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Abstract  Activated sludge has been widely adopted 
as the cornerstone of conventional sewage treatment 
for over 50 years. This process can reduce biochemi-
cal oxygen demand (BOD) in wastewater and protect 
public health, with many systems able to remove 
nutrients as well. While activated sludge continues to 
satisfy many treatment targets, the demands on waste-
water treatment are changing. There are concerns that 
toxic and difficult-to-degrade contaminants are con-
tributing to environmental and human health issues. 
There is also increasing interest in potable reuse to 
strengthen water resiliency and the waste-to-resource 
paradigm; however, when biological secondary treat-
ment is used, additional treatment is needed for reuse. 
Chemical oxidation may be an effective alternative to 
activated sludge to destroy difficult-to-degrade con-
taminants. Compared to biological systems, chemical 
oxidation may also be easier to operate and maintain, 
requiring less space for more effective treatment. This 
article presents a critical review of current activated 
sludge-based sewage treatment practices and explores 
the opportunity to replace biological secondary 
wastewater treatment with chemical oxidation. Some 
opportunities include the ability of chemical oxida-
tion to degrade contaminants of emerging concern 

(CECs); rapid start up and shut down; and avoidance 
of issues associated with biological treatment such 
as toxic loadings, biomass washout, difficulties set-
tling sludge, and sludge handling and disposal. This 
review focuses on chemical oxidation as an alterna-
tive to biological secondary treatment for municipal 
wastewater. Most works included in this review are 
referenced in Google Scholar and the Web of Science, 
with the majority being published between 2000 and 
2023. Trends revealed include a substantial increase 
in investigations regarding biological treatment, but 
much less literature focused on chemical oxidation of 
municipal secondary wastewater. There were reports 
covering chemical oxidation for industrial wastewater 
and for tertiary treatment of municipal wastewater, 
but not for chemical oxidation as a secondary treat-
ment method for municipal wastewater.”
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1 � Current secondary treatment practices

Water resource recovery facilities (WRRFs) play a 
fundamental role by removing pathogens and other 
contaminants to protect human health and the envi-
ronment. Secondary treatment is a part of many 
WRRFS and is defined as the removal of dissolved or 
suspended biodegradable organic matter from waste-
water; it is assumed to involve biological treatment 
using microorganisms (Metcalf and Eddy 2013). Bio-
logical secondary treatment has been the cornerstone 
of WRRFs since the late 1800s, when biological 
trickling filters were introduced (Lofrano and Brown 
2010). In 1913, the most widely applied secondary 
biological treatment process, activated sludge, was 
patented and began to be employed. It was widely 
adopted in the United States (US) after the Environ-
mental Protection Agency’s (EPA’s) Clean Water Act 
(CWA) mandated secondary treatment in 1972 (Lof-
rano and Brown 2010). The adoption of activated 
sludge and other secondary biological treatment pro-
cesses has been paramount in attaining CWA goals of 
fishable, boatable, and swimmable waterways in the 
US.

Although secondary treatment was never formally 
and exclusively defined as being “biological” in the 

CWA, secondary treatment has nevertheless become 
synonymous with biological treatment. Chemical oxi-
dation processes have historically not been applied to 
municipal sewage for the removal of the majority of 
soluble and colloidal organic pollutants. It is interest-
ing to consider why chemical secondary treatment has 
not been used for this application. One reason is that 
US secondary effluent standards established to meet 
the CWA were based on treatment data from pub-
licly owned treatment works (POTWs) “practicing a 
combination of physical and biological treatment to 
remove biodegradable organics and suspended sol-
ids” (U.S. 2010). No treatment plants using chemical 
oxidation were included in the dataset, as they did not 
exist, and therefore, the option of employing chemi-
cal oxidation was not considered. In 1983, the EPA 
published amendments to the treatment standards that 
established “treatment equivalent to secondary treat-
ment” for other biological treatment processes (e.g., 
trickling filters, lagoons, and oxidation ditches) that 
meet secondary effluent standards most of the time, 
avoiding massive upgrade costs to WRRFs that would 
otherwise need to upgrade to activated sludge (Flynn 
1984). However, chemical treatment still was not con-
sidered as a potential secondary treatment equivalent.

Chemical oxidation secondary treatment may also 
have been essentially ignored because the United 
Nations defines “secondary treatment” as the “second 
step in most waste treatment systems during which 
bacteria consume the organic parts of the waste… 
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This is accomplished by bringing the sewage, bacte-
ria, and oxygen together in trickling filters or within 
an activated sludge process” (UN. 1997). In addition, 
the EPA states “the Secondary stage of treatment 
removes about 85 percent of the organic matter in 
sewage by making use of the bacteria in it.”

Although secondary biological treatment has effec-
tively been employed to treat wastewater over the past 
century, it has several disadvantages. Additionally, the 
demands of used water recovery are changing, poten-
tially making secondary biological treatment less 
appealing. For example, maintaining consistent efflu-
ent quality in activated sludge processes can be dif-
ficult. Also, transient toxic loadings to WRRFs may 
inhibit the microbes needed to treat water (Ren 2004). 
High-flow, dilute loadings from storm events in com-
bined sewers or through inflow and infiltration can be 
difficult to accommodate using municipal biological 
treatment. These events can cause microbe wash-
out, resulting in ineffective treatment or untreated 
discharges (Peters and Zitomer 2021). Additionally, 
compounds such as pharmaceuticals, microplastics, 
and other contaminants of emerging concern (CEC) 
may pass through activated sludge systems and be 
discharged into the environment via treated water 
or solids residual disposal (Yunlong et  al. 2014). 
When micropollutant degradation, or potable and 
nonpotable water reuse are goals, tertiary treatment 
that employs chemical oxidation is employed to fur-
ther mitigate contaminants that are not effectively 
removed in secondary biological treatment and to 
provide additional disinfection (Rizzo et  al. 2019; 
Margot et al. 2013; Jacob et al. 2010). Multiple, pre-
vious reviews discuss the role of chemical oxidation 
as a pretreatment or as tertiary post treatment after 
biological treatment for municipal wastewater (Bel-
trán et  al. 1997; Scott and Ollis 1995; Jeworski and 
Heinzle 2000; Arzate et al. 2019; Zagklis and Bam-
pos 2022; Rout et al. 2021; Patel et al. 2021). In gen-
eral, chemical oxidation has been shown to be a use-
ful technology when paired with biological treatment 
for municipal wastewater. As a pretreatment method 
to biological treatment, chemical oxidation can par-
tially oxidize recalcitrant compounds to form more 
biodegradable intermediates, thus improving overall 
removal. Additionally, chemical oxidation effectively 
removes recalcitrant compounds that remain after 
biological treatment of municipal wastewater. Chemi-
cal oxidation also provides disinfection beyond what 

conventional methods, such as chlorination, are capa-
ble of achieving, while also degrading contaminants 
(Galeano et al. 2019; Kokkinos et al. 2021; Yu et al. 
2024).

With water reuse, it is especially interesting to 
consider the potential benefits of replacing the two, 
sequential operations of biological and chemical 
oxidation with a single chemical oxidation process. 
Previous reviews highlight the potential benefits of 
chemical oxidation for industrial wastewater treat-
ment, both with and without the aid of biological 
treatment (Oller et al. 2011; Mantzavinos and Psilla-
kis 2004; Amor et al. 2019; Sathasivam et al. 2019). 
These previous works describe chemical oxidation as 
a useful and effective technology to degrade recal-
citrant compounds when paired with conventional 
biological secondary treatment of municipal waste-
water (both as a pretreatment and a tertiary post treat-
ment), and to treat recalcitrant industrial wastewater. 
However, no previous literature reviews describing 
chemical oxidation to replace biological treatment 
for secondary municipal wastewater were found. The 
information reviewed herein aims to fill the gap to 
describe the potential effectiveness of chemical oxi-
dation as an alternative to conventional biological 
treatment for secondary municipal wastewater treat-
ment, thus possibly elimination the need for multi-
ple treatment steps to achieve biochemical oxygen 
demand (BOD) removal, recalcitrant compound deg-
radation, and disinfection (Rizzo et al. 2019; Margot 
et al. 2013; Jacob et al. 2010). 

This review evaluates the possibility of chemical 
oxidation being an alternative to conventional acti-
vated sludge and other biological secondary treat-
ment methods. First, conventional secondary biologi-
cal treatment (primarily activated sludge) advantages 
and challenges are reviewed. Applications for novel 
chemical secondary treatment processes are dis-
cussed in light of potable and nonpotable water reuse 
requirements.

2 � Advantages and challenges of activated sludge

Activated sludge is the leading secondary treatment 
technology to meet CWA water quality goals. Regu-
latory effluent limits for total suspended solids (TSS) 
and biochemical oxygen demand (BOD) are estab-
lished to provide sufficient water quality when paired 
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with disinfection (U.S. EPA 2010). Initially, activated 
sludge systems focused on removing BOD, followed 
by upgrades to remove nitrogen and phosphorus from 
wastewater to avoid oxygen depletion and eutrophi-
cation of receiving waters (Barnard 1975, 1974; 
Zitomer and Speece 1993). Activated sludge has 
also been shown to partially or completely degrade 
some CECs, while other CECs can be removed from 
the liquid stream by sorption and incorporation in 
the biosolids stream, with remaining CECs passing 
through untreated (Baalbaki et al. 2016).

Challenges of activated sludge operation include 
(1) inadequate CEC removal; (2) challenging carbon 
management; (3) large footprint requirement; (4) 
high energy demand; (5) bulking, rising, and foaming 
sludge issues; (6) difficulty accommodating flow vari-
ation; (7) difficulty accommodating toxic loadings; 
(8) slow response to changes; and (9) slow startup 
times. These challenges are described below.

2.1 � Inadequate treatment

2.1.1 � CECs

Pharmaceuticals and personal care products (PPCPs), 
drugs of abuse (DOA), endocrine disrupting com-
pounds (EDCs), stimulants, and pesticides are all 
considered CECs that can have toxic effects in aquatic 
environments and are present in sewage (Blair et  al. 
2013; Hughes et al. 2013; Gay et al. 2016; Kidd et al. 
2007; Kümmerer 2003). WRRFs have been identi-
fied as a primary source of CECs in surface waters 
(Yunlong et al. 2014; Purdom et al. 1994; Loos et al. 
2013). Secondary biological treatment processes are 
only able to degrade biodegradable organic pollut-
ants, allowing some CECs to pass through partially 
treated, untreated, or in the biosolids (Yunlong et al. 
2014; Bolong et al. 2009; Deblonde et al. 2011).

Research surveying CECs in multiple WRRFs has 
shown highly variable removal, with > 80% removal 
of some CECs while other CECs were removed 
at < 25% (Yunlong et al. 2014; Verlicchi et al. 2012; 
Jelic et al. 2011; Tran et al. 2018). Investigation of 22 
CECs at a WRRF in Canada showed that activated 
sludge was the main process by which CECs were 
removed (Baalbaki et al. 2016). Seventeen of the 22 
compounds were partially degraded, six of which 
(ibuprofen, naproxen, amphetamine, ephedrine, 
dihydrocodeine, and caffeine) were > 80% removed 

through biodegradation (Baalbaki et al. 2016). Three 
of the CECs were partially removed through adsorp-
tion to biosolids (Baalbaki et al. 2016). This study’s 
results showing partial removal of CECs by acti-
vated sludge are consistent with other research on 
CEC removal in WRRFs (Carballa et  al. 2007; Gao 
et al. 2012; Joss et al. 2005). Pesticides are partially 
removed; for example, 60% of diuron was removed 
by activated sludge (Stasinakis et al. 2009). Activated 
sludge systems with longer solids retention times 
(SRTs) and nitrification were correlated with higher 
removal efficiencies for some CECs (e.g., antibiotics, 
antiphlogistics, antidepressants, and musk fragrances) 
possibly due to the extended treatment time (Fernan-
dez-Fontaina et  al. 2012; Suarez et  al. 2010; Clara 
et al. 2005).

Some CECs may be removed by sorption to sol-
ids in primary and secondary treatment. Fragrance 
compounds and triclosan were partially removed by 
sorption to solids in activated sludge (< 40%), while 
most CECs were not significantly removed by sorp-
tion (< 5%) (Verlicchi et al. 2012; Ternes and Siegrist 
2004; Yunlong et al. 2014).

Researchers also have reported biological treat-
ment actually increases some CEC concentrations, 
which can be attributed to metabolites being trans-
formed back into parent compounds (Göbel et  al. 
2007; Kasprzyk-Hordern et  al. 2009). It is also pos-
sible that some CECs (e.g., pesticides) desorb from 
solid particles during biological treatment, increasing 
their aqueous-phase concentrations (Yunlong et  al. 
2014; Köck-Schulmeyer et al. 2013).

Pharmaceutical compounds have been shown to 
impact microbial community structure in biological 
secondary treatment and reduce treatment efficiency 
(Pires et  al. 2021). Furthermore, other CECs, such 
as chlorinated compounds, chemical additives, and 
pharmaceuticals, can have a toxic effect on biological 
treatment processes, thus reducing efficiency (Toba-
jas et al. 2016; Zhao et al. 2019).

2.1.2 � Antibiotic resistant bacteria (ARB) 
and antibiotic resistant genes (ARGs)

Overuse of antibiotics and their subsequent discharge 
into sewers has contributed to elevated levels of anti-
biotic-resistance genes and mobile genetic units in 
activated sludge systems (Zhang et al. 2011). Antibi-
otics are typically difficult to biodegrade in WRRFs, 
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resulting in their discharge into the environment 
(Verlicchi et al. 2012). The lack of CEC treatment in 
conventional WRRFs has also been shown to lead to 
antibiotic resistance in aquatic environments (Pruden 
et al. 2006). Additionally, ARBs and ARGs are a con-
cern when treated wastewater and biosolids are used 
for agriculture and other water reuse applications 
(Krzeminski et al. 2019).

WRRFs can promote ARG transfer, leading to the 
proliferation of ARBs, especially during the activated 
sludge process (Zhao et al. 2019; Nguyen 2021; Yang 
et  al. 2013). A study of 13 WRRFs that employed 
activated sludge with different modifications found 
that the percentage of ARBs in the effluent increased 
compared to influent, with the highest increases in 
facilities using anaerobic/anoxic/oxic treatment and 
sequencing batch reactors with long hydraulic resi-
dence times (HRTs) (Korzeniewska and Harnisz 
2018).

2.1.3 � PFAS

Per- and polyfluoroalkyl substances (PFAS) are 
another group of CECs that have gained attention 
due to their impacts on environmental and public 
health (Daly et al. 2018). PFAS have been identified 
in WRRF effluents, indicating that PFAS constituents 
are not removed (or are only partially degraded) in 
conventional wastewater treatment processes (Balu-
chová et  al. 2019; Sinclair and Kannan 2006). A 
study of six WRRFs in China found no significant 
PFAS removal (yearly average), or even increased 
PFAS concentrations for aerobic secondary treatment 
systems (Chen et al. 2018). Negative removal in aero-
bic biological systems can be attributed to the oxida-
tion of precursors to perfluorooctanoic acid (PFOA) 
and perfluorooctanesulfonic acid (PFOS), thereby 
increasing their concentrations in the effluent (Chen 
et al. 2018; Guerra et al. 2014; Zhang et al. 2013).

2.2 � Carbon management

Generation of waste solids (i.e., waste activated 
sludge) from biological treatment processes poses 
challenges with stabilization and disposal/reuse. Sew-
age sludge solids stabilization and disposal can make 
up 50–60% of WRRF operating costs (Coma et  al. 
2013; Pilli et al. 2015). Typically, aerobic or anaero-
bic digestion is employed to stabilize and reduce the 

volume of sewage sludge; anaerobic digestion also 
generates biomethane for heat and electrical energy 
generation (Eddy 2013). Secondary biological treat-
ment not only results in the generation of a significant 
mass of sludge that must be stabilized and disposed 
of but also results in sludge that is more difficult to 
digest than primary sludge (Borzooei et  al. 2019). 
Waste activated sludge (WAS) has limited methane 
potential compared to primary sludge (Grübel and 
Suschka 2015). Minimizing or eliminating WAS pro-
duction and subsequent sludge handling can greatly 
reduce WRRF operating costs and environmental 
impacts (Coma et al. 2013; Banti et al. 2020).

Stabilized sludge must be disposed of or reused. 
This can be done through appropriate landfilling, land 
application, composting, incineration, or other pro-
cesses. Sludge handling and disposal is an expensive 
endeavor, with an average cost of $65/wet ton (Smith 
2020). Disposal fees for landfilling biosolids add to 
WRRF operational expense. Land application is often 
considered to be more favorable, as nutrients in the 
biosolids can be beneficial to agriculture and may 
lead to reduced disposal costs compared to landfilling 
(Lu et al. 2012).

However, land application of biosolids can intro-
duce several challenges. Heavy metals in biosolids 
can accumulate in soils, damaging crops, leaching 
into groundwater, and bioaccumulating in animals 
and humans (McGrath et al. 1994). Biosolids can also 
be a source of pathogenic contamination and antibi-
otic resistance (Krzeminski et al. 2019; Pritchard et al. 
2010; Viau et  al. 2011; Brooks et  al. 2007). PFAS 
have been shown to sorb to sewage sludge, exiting 
WRRFs through a solids pathway in addition to the 
liquid effluent (Sinclair and Kannan 2006; Arvaniti 
et al. 2012, 2014; Higgins et al. 2005; Ochoa-Herrera 
and Sierra-Alvarez 2008). PFAS homologs are only 
partially degraded in sludge handling processes such 
as anaerobic digestion, leading to the spread of PFAS 
in the environment and possible uptake into crops if 
biosolids are land applied (Lakshminarasimman et al. 
2021; Sepulvado et  al. 2011). Eutrophication is also 
a concern, leading to the adoption of nutrient man-
agement plans and possible recommendations for 
reduced biosolids nutrient application to farmland 
(Cherry et al. 2008). Land application, especially near 
densely populated urban areas, has steadily declined 
due to increasing regulations, competitive landfilling 



48	 Rev Environ Sci Biotechnol (2024) 23:43–65

1 3
Vol:. (1234567890)

rates, contamination liability concerns, and public 
scrutiny (Smith 2020).

2.3 � Large footprint requirement

Secondary biological treatment systems, especially 
activated sludge, take up a large amount of space. 
Activated sludge systems have long HRTs, increasing 
with the level of treatment (e.g., nutrient removal), 
ranging from 4 to 8 h or more for conventional treat-
ment to 20–40 h for extended aeration treatment 
(Eddy 2013). These long HRTs lead to large aeration 
tanks and secondary clarifiers, with large footprints 
and increased capital costs. Beyond the liquid stream 
treatment, large volumetric flows of WAS are pro-
duced with activated sludge, requiring equipment and 
space to handle WAS before disposal.

2.4 � Energy demand

Reducing energy demand for wastewater treatment is 
a high priority to help reduce costs and greenhouse 
gas emissions. WRRFs are estimated to consume 
0.8% of US energy, costing about $2 billion per year 
(Lemar and Fontaine 2017;  Electric Power Research 
Institute 2013). It is estimated that WRRFs constitute 
over 20% of the energy demand for municipal pub-
lic utilities (Means 2004). Of this, approximately 
60% of conventional WRRF energy demand is for the 
aeration of activated sludge (Gikas 2017; Shi 2011; 
Svardal and Kroiss 2011). This high energy demand 
can be a problem for small communities that do not 
have the financial base to operate an activated sludge 
process, especially one that can remove nutrients. The 
high energy demand also contributes to greenhouse 
gas emissions and climate change if fossil fuels are 
used for energy production (Banti et al. 2020).

2.5 � Bulking, rising, and foaming sludge issues

Issues with solids separation in activated sludge 
systems can reduce treatment efficiency and capac-
ity. Bulking sludge, rising sludge, and foaming are 
the most common operational issues in an activated 
sludge plant that may interfere with, or even halt, 
BOD and nutrient removal (Eddy 2013). Bulking 
sludge has poor settling characteristics and can result 
in high effluent suspended solids and reduced treat-
ment performance since it can reduce the amount of 

active biomass in the system (Nittami and Batinovic 
2021). Rising sludge, although rare, can occur when 
denitrification takes place in secondary clarifiers.

Foaming problems are typically associated with 
diffused aeration systems and can also lead to foam-
ing issues in subsequent digestion processes (West-
lund et al. 1998). Operational changes (e.g., reduced 
sludge age and use of selectors), chemical oxidizing 
agents (e.g., chlorine), and coagulants/polymers (e.g., 
cationic polymer) may effectively suppress foaming 
(Hwang and Tanaka 1998; Jenkins et al. 2003; Tsang 
et al. 2008; Pal et al. 2014).

2.6 � Difficulty accommodating flow variation and 
toxic loadings

Changing flows and the associated changes in load-
ings can greatly impact activated sludge performance. 
Reduced flows due to droughts can result in higher 
pollutant concentrations, while increased flows due to 
storm events and inflow and infiltration can hydrauli-
cally overload activated sludge facilities, resulting in 
biomass washout and poor treatment.

As droughts increase in frequency and duration, 
there is a push toward water conservation to reduce 
demand on water supply systems (Dinar and Schwabe 
2015; Baerenklau et al. 2014). Without reducing the 
mass of pollutant discharge, reducing water flows 
through methods such as low-flow fixtures and reduc-
ing the duration of water use (e.g., shorter show-
ers, turning off the faucet when not using) increases 
the concentration of pollutants reaching WRRFs. 
Increased loadings of inorganic salts (e.g., NaCl) can 
reduce oxygen transfer and uptake rate as well as total 
organic carbon (TOC) removal in activated sludge 
systems (Wang et al. 2005).

Increased dilute flows from storm events and sea-
sonal variations also influence activated sludge pro-
cess treatment efficiency for combined sewer systems 
and sanitary sewers with infiltration and inflow. One 
common practice in the US is to store excess flows 
during storm events and subsequently treat the stored 
water when flows are lower (Peters and Zitomer 
2021). High flow variation is unfavorable since 
increased hydraulic loading can dilute biomass in the 
activated sludge process, and can result in microbial 
community washout, thereby decreasing treatment 
efficiency (Gaudy and Engelbrecht 1961). Storm 
events can decrease nitrification, nitrogen removal, 
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and particle separation efficiency in secondary treat-
ment (Wilén et  al. 2006). Langeveld et  al. (2013) 
studied rainfall impacts on a WRRF in Eindhoven, 
The Netherlands. After a dry period of 38 days, a 
relatively small event occurred that led to multiple 
combined sewer overflows and a 5-week loss of acti-
vated sludge hydraulic capacity. The effluent quality 
never exceeded permit limits, but influent pumping 
had to be reduced, resulting in more CSO water being 
released untreated to receiving streams. In Oslo, 
Norway, temporary snow melting periods created 
high flow conditions of cold influent at the WRRF, 
resulting in reduced biological nitrogen removal 
and a decrease in secondary clarifier solids removal 
efficiency (Plósz et  al. 2009). Biological nitrogen 
removal is of particular concern in areas affected by 
cold temperatures, as nitrifying organisms are slow-
growing and highly sensitive to low temperature 
(Eddy 2013).

Toxic loadings can be introduced to wastewater 
streams as “first flushes” from wet weather events 
and other discrete industrial discharges. These shock 
loads can negatively impact the metabolic processes 
and microbial communities in biological treatment 
systems (Gaudy and Engelbrecht 1961; Krishnan and 
Gaudy 1976).

2.7 � Slow response to changes

Secondary biological treatment has relatively slow 
response times to changing loadings and changing 
aeration inputs due to the time required for micro-
bial growth. In particular, activated sludge processes 
are difficult to control as they are complex systems 
exhibiting nonlinear behavior (Holenda et  al. 2008). 
Additionally, activated sludge systems are difficult to 
monitor with sensors due to sensor fouling and cali-
bration issues; therefore, lab testing is often required, 
further increasing response time. On-line monitoring 
of activated sludge processes has been studied exten-
sively, with sensors designed to reduce response time 
through consistent measurements of parameters such 
as dissolved oxygen, ammonia, and nitrate concen-
trations (Gernaey et al. 2001; Liu et al. 2000). Acti-
vated sludge modeling is also used to better predict 
and manage these systems to increase the consist-
ency of effluent quality and improve energy efficiency 
(Newhart et al. 2019; O’Brien et al. 2011; Stare et al. 
2007). Although sensors and modeling strategies can 

help, they are not always reliable and can be difficult 
to manage with the activated sludge slow response 
time to variable wastewater influent quantity and 
quality.

2.8 � Slow startup times

Biological secondary treatment systems cannot be 
started immediately, as time is needed for biomass 
to establish and acclimate to a specific wastewater. 
Seeding from other basins can reduce startup times, 
provided biomass is readily available. Typical startup 
times for conventional activated sludge range from 
20 to 60 days if the inoculum biomass is adapted to 
the wastewater and sufficient biomass is available for 
inoculation (Pronk et al. 2015). Startup times can be 
longer if biomass inoculation is not used. Although 
long startup times are not an issue for continuous 
operation of biological treatment, they do present 
a challenge when a system must be taken offline for 
maintenance and then restarted.

3 � Chemical oxidation

Activated sludge has been the subject of continuous 
improvements over more than 100 years. However, 
there is less work developing potential, alternative 
secondary treatment technologies, such as chemical 
oxidation. There have been a limited number of publi-
cations discussing chemical treatment of sewage since 
1990, although there is an increasing trend (Fig.  1). 
In comparison, a Web of Science search of “activated 
sludge” returned over 2,600 results between January 
and October 2022. While chemical oxidation is not 
typically used for secondary treatment of munici-
pal sewage, it may offer multiple advantages that 
substantiate its consideration as an activated sludge 
alternative. A Venn diagram is included in (Fig. 2) to 
highlight abilities for both secondary biological and 
chemical treatment.

Because of its ability to degrade CECs, chemi-
cal oxidation has been used to treat water with low 
concentrations of organic constituents, including in-
situ groundwater, drinking water, tertiary wastewa-
ter, and high-strength wastes that are difficult to treat 
using biological systems, such as landfill leachate and 
industrial wastewater (Seol et al. 2003; Hodaifa et al. 
2019; Wiszniowski et  al. 2006; Gomes et  al. 2017; 
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Bhatti et  al. 2011). Chemical oxidation systems can 
have faster reaction rates than biological treatment, 
faster response time to changes in influent character-
istics, do not need time to develop biomass, and may 
accommodate fluctuating flows and loadings more 
easily than biological systems (Ikehata et  al. 2006). 
Unlike secondary biological treatment, chemical oxi-
dation systems do not generate WAS, thus eliminat-
ing the need for sludge handling from the secondary 
treatment step. Common chemical oxidants used in 
water and wastewater treatment for the removal of 
contaminants include ozone and advanced oxidation 
processes (AOPs). Table 1 shows a summary of the 
advantages and disadvantages of activated sludge and 
chemical oxidation treatment methods.

3.1 � Ozone

Ozone is a strong oxidant (redox potential of 2.07 V), 
making it desirable for trace organic removal and dis-
infection of water in one treatment step (Wang and 
Chen 2020). Ozone may react with constituents in 
water through both direct (ozone-based) and indirect 
(hydroxyl radical [HO·]-based) pathways (Wang and 
Chen 2020).

Ozone’s ability to oxidize trace organics such as 
CECs has led to its adoption in drinking water and 
tertiary wastewater treatment. Ozone is effective at 
degrading hydrophobic CECs that would otherwise 
not be removed by conventional treatment. For exam-
ple, Rosal et  al. (2010) showed that fifteen minutes 

Fig. 1   Annual number 
of publications regarding 
chemical treatment of sew-
age and activated sludge. 
The Web of Science search 
was performed on October 
20, 2022, using key-
words “Chemical Sewage 
Treatment” or “Activated 
Sludge” for the period 
1990–2021

0

500

1000

1500

2000

2500

3000

3500

0

10

20

30

40

50

60

70

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Ac
�v

at
ed

 S
lu

dg
e 

Pu
bl

ic
a�

on
s p

er
 Y

ea
r

Ch
em

ic
al

 S
ew

ag
e 

Tr
ea

tm
en

t P
ub

lic
a�

on
s 

pe
r Y

ea
r

Chemical Sewage Treatment Ac�vated Sludge

Table 1   Advantages 
and disadvantages of 
activated sludge and 
common advantages and 
disadvantages of chemical 
oxidation treatment

Activated sludge Chemical oxidation

Advantages • Established secondary 
treatment technology

• Effective removal of 
BOD

• Effective removal of 
nutrients

• Can degrade CECs
• Provides disinfection
• Fast startup and response times
• Relatively small footprint
• No sludge handling and disposal
• Can integrate well into potable reuse facili-

ties
Disadvantages • Ineffective CEC 

removal
• Treatment upsets by 

toxic loadings, flow 
variations

• Large space and 
energy requirements

• Need for sludge han-
dling and disposal

• Sludge bulking and 
settling issues

• Not able to remove nutrients on its own
• No established kinetic values for secondary 

municipal wastewater
• Need for post treatment to handle toxic 

byproducts and disinfection byproducts 
(DBPs)

• May be energy intensive
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of ozonation at a dose of 50—220 mM after second-
ary biological treatment degraded 37 of the 54 CECs 
studied to below the level of quantification (Rosal 
et al. 2010). Ozone is effective at removing most anti-
biotics, beta-blockers, hormones, and contraceptives, 
with mixed results for non-steroidal anti-inflamma-
tory drugs (NSAIDs) and anti-anxiety medications. 
However, ozone is not very effective for oxidizing 
lipid regulators and X-ray contrast media (Ikehata 
et al. 2006).

Ozone can inactivate pathogens including viruses, 
bacteria, fungi, spores, protozoa, nematodes, and 
algae (Rojas-Valencia 2011). In particular, ozone 
can inactivate microbes that may be chlorine- and/or 
UV-resistant. For example, ozone is more effective 
at completely inactivating Cryptosporidium oocysts 
compared to chlorine dioxide, chlorine, and mono-
chloramine (Peeters et al. 1989; Korich et al. 1990). 
Chlorine-resistant bacteria are also a source of con-
cern due to the widespread use of chlorine disinfec-
tion. Ozone has been shown to inactivate these organ-
isms and is capable of destroying chlorine-resistant 
genes (Ding et  al. 2019). Ozone was effective for 
the destruction of ARBs in a full-scale WRRF, but 
only at doses higher than required for chemical CEC 
removal (Czekalski et al. 2016).

Challenges associated with ozonation include 
the fact that partial oxidation of pollutants by ozone 
may increase toxicity and could produce more diffi-
cult to degrade intermediates (Wang and Chen 2020). 
Ozone also has low solubility in water and is energy-
intensive to generate (Wang and Chen 2020). Finally, 
ozonation of waters containing bromate could lead to 
the formation of brominated disinfection byproducts 
(DBPs) (Wang and Chen 2020; Beltrán et al. 2021).

3.2 � Advanced oxidation processes (AOPs)

AOPs come in many different configurations and can 
overcome challenges with other chemical and biologi-
cal oxidation processes. AOPs are chemical oxidation 
methods that typically rely on HO·, which are highly 
reactive (redox potential of 2.80 V), non-selective 
oxidants (Wang and Chen 2020). AOPs may also fea-
ture other radicals, such as sulfate radicals or super-
oxide radicals. AOPs can be categorized as ozone-
based, UV-based, catalytic, physical, electrochemical, 
and non-HO· forming AOPs, or combinations thereof 

(Miklos et al. 2018). A summary of different types of 
AOPs is shown in Table 2.

When comparing AOPs, it is important to account 
for the energy efficiency, commonly assessed as the 
electrical energy needed to reduce the concentration 
of a contaminant by an order of magnitude, or the 
electrical energy per order (EEO). AOPs have been 
grouped into those with EEOs < 1 kWh m−3 (e.g., 
O3-based AOPs, UV/H2O2), 1–100 kWh m−3 (e.g., 
photo-Fenton), and > 100 kWh m−3 (e.g., UV photo-
catalysts) (Miklos et al. 2018). It should be noted that 
these broad classifications include data for AOP treat-
ment of a wide range of different target contaminants 
(Miklos et al. 2018).

Ozone alone is considered an AOP or AOP-like 
process as ozone can break down into HO· when 
reacting with hydroxide ions or organic matter (Mik-
los et  al. 2018; Merényi et  al. 2010a, 2010b; Buffle 
and Gunten 2006). Ozone-based AOPs enhance the 
breakdown of ozone to HO·, which can be accom-
plished homogenously (elevated pH, O3/H2O2); het-
erogeneously with metal oxides, activated carbon, or 
other catalysts; or photocatalytically with UV (Miklos 
et al. 2018). The non-selective nature of HO· allows 
AOPs to readily degrade organics, with much higher 
kinetic constants than ozone alone (kHO· of 10 (Peters 
and Zitomer 2021)–10 (Rizzo et  al. 2019) M−1 S−1, 
kO3 of 10–3–10 (Eddy 2013) M−1 S−1) (Legube and 
Karpel Vel Leitner 1999). Ozone-based AOPs over-
come the selective nature of ozone, increasing the 
range of contaminants degraded and the kinetics 
of degradation by leveraging both direct ozonation 
and HO· (Miklos et  al. 2018). Degradation of natu-
ral organic matter (NOM) and effluent organic mat-
ter (EfOM) by AOPs has been shown to reduce DBP 
formation compared to ozonation alone (Beltrán et al. 
2021; Lamsal et al. 2011).

Although ozone-based AOPs alleviate some chal-
lenges of conventional ozonation, other challenges 
still exist. Use of ozone-based AOPs to treat waters 
with > 100 µg/L Br− can result in 5–50% conver-
sion of Br− to the undesirable DBP BrO3

− from 
direct ozonation (Hübner et al. 2015; Gunten 2003). 
The O3/H2O2 process may provide a limited ben-
efit through the efficient breakdown of ozone in 
wastewaters and the avoidance of scavenging reac-
tions, but it also may require subsequent removal 
of excess H2O2 (Miklos et  al. 2018; Hübner et  al. 
2015). Using catalytic ozonation can have issues 
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with mixing, as HO· are generated at the catalyst 
surface and do not diffuse far into bulk solution 
before degrading.

UV-based AOPs rely on UV irradiation combined 
with radical-promoting mechanisms. UV-based AOPs 
include UV/H2O2, UV/TiO2, and the UV/Fenton 
process (Miklos et  al. 2018). Full-scale UV/H2O2 
operations have been implemented for potable reuse 
and surface water treatment (Audenaert et  al. 2011; 
Kruithof et al. 2007). The formation of chlorate, per-
chlorate, and bromate is not a concern in UV-based 
AOPs (Miklos et al. 2018). Additionally, the UV flu-
ences for AOPs typically exceed those needed for 
4-log inactivation of most pathogens, thus provid-
ing UV disinfection with AOP treatment (National 
Primary Drinking Water Regulations: Long Term 1 

Enhanced Surface Water Treatment Rule. Final rule 
2006; Miklos et al. 2018).

Challenges associated with UV-based AOPs 
include difficulty when waters contain high DOM 
concentrations (> 10 mg-C/L); additionally, inorganic 
byproducts can form when irradiated with vacuum or 
low-pressure UV (Buchanan et al. 2006). UV irradi-
ation of nitrate can also form nitrite at wavelengths 
below 240 nm, which may be an issue when using 
vacuum or medium-pressure UV, although most UV 
systems are currently low-pressure UV (Sharpless and 
Linden 2001). Nitrate oxidation by medium-pressure 
UV can result in the formation of potentially muta-
genic organic DBPs in the presence of DOM (Hof-
man-Caris et al. 2015; Kolkman et al. 2015; Martijn 
et  al. 2014). For photocatalytic AOPs (such as UV/

Table 2   Advantages and disadvantages of different types of AOPs

Type of AOP Advantages Disadvantages References

Ozone-based • Reduced energy for O3 pro-
duction compared to ozona-
tion alone

• Reduced bromate and other 
DBP formation compared to 
ozonation alone

• No waste disposal
• Use both ozone and HO· for 

contaminant destruction and 
disinfection

• Can produce bromate
• Catalytic ozonation can have 

water/catalyst contact issues

Beltrán et al. (2021), Miklos 
et al. (2018), Lamsal et al. 
(2011), Hübner et al. (2015), 
Huber et al. (2003)

UV-based
(ie, photocatalytic, UV-H2O2

• No waste disposal
• No production of halogenated 

DBPs
• Both UV and HO· provide 

disinfection
• No residual catalyst separa-

tion and handling

• High dissolved organic matter 
(DOM) concentrations can 
interfere with UV

• Catalyst separation and recov-
ery needed for photocatalytic 
systems

• DBP formation concerns for 
high natural organic matter 
(NOM) concentrations

Miklos et al. (2018), Buchanan 
et al. (2006)

Fenton and Fenton-like • Catalysts can be separated by 
magnets

• Considered low cost

• Require low pH (pH = 3)
• Must dispose of metal sludge

Sánchez Pérez, et al. (2013), 
Brienza and Katsoyiannis 
(2017)

Physical (ie, microwave, cavita-
tion, etc.)

• No DBP formation concerns
• No waste disposal
• No additional chemicals 

needed

• High energy costs Miklos et al. (2018), Goel 
et al. (2004), Mahamuni and 
Adewuyi (2010)

Electrochemical • No waste disposal
• No additional chemicals 

needed

• Limited by diffusive transport 
of radicals

• Possibility to form DBPs at 
electrode surface

Miklos et al. (2018), Kapałka 
et al. (2009)

Sulfate radicals • Impacted by scavenging less 
than HO·

• Lower redox potential than 
HO·

Brienza and Katsoyiannis 
(2017), Mahdi Ahmed et al. 
(2012)
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TiO2), separation of the catalyst from the bulk solu-
tion is an important design consideration. In instances 
where catalysts are immobilized, diffusion limitations 
can impede process efficacy, similar to ozone-based 
AOPs.

The Fenton process generates HO· with ferrous 
iron and H2O2 in acidic conditions (pH = 3) (Wadley 
and Waite 2004). Fenton-like processes substitute fer-
rous iron for other materials to activate H2O2 (Bokare 
and Choi 2014). Fenton and Fenton-like processes 
are considered low-cost AOPs, and the use of iron 
and other magnetic metals facilitates separation with 
magnets (Sánchez Pérez, et al. 2013). However, oper-
ation at low pH to prevent metal precipitation requires 
subsequent pH adjustment prior to discharge (Wadley 
and Waite 2004). Additionally, iron/metal sludge is 
generated and must be disposed of in these processes 
(Brienza and Katsoyiannis 2017).

Physical AOPs involve the manipulation of the 
water matrix to produce HO· instead of relying on 
chemical addition. These processes include plasma, 
ultrasound, and microwave (Miklos et  al. 2018). 
Plasma AOPs use strong electric fields to initiate 
physical and chemical reactions (e.g., direct oxida-
tion, radical generation, and shock waves) to degrade 
contaminants (Bo et  al. 2014; Locke et  al. 2006; 
Hijosa-Valsero et  al. 2014). Ultrasound AOPs use 
ultrasonic waves (20–500 kHz) to form microbub-
bles that then collapse, generating high temperature 
(> 5000 K), high pressure (> 1000 bar), and highly 

reactive radicals that degrade contaminants through 
thermal decomposition and radical reactions (Mik-
los et al. 2018; Mason and Pétrier 2004). Microwave 
AOPs use high-energy radiation (300 MHz–300 GHz) 
to oxidize contaminants, often paired with UV, oxi-
dants, or catalysts (Han 2004; Zhihui et al. 2005; Bo 
et al. 2006). Physical AOPs suffer from high energy 
costs, leading to the investigation of hybrid systems 
(e.g., combined with UV, oxidants) (Goel et al. 2004; 
Mahamuni and Adewuyi 2010).

Electrochemical AOPs use an electrode (often 
boron-doped diamond for electrooxidation processes) 
to generate HO· directly from water oxidation (Chap-
lin et al. 2013; Chaplin 2014). Electrochemical AOPs 
can generate radicals without chemical additives and 
are viewed as eco-friendly compared to other AOPs 
(Miklos et  al. 2018). However, HO· generation hap-
pens at the surface of the electrode and diffusion is 
limited to about 1 µm, making diffusive transport the 
limiting mechanism for oxidation efficiency (Miklos 
et  al. 2018; Kapałka et  al. 2009). High radical den-
sities at the electrode surface can also form chlorate, 
perchlorate, bromate, and other oxidation byproducts 
(Bergmann and Rollin 2007).

Beyond HO·, sulfate radicals can also be gener-
ated in AOPs. Sulfate radicals are strong oxidizers 
(redox potential of 2.60 V) and react through the 
one-electron oxidation mechanism, which reduces the 
impact of organic and inorganic scavenging (Brienza 
and Katsoyiannis 2017; Mahdi Ahmed et  al. 2012). 

Fig. 2   Advantages 
of biological treatment 
and chemical oxidation for 
secondary treatment of 
municipal wastewater
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Sulfate radicals are generated by activating precursors 
such as potassium persulfate or peroxymonosulfate 
salts through similar methods as other AOPs (Fenton/
Fenton-like process, photocatalytic and mechanical 
activation) (Brienza and Katsoyiannis 2017). Sulfate 
radical AOPs can effectively degrade recalcitrant con-
taminants such as hormones, pharmaceuticals, and 
pesticides (Brienza et  al. 2014; Zhang et  al. 2015; 
Ahmed et al. 2014).

Compared to biological and other chemical oxi-
dation methods, AOPs have been shown to degrade 
many more recalcitrant organic compounds and DBP 
precursors. Reviews of AOPs have reported effective 
degradation of phenols, pesticides, dyes, pharma-
ceuticals, EfOM, NOM, and many CECs (Wang and 
Chen 2020; Deng and Zhao 2015; Babu et al. 2019; 
Salimi 2017).

AOPs also provide disinfection and can destroy 
ARBs and ARGs. Radicals such as HO· have been 
shown to destroy cell envelopes, enzymes, proteins, 
lipids, nucleic acids, and intracellular substances, 
resulting in inactivation (Duan et al. 2021; Kokkinos 
et al. 2021). AOPs with UV irradiation have also been 
shown to have a synergistic effect, providing greater 
pathogen inactivation (Sgroi et al. 2021). Zhang et al. 
(2016) compared Fenton and UV/H2O2 and found 
1.55–3.78 log removal of four target ARGs (sul1, 
tetX, tetG, and intI1) using both systems.

Challenges with AOPs involve the need to over-
come scavenging, possible formation of toxic inter-
mediate compounds and DBPs, and high cost of treat-
ment. Reactions with non-target constituents, or HO· 
scavengers, can prevent radicals from breaking down 
the target contaminants. Scavengers include carbonate 
and bicarbonate, chloride, and NOM/EfoM (Nakatani 
et  al. 2007; Grant and Hofmann 2016). The incom-
plete oxidation of organics can also lead to increased 
toxicity from AOPs (Babu et  al. 2019). Finally, 
although less prevalent than chlorine or ozone DBP 
formation, AOPs may still form DBPs depending 
on the type of AOP, reaction time, and water matrix 
composition (Lamsal et al. 2011). Pure HO· has been 
shown to react with bromide (Br−), forming bromate 
(BrO3

−)−, although bromate formation is hindered 
by dissolved organic matter (DOM) and in processes 
with excess H2O2 (Gunten and Oliveras 1998; Lutze 
et  al. 2014; Von 2003). Additionally, if oxidative 
chlorine species are abundant (e.g., ClO·, OCl−), oxi-
dation by HO· to chlorate and perchlorate is possible 

(Miklos et al. 2018). AOPs are also typically energy-
intensive, leading researchers to compare different 
AOPs and EEO values to determine economic fea-
sibility in relation to treatment performance (Sgroi 
et al. 2021).

3.3 � Challenges with chemical oxidation

Chemical oxidation as a secondary treatment method 
is not without its challenges. In addition to the indi-
vidual challenges with different types of chemical 
oxidation, there are also challenges inherent to chemi-
cal oxidation as a whole. These challenges include 
energy usage and the need for post treatment.

The perceived high energy demand for chemi-
cal oxidation is one of the major hurdles to its adop-
tion as a secondary treatment method (Miklos et  al. 
2018). Ozone generation requires energy in addition 
to the energy needed to transfer ozone into water, 
similar to the energy required to transfer oxygen to 
water for activated sludge treatment. Many AOPs 
require energy for UV light, ozone, H2O2 addition, 
or combinations thereof. Without establishing the 
kinetics of chemical oxidation secondary treatment, 
it is unknown if the high energy demand can be off-
set by savings compared to activated sludge, such as 
decreased solids processing and detention times.

Another concern with chemical oxidation is the 
potential need for post treatment. Chemical oxidation 
methods may generate toxic byproducts and DBPs 
that need to be removed (Lamsal et  al. 2011; Babu 
et  al. 2019). Tertiary treatment processes (e.g., acti-
vated carbon, membrane filtration) may be required 
to mitigate DBPs and reduce toxicity (Toor and 
Mohseni 2007; Listiarini et al. 2010). Selection of the 
appropriate chemical oxidation method will depend 
on influent characteristics, requiring pilot studies to 
evaluate which method is best, what HRT is required, 
and what post treatment processes are needed to 
ensure effluent water quality.

Additionally, chemical oxidation typically cannot 
remove nutrients, so another process will be needed. 
Ozone can directly oxidize ammonia to nitrate, which 
can be removed by reverse osmosis, whereas ammo-
nia is not appreciably removed by reverse osmo-
sis (Schoeman and Steyn 2003; Krisbiantoro et  al. 
2020). A UV/H2O2 AOP was also shown to convert 
up to 38% of soluble non-reactive phosphorus to solu-
ble reactive phosphorus, which could be removed 
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by subsequent treatment processes (Venkiteshwaran 
2021). This is beneficial as effluent phosphorus limits 
are becoming more stringent, with some limits below 
0.10 mg/L total phosphorus so that even low con-
centrations of nonreactive phosphorus in sewage can 
impact effluent permits. Additionally, a photocatalytic 
AOP (UV/TiO2) coupled with ultrafiltration removed 
90–97% of total phosphorus from municipal waste-
water effluent (Gray et al. 2020).

4 � Potential additional applications for chemical 
oxidation secondary treatment

Advantages of chemical oxidation include the abil-
ity to reach advanced treatment goals (CEC destruc-
tion and pathogen inactivation), relevance for decen-
tralized treatment (smaller footprint, possible lower 
energy demand, no secondary sludge, and fast 
response and startup times), its ability to handle flow 
variations, and its ability to be used for water reuse 
applications. These aspects are considered in the fol-
lowing sections.

4.1 � Advanced treatment goals

As treatment of CECs and ARB/ARGs is increas-
ingly considered, alternatives to secondary bio-
logical treatment will be needed. Chemical oxida-
tion can degrade CECs and ARB/ARGs (Wang and 
Chen 2020; Deng and Zhao 2015; Babu et al. 2019; 
Salimi 2017; Duan et al. 2021; Kokkinos et al. 2021), 
whereas many CECs are not removed in biological 
treatment and ARB/ARGs can increase in biologi-
cal treatment systems (Yunlong et  al. 2014; Bolong 
et al. 2009; Deblonde et al. 2011; Nguyen 2021; Yang 
et al. 2013). Tertiary chemical oxidation systems are 
already in use to degrade contaminants that are not 
removed during biological treatment (Kharel 2020; 
Piras 2020).

Although tertiary chemical treatment can improve 
effluent water quality, it cannot remove CECs and 
ARB/ARGs in biosolids. The spread of CECs such 
as PFAS and ARB/ARGs through biosolids is of 
increasing concern for agriculture (Krzeminski et al. 
2019; Lakshminarasimman et  al. 2021; Sepulvado 
et  al. 2011). Replacing biological secondary treat-
ment with chemical treatment would allow for the 
degradation of CECs and ARB/ARGs in the liquid 

stream while avoiding the production of biosolids 
and thus the spread of CECs and ARB/ARGs through 
land application.

4.2 � Decentralized treatment

Because of short detention times, lack of biosolids 
production, and integration of contaminant destruc-
tion and disinfection, chemical secondary treatment 
systems are candidates for decentralized treatment 
systems. Decentralized systems typically must be 
small due to their application (e.g., within buildings, 
in remote communities, rest stops and parks, mobile/
disaster relief, expeditionary military applications, 
etc.) and often do not have full-time trained opera-
tors nor conveyance networks to bring water to them 
(Hur et al. 2023). Chemical systems require a smaller 
footprint as they may operate at lower HRTs than bio-
logical systems, and do not need a separate treatment 
process for disinfection. They also avoid the infra-
structure needed to stabilize, store, and dispose of 
WAS. Additionally, there may be less operator atten-
tion required for chemical oxidation systems since 
there is no need to manage biological growth.

Chemical systems can also be designed to mini-
mize onsite chemical storage. Ozone-based systems 
can be operated with little to no chemical storage, 
either using liquid oxygen or ambient air with an 
onsite oxygen concentrator. Some AOPs can oper-
ate with ozone and/or UV bulbs, with no additional 
chemical storage.

Another benefit of chemical treatment systems is 
the ability to allow the system to remain idle, only 
operating when needed (Peters and Zitomer 2021). 
Because chemical treatment systems do not need time 
for bacterial growth and acclimation, they can be 
started and shut down as needed. This makes chemi-
cal secondary treatment suitable for areas with sea-
sonal tourism or for disaster relief, which only require 
extra treatment capacity for short periods.

4.3 � Accommodation of wet weather/dilute high flows

High flow events from wet weather, especially in 
combined sewer systems, are challenging for biologi-
cal treatment systems, but are candidates for chemi-
cal oxidation. Chemical treatment systems do not 
have issues with biomass washout, allowing them 
to maintain treatment efficiency during high-flow 
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events. They also can start operation rapidly, allow-
ing for a quick response time if a WRRF is experienc-
ing transient, high flows. Chemical oxidation systems 
have also been proposed for the “peak plant” concept, 
which is a facility that remains idle until it is needed 
to treat excess flow (Peters and Zitomer 2021).

5 � Highlighted benefits of chemical oxidation 
for integrated water reuse

Increasing water demands from population growth 
and economic development paired with increasing 
occurrences and intensities of droughts from climate 
change make water scarcity a high-impact risk (Liu 
et  al. 2017; WEF 2015). An estimated four billion 
people face water scarcity at least one month each 
year (Mekonnen and Hoekstra 2016). Water scar-
city’s effects spread outside of areas that are directly 
impacted by the lack of water. Agriculture is one of 
the largest water-consuming sectors, and water scar-
city leads to global challenges in food production 
(Mancosu et al. 2015).

Potable water reuse is a technological solution 
that is receiving increased attention to combat chal-
lenges related to water scarcity. Potable water reuse 
falls into two categories, indirect potable reuse (IPR) 
and direct potable reuse (DPR). IPR systems have an 
environmental buffer (e.g., lake, groundwater aquifer) 
between wastewater and drinking water treatment, 
while DPR systems do not (Jeffrey et al. 2022). The 
pros and cons of IPR and DPR are discussed else-
where (Dow et al. 2019; Herman et al. 2017).

The two main technological challenges with pota-
ble water reuse involve pathogen inactivation and the 
removal of CECs (Jeffrey et al. 2022). Although IPR 
and DPR systems are effectively able to eliminate 
these concerns, issues arise with process upsets and 
failures, which could result in the discharge of patho-
gens, such as viruses and Cryptosporidium parvum, 
and CECs into the environmental buffer or distribu-
tion network (Jeffrey et  al. 2022). As such, a multi-
barrier approach is taken, which provides treatment 
redundancy in case of upsets or failure of individual 
unit operations (e.g., UV-AOP following reverse 
osmosis) (Lahnsteiner et  al. 2018). Chemical oxida-
tion (e.g., AOPs, O3-biological activated carbon, 
ozone for membrane biofouling control) is frequently 
applied to potable reuse applications for its ability to 

degrade CECs and inactivate pathogens (Jeffrey et al. 
2022; Gerrity et al. 2014; Stanford et al. 2011). Pota-
ble reuse treatment systems typically involve WRRF 
effluent going to an advanced water treatment plant 
(which houses additional unit operations to create 
potable water) before distribution or storage in an 
environmental buffer (Gerrity et al. 2013). By replac-
ing secondary biological treatment at the WRRF with 
chemical treatment, the WRRF and advanced water 
treatment plant could be integrated to reduce treat-
ment time, complexity, and cost. Figure  3 shows a 
typical IPR treatment system, while Fig.  4 shows a 
proposed integrated DPR treatment system.

The paradigm shift from “wastewater” and “drink-
ing water” to “water” is beneficial in many instances 
when considering water scarcity issues. Integrat-
ing WRRFs and drinking water plants would elimi-
nate pollution from wastewater discharges, reduce 
groundwater and surface water demands, and provide 
another reliable supply of clean water (the only sup-
ply increasing in quantity). This would also allow a 
single managing entity to control the water treatment 
system, allowing for increased efficiency.

Integrated water recovery facilities will require 
advanced unit operations compared to conventional 
wastewater and drinking water treatment. Advanced 
primary treatment (e.g., chemically enhanced primary 
treatment (CEPT) or cloth media filtration (CMF)) 
could be implemented to reduce the loading on sec-
ondary treatment systems, thus improving their effi-
ciency. Chemical treatment instead of biological 
treatment with disinfection could provide the neces-
sary CEC and pathogen mitigation while also avoid-
ing issues associated with sludge handling. Addition-
ally, chemical secondary treatment pairs well with 
membrane filtration (Fig.  4), which is often used in 
potable reuse applications, as it can prevent biofoul-
ing, thereby reducing the energy and cleaning needed 
for membrane filtration (Stanford et al. 2011).

6 � Future research needs

Before chemical oxidation is applied for secondary 
treatment of sewage, some hurdles must be overcome. 
These include evaluation of energy requirements, 
kinetic studies of secondary chemical oxidation of 
sewage, and nutrient conversion and removal.
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Additionally, there are improvements to be made 
for biological secondary treatment methods as well. 
Some of these include improved understanding of 
microbial communities, improving modeling for 
biological reactors, advanced reactor technologies 
(sequencing batch reactors, UNITANK, aerobic and 
anerobic membrane bioreactors, etc.), and biologi-
cal methods for CEC removal, which are discussed 
in other literature (Loosdrecht et al. 2015; Cecconet 
et  al. 2017; Abdelrahman et  al. 2021; Tran 2022; 
Liu et al. 2022).

6.1 � Energy requirements

Energy requirements for chemical oxidation sys-
tems are one of the largest hurdles to their adop-
tion. Optimal process selection and methods to 
increase energy efficiency are imperative for chem-
ical oxidation systems to be cost-competitive. Cur-
rent research is focused on reducing energy costs or 

impacts, including through the use of sustainable 
energy sources, catalysts, membrane-based AOPs, 
sulfate-based AOPs and artificial neural network 
(ANN) process optimization (Giwa et  al. 2021). 
Using ANN to model the kinetics of contaminant 
removal with a photochemical AOP reduced energy 
requirements and treatment cost (Göb et al. 1999). 
ANN may improve understanding of degradation 
kinetics when applying AOPs to a complex matrix 
such as municipal wastewater, leading to optimized 
process design and control.

Using renewable energy to power chemi-
cal oxidation systems can help reduce operating 
costs and the associated environmental impact of 
energy. Solar-induced energy harvesters coupled 
with photocatalytic AOPs have shown potential 
for decentralized, remote treatment (Huo et  al. 
2021). Also, using chemical oxidation methods 
paired with advanced primary treatment would 
eliminate the need for secondary sludge handling 

Fig. 3   Typical IPR treatment system
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while also increasing the amount of primary sludge 
available for anaerobic digestion and subsequent 
methane production for renewable energy. This 
could increase the amount of energy recovered 
from water treatment, reducing the overall energy 
demand.

6.2 � Kinetic evaluation of chemical oxidation systems

Before any chemical oxidation systems could 
be implemented for municipal wastewater, an 
understanding of their kinetics is needed. Stud-
ies have been conducted to determine kinetics for 
ozone and AOP chemical oxidation, but focused 
on tertiary treatment (i.e., oxidation of secondary 
effluent wastewater); no reports were found that 
describe chemical oxidation kinetics specifically 
for secondary treatment of municipal wastewater 
(Zimmermann et  al. 2011; Lee et  al. 2013; Thal-
mann et  al. 2018; Lee and Gunten 2010). Without 
this knowledge, there is no way to determine how 
much chemical or what hydraulic retention time is 
needed. Additionally, there is no information on 
how these systems will behave differently with dif-
fering temperatures or differing municipal wastewa-
ter matrices.

6.3 � Nutrient removal in chemical oxidation systems

One main advantage of biological treatment com-
pared to chemical oxidation is the ability to remove 
nitrogen and phosphorus. Chemical oxidation does 
not directly remove nutrients, but it can convert 
nutrients to more reactive forms for subsequent 
removal by other processes. Additional research 
is needed to determine what chemical oxidation 
method is the most effective at converting nutrients 
to a more readily removable form, what the rates of 

conversion are, and what process should follow to 
remove and recover nutrients.

7 � Conclusions

Secondary biological treatment such as activated 
sludge has been a critical component in many 
WRRFs since the late 1800s. Biological treatment 
is advantageous as it can effectively remove BOD, 
with some systems able to remove nitrogen and 
phosphorus as well. Yet, biological treatment has 
challenges as it cannot effectively remove CECs 
and ARB/ARGs, has many operational issues (e.g., 
sludge bulking, toxicants, and biomass washout), 
generates WAS that must be handled, has long 
detention times (and thus large footprints), and 
requires energy for aeration.

Chemical oxidation systems offer a potential alter-
native to conventional secondary biological treat-
ment, as they can effectively remove CECs and ARB/
ARGs, integrate disinfection, have shorter HRTs (and 
thus smaller footprints), do not generate WAS, and 
avoid many operational issues associated with bio-
logical treatment. These advantages make secondary 
chemical treatment potentially applicable to advanced 
wastewater treatment, decentralized treatment, wet-
weather/high-flow treatment, and potable water reuse.

Before chemical oxidation can be more fully con-
sidered as an alternative to biological processes for 
secondary treatment, future research is needed to 
understand or improve energy efficiency, kinetics of 
sewage chemical oxidation, possible toxic byprod-
ucts and DBPs, nutrient removal, and integration 
with other treatment processes, especially to achieve 
nutrient removal/reuse and more sustainable solids 
management.

Fig. 4   Proposed integrated 
DPR treatment system
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