primarily used to
produce economically valuable CaCOj; precipitates.
Ammonia dosing was found to be a more critical fac-
tor than the CO,-flow rate and solid/liquid ratio in
driving dissolved CaCOj; toward impurity-free CaCO;
precipitates (Song et al. 2014). During direct aqueous
carbonation, high concentrations of alkaline solutions
are added to make the process economically unattrac-
tive because of the high cost of the applied alkalis
(i.e., NH,OH or NaOH) compared to that of crystal-
lized salts (e.g., Na,SO, or (NH,),SO,) (Azdarpour
et al. 2018; Pérez-Moreno et al. 2015). To avoid for-
eign impurities, an inorganic acid (H,SO,) is used as
a lixiviant to extract Ca from waste gypsum during
indirect carbonation (Rahmani 2020). Direct aqueous
multi-phase systems expedite the reaction rate owing
to the direct contact of reactants in gas—liquid-solid
systems. However, trace amounts of radionuclides
in PG and red gypsum are a major concern for their
application as feedstock for the CM process.
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4.6.4 Mining waste

Another feedstock that could be an alternative to the
geological storage of CO, through mineralization is
mining waste, which contains considerable amounts
of Mg, Ca, and Fe(Il) silicates. Industries consume
enormous quantities of metals resulting from min-
ing operations, which is inevitable for the economic
development of any country. This results in the gen-
eration of a huge volume of mine waste (2 to 6.5 bil-
lion tons/year) annually (Renforth et al. 2011). Fur-
thermore, metal mining generates 0.419 billion tons
of ultramafic and mafic waste (Power et al. 2013).
The metal and diamond mining industries directly
contribute to approximately 3.6 Gt of CO, emis-
sions (Azadi et al. 2020). Mining waste (metal and
diamond commodities) is a potential feedstock for
the CM process to offset CO, emissions from min-
ing industries (Paulo et al. 2021). The potential for
CO, storage in these mines is substantial and can
counteract 1.5% of global CO, emissions annually
(Punia 2021; Shih et al. 1999). Minerals with differ-
ent dissolution rates, such as wollastonite, forster-
ite, brucite, lizardite, serpentine, and diopside, were
identified as cation sources. Brucite had a higher dis-
solution rate over a wide pH range than Mg-bearing
silicate minerals. However, other Mg silicates, such
as serpentine, can quickly release loosely bound Mg
for effective CO, mineralization (Stubbs et al. 2022).

Bullock et al. (2021) estimated that approxi-
mately 1.1 to 4.5 Gt CO, might be captured annu-
ally using waste generated by mafic and ultramafic
rock-hosted operations and a high amount of Cu-
hosted deposits, which is 31% to 125% of the min-
ing industry’s primary emissions. Hariharan and
Mazzotti (2017) investigated the ability to predict
the CO, mineralization efficiency of partly dehy-
droxylated lizardite particles at low temperatures
(£90 °C) and low CO, partial pressures (<1 bar).
This process is advantageous for efficient CO, emis-
sions management and hazardous material reme-
diation, such as the recovery of chrysotile from
mining waste for CM (McCutcheon et al. 2014).
However, the low dissolution rate of minerals is a
major obstacle in natural CO, capture; therefore,
only a fraction of the potential, that is, only 3-21%,
may be achieved in <50 years. The mining waste
is ground to small particle sizes of 50 to 200 um
or even 4 um to enhance carbonation efficiency

(Garcia et al. 2010). The expedition of natural car-
bonation can be increased by increasing the temper-
ature (150 to 180 °C) and pressure (150 bar) during
ex-situ aqueous carbonation. The heat pretreatment
of serpentine-type rock converts it into olivine at
550 to 650 °C by removing adsorbed water mole-
cules followed by partial or complete dihydroxyla-
tion to enhance the carbonation reaction rate. The
passivating layer built around the reacting particles
is a major barrier to the aqueous carbonation of sili-
cate particles. Enhancement of the porous layer and
limiting the formation of the passivation layer over
silicates can be achieved through a proper under-
standing of the carbonation mechanism.

4.7 Technology providers for large-scale carbon
mineralization

Scaling up and practical demonstrations of CO,
mineralization from ISW, such as gypsum, mine
waste, steel slag, blast furnace slag, and CFA, are
key steps forward. Wang and Maroto-Valer (2011)
reported a pH-swing method using an aqueous solu-
tion of (NH,),SO, to extract Mg-rich solution from
serpentine rock for carbonation with the regenera-
tion of ammonium salts (Fig. 5a). A two-stepped
CO, mineralization process is developed at Abo
Akademi University that uses ammonium salts
for extraction of Mg as Mg(OH), from serpentine
minerals in the first step followed by its carbona-
tion in the dry phase in a second phase (Romaio
et al. 2014) (Fig. 5b). Only a handful of China’s
CO, mineralization and usage projects are in the
proof-of-concept stage. For example, with the help
of Sichuan University, the Sinopec Group accom-
plished a pilot project to directly mineralize CO,
using PG from exhaust gas (100 Nm?/h) (Falzone
et al. 2021). Hence, it is crucial to consolidate prac-
tical knowledge and theoretical rules supporting
laboratory-based research on unit operation accel-
eration, continuously improve the process steps,
scale up and incorporate the process, and encour-
age technological development and implementation.
The Sinochem Chongqing Fuling Chemical Co.,
Ltd. demonstration facility produces 1x10° tons
of concentrated PG annually. The project improved
CO, mineralization by transforming the Ca-sul-
fate in PG into CaCO; and (NH,),SO, using an
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ammonia medium and the absorption of high-con-
centration CO, from the ammonia synthesis method
(Fig. 5¢). The final products were a fertilizer called
(NH,4),S0O; and light CaCO; of high purity (>99%)
(Quinn and Sahu 2019). The phosphate rock was
carbonated at a rate of more than 97%, and more
than 95% of the CO, produced was used. Several
researchers have attempted to recover soluble K
resources and mineralized CO, simultaneously from
naturally occurring potash ores, such as K-feldspar
(KAISi;04) and ISW (PG) (Gan et al. 2016; Wang
et al. 2014; Xie et al. 2015). The coupling process
was investigated under optimal conditions, such as
activation of K-feldspar and PG (mass ratio of 1:2)
at 1200 °C for 2 h, followed by CO, mineralization
at 40 bar partial pressure and 100 °C temperature
to obtain maximum K extraction (as K,SO,) and
CO, mineralization (CaCOj) ratios of 87 and 7.7%,
respectively (Fig. 5d) (Wang et al. 2014).

Another pilot-scale demonstration project by the
Sinopec Group, in collaboration with Sichuan Uni-
versity, used PG as feedstock to mineralize CO, from
flue gas (Xie et al. 2015) (Fig. Se). An ammonia-rich
solution was used to absorb CO, from the flue gas to
convert ammonium carbonate to reduce the CO, con-
centration from 15% to 4.5% in the flue gas, which was
subsequently scrubbed with an acidic PG slurry in acid
pickling to form (NH,),CO;. The ammonia-free CO,
slurry was further reacted with fresh PG in a three-
phase reactor to form CaCO; with CO, capture and
conversion efficiencies of 75 and 92%, respectively.
At the California pilot plant, mineral carbonation was
tried using seawater and alkaline waste. Solid aggre-
gates were produced after dewatering cementitious
material, the carbonation product of brine solution and
alkaline industrial waste, following the Calera process
(Fig. 5f). However, the requirement of a considerable
amount of energy for processing seawater and indus-
trial waste for carbonation limited the wide application
of the Calera process (Zaelke et al. 2011).

Furthermore, a CCS demonstration project was
constructed by Yuanchu Technology Corporation
in conjunction with Tsinghua University using
chemical looping and mineralization using silicate
ore and building solid waste (Meng et al. 2021). In
this study, Ca-containing silicates and construction
debris were chlorinated to produce calcium chlo-
ride, which was combined with ammonia, water,
and CO, to undergo a carbonation process that
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converts CO, into CaCO;. The system is intended to
handle 1,000 tons per annum of CO, from flue gas
released from a cement factory with 90% minerali-
zation efficiency and a 50% net absorption rate. An
industrial experiment on CO, deep mineral carbona-
tion curing was conducted in collaboration with Zhe-
jiang University and Henan Qiangnai New Materials
Co., Ltd. Many existing steam curing systems have
been modified, and a pilot-scale project has dem-
onstrated a novel CO, remedial process (Simonetti
et al. 2019). This initiative consumed 10,000 tons of
CO, annually during CO, curing of 1x10% MUI5
solid concrete and lightweight bricks without avail-
ing the energy-intensive and polluting procedures used
during conventional steam curing. Recently, many
laboratory-scale studies have been conducted on CM
using ISW at the laboratory scale (lizuka et al. 2012;
Lin et al. 2024; Liu et al. 2021). Several studies have
been conducted at the pilot scale in continuous mode
to target industrial-level operations (lizuka et al. 2017;
Kemache et al. 2017; Pan et al. 2013; Said et al. 2016).
A number of obstacles are encountered during the
scale-up of technologies, such as limitations in heat or
mass transfer during the enlargement of operating ves-
sels, resulting in lower efficiency of the process (Ren
et al. 2021). A pilot-scale plant with a capacity of 200
L was developed at Aalto University in 2014 for indi-
rect carbonation using slag waste feedstock (from steel
industries) and NH,Cl as the alkaline agent (Said et al.
2016). A pilot-scale reactor was fabricated to operate a
batch of 190 L of alkaline solution (1 M NH,CI) and
20 kg of slag waste to extract Ca (~80%) within 1 h.
The temperature was controlled at <45 °C during indi-
rect carbonation to prevent evaluation of the NH,Cl
solution, which was recycled back after 71% precipita-
tion of CaCO; to make the process economical.
Laboratory- and pilot-scale studies have been
conducted on carbonation using bauxite solid waste
under atmospheric (long-term experiments) and
pressurized (short-term experiments) CO, flows
(Han et al. 2017). The reaction rate was accelerated
by adding CaCl, to achieve 83 kg of CO, storage
per ton of bauxite following a process similar to
natural carbonation, which facilitates smooth field
implementation. Several lab- and pilot-scale pro-
jects were implemented based on direct and indi-
rect mineral carbonation for industrial applications,
using fly ash from coal plants, iron and steel slag,
waste gypsum, and other Ca/Mg-containing residues
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(Table 2). Moderately concentrated CO, extracted from
anthropogenic sources reacts with several industrial
wastes or feedstocks containing Ca/Mg to be converted
into Ca/MgCO; for commercial applications, such as
aggregates and additional cementitious materials, for
global carbon mitigation.

Although long-known, carbon capture technol-
ogy has not been widely adopted because of its high
implementation costs and other barriers. Several
leading companies in the field of carbon capture have
advanced and perfected their methods to provide safe,
efficient, eco-friendly, and scalable solutions. Several
companies and startups have started CCS processes
using patented technologies to make efforts to rescue
the planet. The patent-based technologies that were
successfully implemented at start-up and industrial
scales are shown in Table 3. Start-up companies
related to CCS play a critical role in developing novel
and commercially viable CCUS technologies in com-
pliance with the increasing pressure to achieve net-
zero emissions targets. The developed technologies
use a low-cost CO, removal process, either by direct
carbon capture using train braking energy (CO2Rail)
or by developing a two-step CCS process that starts
with the separation of CO, flue gas or biogas in a
dilute stream, followed by purification through a
membrane or amine solution via absorption (Rushnu
Inc.). The captured anthropogenic CO, may be deliv-
ered to end users to be used as feedstock for a circu-
lar economy, or compressed and stored in an under-
ground reservoir for natural mineralization. These
CCS-based industries are pleading for global CO,
reduction efforts from existing large-point sources
of emissions, which would help solve issues related
to the existing historical carbon in the atmosphere.
One option is to invest in carbon capture firms, even
though the industry remains nascent (Subramanian
and Madejski 2023). Market instability is caused by
high technology prices, supply chains, and competi-
tion intensity. The CO, mineralization techniques
and their applications are summarized in Table 4.

5 Carbon capture and storage: evaluation
of feasibilities and implications

The development and refinement of multiple CCS
technologies are crucial for reducing CO, and alle-
viating global climate change. The selection and

application of these highly impactful tools require
evaluation of their practical applications and con-
sideration of anticipated challenges that strongly
depend on various factors, including types of indus-
try (for direct carbonation), infrastructure (e.g., grid
and transportation), geology and geography (for indi-
rect carbonation or geological sequestration), and the
political stands of local governments and/or nations.
Although accurate assessments must consider tangi-
ble and intangible factors, this section focuses on the
most common factors that play key roles in determin-
ing techno-economic feasibility and environmental
and societal challenges (Roy et al. 2023).

The environmental effects of the CCS and CM
methods must be determined through a meticulous
evaluation of the final CO, emissions using LCA
(Zimmermann et al. 2020). It is crucial to maintain
direct or indirect carbon emissions lower than fixed
CO, levels during mineral carbonation (Wang et al.
2024b). Additionally, the global warming potential
(GWP) was used to compare the global warming
impacts of various gases, which measures the amount
of energy that would be absorbed during the emission
of one ton of gas relative to the equivalent amount of
CO, over a given period (US EPA 2024). The CCS
associated with power plants can decrease the GWP
by 63-82%, with maximum reductions obtained for
oxy-fuel combustion in finely powdered coal inte-
grated with gasification plants, and minimum reduc-
tions by post-combustion capture integrated with gas
turbine plants. In contrast, only a 4-48% reduction in
GWP can be achieved for mineral carbonation during
CO, utilization (Cuéllar-Franca and Azapagic 2015).

Nduagu et al. (2012) reported environmental
implications, such as material requirements, energy
consumption, and emissions of CO, equivalents
(CO,-eq) during the mineralization of one ton of
CO, from a coal power plant and silicate rock (Mg-
source) using LCA. The multi-stage mineralization
route developed in Finland (Abo Akademi Univer-
sity) was used to extract Mg from the ore to form
Mg(OH),, followed by MgCO; formation in a fluid-
ized bed reactor under high temperature and pressure.
The process required 3.6 GJ of energy and generated
517 kg CO,-eq for one ton of CO, mineralization into
MgCO, owing to the high process heat requirement.
A consumption of 300 kWh per ton-CO, of energy
was required for the sequestration of 160 kgCO, per
ton of slag by extracting Ca in NH,CI solution (pH
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Fig. 5 Schematic process-flow of CO, mineralization via a
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sity route (Romao et al. 2014); ¢ Phosphogypsum-based high-
concentration CO, (from ammonia synthesis process) miner-
alization procedure developed by Sinochem and the Chinese

swing mineralization) from the slag from the iron and
steel industry, followed by precipitation to CaCOj; at
80 °C with 45% conversion (Kodama et al. 2008).
The economic feasibility of the CM technology is a
major challenge in promoting the utilization of ISW
for CM (Kirchofer et al. 2012). During the production
of value-added products from electric arc furnace slag
using indirect aqueous carbonation, reagents (NaOH,
NCl, CH;COOH, and HNO;) cost 600-4500 USD
per ton of CO, sequestration (Sanna et al. 2014).
Thonemann et al. (2022) reported a negative
median global warming impact for direct aqueous
carbonation, indirect solid carbonation, and carbona-
tion curing through a detailed meta-LCA, resulting
in various pessimistic, realistic, and optimistic sce-
narios (Fig. 6a). Categorization into optimistic, real-
istic, and pessimistic scenarios depended on the end-
product utilization (Ca-/Mg-carbonates and silica).
In optimistic scenarios, end-products should replace
conventional products, whereas in realistic scenarios,
MgCOs is considered a valuable end product. In pes-
simistic scenarios, end-products are not used. A high
negative value of —35 kg CO,-eq per kg of CO, used
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for the global warming impact was calculated for car-
bonation mixing in a scenario to avoid concrete pro-
duction. The positive impact of indirect aqueous car-
bonation on global warming can be attributed to its
high thermal energy consumption (Thonemann et al.
2022).

CM technologies, particularly direct aqueous and
indirect solid carbonation, use diluted CO, (without
purification or flue gases) or pure concentrated CO,
(after purification). One potential benefit of using
dilute CO, is that no purification steps are required.
However, a reduced carbonation yield is expected
with dilute CO,. Furthermore, a lower global warm-
ing impact was observed for indirect solid carbona-
tion using concentrated CO, instead of dilute CO, in
the pessimistic, realistic, and optimistic scenarios. In
contrast, direct aqueous carbonation yields similar
results in the optimistic scenario (Fig. 6b). The low
conversion rate and lower global warming impact
of CO, purification technologies result in an overall
higher global warming impact when using dilute CO,.

Geological CO, storage by injecting CO, is a resil-
ient, feasible, safe, and secure option, as suggested by
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the estimation and quantitative prediction of longer
stays followed by mineralization toward permanent
trapping (Alcalde et al. 2018). The risk assessment
of CO, release due to faults, release from wellbores,
leakage from pressurized pipelines, and transporta-
tion can be mitigated by monitoring the injection
process and deploying sensing technologies at the
surface and subsurface. Monitoring geological car-
bon storage helps detect leakages, reduces the amount
of CO, loss, and quantifies leak sizes. Furthermore,
simulations can help improve our understanding of
the fundamentals and models of different aspects of
the storage process. This enriches the knowledge on
pressure build-up in pipelines, fluid flow, and geo-
level chemical and mechanical changes to avoid
CO, loss at storage sites (Ajayi et al. 2019; Rodosta
and Ackiewicz 2014). The Safe Drinking Water Act
regulates the geological storage of CO, by injection
via the Environmental Protection Agency (EPA) to
avoid any changes in subsurface water chemistry
due to contamination. An EPA advisory was issued
to regulate this by categorizing it into six classes of
wells for geological storage to protect against potable
water contamination. Class VI wells are used during
geological storage by injecting CO,, and are identi-
fied as Areas of Review to be monitored for footprints
to protect drinking water (Nicot et al. 2009). It has
been suggested that CO, injection must be performed
below the maximum penetration of wells to compen-
sate for the uncertainty of the long-period geological
storage of CO, and migration of the CO, plume in the
well (Yu et al. 2023).

The implementation of LCA has resulted in a
shift in how environmental impact assessments are
conducted (Ghasemi et al. 2017). Previously, envi-
ronmental impact assessments were restricted to
mundane processes, such as manufacturing and pro-
cessing; however, they have now been expanded by
including the entire life cycle of the product supply
chain. Companies can better control the environmen-
tal effects of their entire product supply chain using
LCA-based environmental impact assessments. The
energy penalty produced by the process intensifica-
tion of a system may strike a balance between the
energy and environmental implications of the CM
processes (Thonemann et al. 2022). Local energy
distribution should be appraised for the environ-
mental implications of power and heat generation.

Determining net CO, emissions is crucial because
CO, mineralization by ISW is a technical option for
reducing the effects of climate change. Raw material
production may result from CO, emissions, offset the
ISW treatment requirement, and produce CO, cred-
its from trace mineralization at the margins. Thus,
by using ISW-based CO, mineralization technol-
ogy, it is possible to account for the CO, released.
For example, construction blocks made from mineral
carbonation of steel slag have been subjected to LCA
(Jia et al. 2019). Carbonated blocks have compres-
sive strengths comparable to those of the traditional
Portland-cement-based building blocks. However,
carbonated blocks exhibit fewer adverse environ-
mental effects. Lee et al. (2020) proposed an indirect
carbonation method involving mineral carbonation of
steel slag to produce nano-sized CaCO;. The project
was economically viable, and the LCA revealed a
net decrease of 8% in CO, emissions compared with
that of the traditional approach. The carbon footprints
were calculated using LCA by Ostovari et al. (2020)
for seven indirect and direct carbonation methods.
Products derived by carbonating natural minerals and
steel slag are used as partial cement substitutes, and
all approaches reduced climate effects between 0.44
and 1.17 tons of CO,-eq per ton of CO, stored.

6 Outlook of scientific challenges and perspectives
in CO, mineralization

Despite considerable advancements in the miner-
alization of anthropogenic CO, into Ca and Mg
carbonates, several scientific challenges need to be
addressed. Naturally occurring minerals or ISWs
used as alkaline materials have heterogeneous chemi-
cal compositions. The iron and silica constituents of
alkaline sources affect the rate of carbonate formation
and its mechanisms in different fluidic environments.
Thus, predicting the kinetics of carbonate formation
using inconsistent multicomponent feedstock is chal-
lenging. In a multiphase environment, the carbonation
process converts anthropogenic CO, into carbonates.
Future research should focus on industrial waste to
achieve suitable operating conditions and CM routes
for specific wastes to exploit their full carbon-storage
potential.
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Different characterization methods, such as X-ray
and neutron scattering, tomography, and spectroscopy
at operating temperatures and pressures, are neces-
sary to understand the details of the fluid chemistry,
structure, and morphology during carbonate forma-
tion and its underlying mechanisms. Advanced char-

(Mahoutian and Stern 2016)

w2 . . . . .
8 acterization of carbonated materials is required to
é find suitable applications, such as algal feed or con-
struction materials, depending on their composition,
o & ' o
08 g stability, and strength.
S0 = < . .
%E‘é 2'g g Among the different CM routes, direct aqueous
E 2 0 . .1 . . .
% 5029325 carbonation and indirect carbonation are primarily
Sz g 23 C g
° § £ %;' =3 used at the laboratory scale. Nevertheless, indirect
Z 2 2 8.50 .8 . . . . .
g é 2 = gg = carbonation yields high-purity Ca/MgCO;, which
A ER: s2E g2 involves the recycling of leaching solvents, and
2 le = 5 0 .
= £ g % g 2o should be considered. The development of novel sol-
gleaveass vents or adsorption materials is required to capture
M |O P q P

and supply CO, and recycle it in-situ after carbon-
ate formation, as a suitable substitute for the acid/
base consumption process to produce Mg- or Ca-
carbonates. Novel synthetic pathways are required to
produce nano-or mesoscale Ca-or-Mg carbonates by
utilizing anthropogenic CO, in a few additional steps
using regenerable sorbents or solvents (Werner et al.
2014).

The integration of CM with different pathways for
selective resource recovery from industrial and other
waste sources, such as brine solutions from desalina-
tion and oil recovery plants, cement waste, lime mud,
AMD, asbestos residue, fly ash, and waste LiFePO,
batteries, can demonstrate commercially viable and

Captured 0.2 tons of CO, per
day

Foundation year CO, capture potential

2016

: = . effective carbon reduction strategies. However, a fun-
= o g ¥
> o = =] . . .
g, o &,82 E3=s damental understanding of the mechanisms of disso-
=} o — 7 0 O o = &b
= = S 2} = . . . J .
é O 2 = _ 255 T,3 % 5 lution and carbonate formation rate in silicate miner-
k-] a0 O N2 N'E S .
8 2 § T2 § = gz 52 = als, as well as the formation of proper crystal shapes
=0 — e =g = . . .
Ef % £ E 38288 ig = E and high-purity carbonated products requires future
= S = 2 8 =5 8 . .
E|8SS828EESa2EL research on ex-situ CO, storage in the feedstocks
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gl=2828482 ) ES 5 S8 The extraction of REEs from natural leachate
= «2 0 - = 3 L . . . .
Sl sgP=ErogsU0 (AMD), CFA, and high-TDS brine solutions obtained

from oil field extraction or desalination plants using
flue gas to produce carbonates of Ca, Mg, and Na
through the CM process can be a synergistic approach
to address various wastes. However, the commerciali-
zation of direct brine mining requires proper evalua-
tion of its composition, source, and generation path
after treatment and optimization of the operating
process parameters, such as pH, CO, flow rate, and

Table 3 (continued)
Companies or startups
CarbiCrete (Canada)
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Table 4 Techniques, sources, and applications of CO, mineralization

CO, mineralization technique/sources

Applications of CO, mineralization

Reference

Coupled reaction-extraction-crystallization
technique

Sea water desalination brine

Unavoidable CO, source to CO, sink

Utilization of steel slag

Brine electrolysis process

Wet process

Coupling CO, mineralization and solvent
extraction

High-gravity carbonation process

Saline water-based mineralization pathway

Ex-situ mineral carbonation

Neutralization process of acid mine drainage
for CO, mineralization

Application of CO, for leaching and precipi-
tation to extract metals by CO, mineraliza-
tion

CO, mineralization using brine source and
fly ash

Electrolytic carbonation of Ca present in fly
ash

Aqueous carbonation using fly ash obtained
from the incineration of municipal solid
waste and cold-rolling wastewater

Simulated distiller waste conversion for the
industrialization process

Reduction of CO, to carbonate mineral under
the coexistence of Ca and Mg

The cement industry is based on CO, miner-
alization

The establishment of a waste-to-resource
supply chain

In the production of sodium carbonate,
hydrogen, and chlorine

CO, mineralization slag is a sustainable con-
struction material in the industry

To investigate the precipitation of magnesium
from a high Mg/Li ratio brine

Refining slag with calcium-containing waste-
water for CO, mineralization

Gigaton-Scale CO, management: reducing
atmospheric CO, levels

The reaction of Ca-, Fe-, and Mg-silicate
minerals with gaseous CO, to form geo-
logically stable, naturally occurring solid
carbonate minerals

Ca/Mg containing acid mine drainage can
be used to sequester CO, by forming Ca/
MgCO; through CO, injection

CO, plays a dual role in the selective leaching
of lithium from spent LiFePO, cathode
materials, followed by its precipitation into
Li,CO,4

CaO-riched fly ash mixed with brine solution
to increase the pH to increase the carbona-
tion efficiency during CO, mineralization of
Ca from both sources to CaCO;

Synergistic approach for the remediation
of various wastes, such as fly ash from
coal-fired plants, brine solution, and CO,.
Electrolysis of brine solutions increases
acidity to liberate Ca from fly ash, which
can be carbonated using CO, to produce
high-purity CaCO,

Fly ash and rolling wastewater could seques-
ter 102 g per kg of solid ash with a conver-
sion efficiency of 90.7% to CaCO; while
consuming 180 kWh of energy for fixing
one ton of CO,

(Hariharan and Mazzotti 2017)
(Chen et al. 2017)

(Wang et al. 2021)

(Ostovari et al. 2021; Pan et al. 2017)
(Lee et al. 2018)

(Wang et al. 2021)

(McCutcheon et al. 2014)

(Chen et al. 2020a)

(La Plante et al. 2021)

(Gerdemann et al. 2007)

(Lee et al. 2016)

(Xu et al. 2023a)

(Soong et al. 2006)

(Lu et al. 2016)

(Chang et al. 2015)

temperature, for high conversion efficiency through
carbonation reactions (Kumari et al. 2024).

CMS from ISW can be used as a substitute
for cement during carbonation curing to pro-
duce green concrete as a sustainable building

@ Springer

material by reducing the carbon footprint. The appli-
cation of nano- and micro-sized SiO, along with
CO,-sequestered CaCO; positively affects the
durability of concrete with rapid CO, curing by
reducing the carbonation depth and improving the
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Fig. 6 Life cycle assessment of different methods of CO, min-
eralization, a Global warming impact by CO, mineralization
techniques, b Effect on climate change due to direct aqueous

intensification by filling the pores among the cement
grains (Yi et al. 2020).

Recently, an integrated approach using CO, as a
leaching agent for the selective recovery of lithium,
followed by precipitation into Li,CO; from spent
LiFePO, batteries, has shown great potential as a CM
for decarbonization, along with energy and resource
recovery (Xu et al. 2023a). However, the relatively
slow dissolution and precipitation of lithium is a key
hindrance that can be overcome by further research
on gas-liquid crystallization methods to obtain high-
quality Li,CO; for sustainable lithium recovery and
recycling of waste resources (Kim et al. 2024).

To promote carbon reduction efforts, the advance-
ment of scientific knowledge in the CM process
in natural subsurface environments and artificially
engineered systems is essential. Moreover, the bal-
anced action of the 3Es, that is, engineering (smaller
number of unit operations), economic (economically
feasible operating processes), and environmental
(eco-friendly approaches), should be evaluated when
developing novel processes for utilizing industrial
alkaline waste for the CM process in future research.

7 Conclusions

In this review, we examine the current state of CO,
mineralization technologies and discuss the pos-
sibilities for future expansion. Several alternative
strategies have been proposed in different coun-
tries to reduce CO, emissions. In addition, meth-
ods successfully adopted in the CCS industry were

and indirect solid carbonation methods depending on the CO,
sources and scenarios (adapted from (Thonemann et al. 2022))

comprehensively reviewed. The storage of CO, in
water-insoluble Ca/MgCO; is thermodynamically
favorable for CM. Efforts to expedite CM at low
temperatures and CO, concentrations in industrial
flue gas streams present considerable practical chal-
lenges during mineral dissolution and carbonate
precipitation, and the reaction rate is unfavorable.
CO, separation and mineralization via the looping
of solvents (especially amine-based) between car-
bon-loaded and free states can accelerate the cap-
ture and storage of CO, in Ca- and Mg-carbonates
as a single-step, low-temperature operation, and
adaptable pathway. CM has shown the potential to
replace traditional CCS methods for reducing car-
bon through in-situ or ex-situ leakage-free mineral
sequestration. Several critical aspects of CM are
discussed with respect to its historical background,
potential future developments, carbonation mecha-
nisms, technological options, practical uses, inte-
grated carbonation approaches that utilize differ-
ent wastes, and environmental impacts. Efforts to
reduce CO, emissions through CM have provided
opportunities to improve several types of manu-
facturing processes. The pressing need to reduce
and utilize CO, through CCS may contribute con-
siderably to climate change mitigation. The selec-
tion and application of CCS technologies require
a robust evaluation of their techno-economic fea-
sibility and environmental impact over extended
time and length scales. The development of numer-
ous cutting-edge and environmentally friendly
CCUS technologies, as well as their integration into
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manufacturing industries and the power sector may
result in a clean, green, and sustainable planet in the
future.
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