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Abstract  Production of hydrogen as carbon-free 
energy from renewable organic waste biomasses has 
been adopted for the long-term sustainability of a 
circular economy through various chemical and bio-
logical conversion processes. Conversion of waste 
biomasses to hydrogen provides dual benefits of 
low-cost energy-dense biofuel production and simul-
taneous waste reduction in eco-friendly valorization. 
Advancements in existing chemical and biological 
processes through light-induced photoreformation 
and microbial syntrophy-mediated metabolic induc-
tion in fermentation, respectively, facilitated holistic 

conversion of biowaste for maximum recovery of 
hydrogen by minimizing by-product generation. This 
review focuses on various thermochemical, photocat-
alytic reformation, and biological processes involv-
ing direct or indirect conversion of solid organic 
biomasses to hydrogen and their possible technologi-
cal advancements to generate waste-to-value-added 
products. The techno-economic assessment describes 
the feasibility of waste biomass-derived hydrogen 
production over other technologies for industrial 
implementation.

S. Saha · A. Mondal · M. B. Kurade · Y. Ahn · 
B.-H. Jeon (*) 
Department of Earth Resources and Environmental 
Engineering, Hanyang University, Seoul 04763, 
Republic of Korea
e-mail: bhjeon@hanyang.ac.kr

A. Mondal · P. Banerjee 
Surface Engineering and Tribology Group, CSIR-Central 
Mechanical Engineering Research Institute, Durgapur, 
West Bengal 713209, India

H.-K. Park 
Department of Pediatrics, College of Medicine, Hanyang 
University, Seoul 04763, Republic of Korea

A. Pandey 
Centre for Innovation and Translational Research, 
CSIR-Indian Institute for Toxicology Research, 
Lucknow 226001, India

A. Pandey 
Sustainability Cluster, School of Engineering, University 
of Petroleum and Energy Studies, Dehradun 248007, India

A. Pandey 
Centre for Energy and Environmental Sustainability, 
Lucknow 226029, India

T. H. Kim 
Department of Materials Science and Chemical 
Engineering, Hanyang University, Ansan, 
Gyeonggi‑do 15588, Republic of Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s11157-023-09648-1&domain=pdf
http://orcid.org/0000-0002-5478-765X


398	 Rev Environ Sci Biotechnol (2023) 22:397–426

1 3
Vol:. (1234567890)

Graphical abstract 

Keywords  Hydrogen · Organic waste biomass · Gasification · Photocatalytic reformation · Hydrogenogenic 
acidogenic fermentation · Waste-to-value-added products

1  Introduction

Energy is a key part of sustainable societal advance-
ment in the twenty-first century (Zhu et  al. 2020). 
The worldwide energy consumption is expected to 
increase by 1.5% per year from ~ 1.8 × 105 terawatts 
(TW) in 2020 to approximately 2.6 × 105 TW by 
2050 (Nalley and LaRose 2021). Intensive utiliza-
tion of fossil fuel resources in industrial, municipal, 
and agricultural purposes continues to emit green-
house gases, producing global warming and other 
negative consequences (Bajracharya et al. 2016). An 
ever-increasing worldwide demand for energy and the 
concomitant environmental pollution have led to the 
search for clean and sustainable energy systems (Saha 
et  al. 2016). Renewable energy sources (e.g., wind, 

solar, and hydraulic power) are explored as feasible 
substitutions to conventional fossil fuels; however, 
their application is restricted due to spatial and tem-
poral barriers (Zhu et al. 2020). Despite the increase 
in renewable energy usage, fossil energy resources 
remain a leading source of energy production, gen-
erating ~ 80% of overall energy (Tekade et  al. 2020; 
Yuksel and Ozturk 2017). The CO2 emissions are 
mainly produced from burning of fossil fuels, which 
also generates several other noxious gases, such as 
NOx and SOx. Such environmental issues motivated 
the scientific community in constant search for new 
alternative sources of energy, specifically renewable 
ones to reduce dependency on fossil fuels (Gao et al. 
2018).
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Hydrogen (H2), a carbon-free energy carrier with 
the highest known energy density (142  kJ  g−1), is 
considered a cutting-edge source of clean energy 
(Chang et  al. 2018). Producing hydrogen through 
adaptable and eco-friendly processes is important 
for the sustainable hydrogen economy and future of 
clean energy (Tu et al. 2017; Zhu et al. 2020). How-
ever, conventional H2 production from nonrenewable 
resources, i.e., coal gasification, hydrocarbon reform-
ing, plasma reforming, steam reforming of natural 
gas, water electrolysis, etc., is unsustainable for the 
circular economy due to their high carbon-footprint 
(~ 830 million tons per year) and energy-intensive 
process (Megía et al. 2021; Singh et al. 2015). Pho-
tocatalytic or photoelectrocatalytic green hydrogen 
production has gained attention for its long-term sus-
tainability because it facilitates water splitting under 
visible light for solar-to-chemical energy; however, it 
provides low productivity of 5% (Hendi et  al. 2020; 
Lu et  al. 2017). Nonetheless, photocatalytic reform-
ing or photoreforming through the combination of 
light-induced H2 generation from water and oxygen-
ated organic biomasses such as alcohols and carbox-
ylic acids produced from biomass fermentation; sac-
charides; biopolymers has appeared to be a highly 
important intermediary route between photocatalytic 

water splitting and photo-oxidation (Fig. 1). The con-
version of organic biomass-derived oxygenates into 
H2 gas through photoreforming involves energy input 
in the form of light radiation (Puga 2016).

Utilization of renewable resources including organic 
waste biomasses (e.g., lignocellulosic agricultural 
wastes, fruit and food wastes, fat, oil and grease) and 
municipal/industrial wastewater for the production 
of H2 appears to be the most convenient alternative to 
conventional processes for the reduction of production 
cost (Chang et al. 2018; Godvin Sharmila et al. 2022; 
Saha et  al. 2019). Nearly 181.5 billion tons of ligno-
cellulosic agricultural biomass is generated around 
the globe annually, although only a small percentage 
of it is refined and reused, leaving enormous amounts 
of organic waste (40–50% of their original mass) in 
the environment (Granone et  al. 2018; Orozco et  al. 
2014; Talavera-Caro et al. 2020). The Food and Agri-
cultural Organization of the United Nations estimated 
that the disposal of food waste has reached ~ 1.3 billion 
tons globally (Karmee 2016). Utilization of renew-
able wastes in hydrogen production diminishes their 
natural uncontrolled degradation and reduces the envi-
ronmental threat of global warming (Saha et al. 2018). 
Adopting suitable approaches compatible with the 
circular economy concept to recycle renewable waste 

Fig. 1   Generation of H2 (i) 
and O2 (iii) through water 
splitting under anaerobic 
conditions. Oxidation of 
organic biomass-derived 
oxygenates (iv) occurs in 
aerobic conditions, followed 
by reduction to water (ii). 
All reactions require light 
absorption onto irradiated 
M/TiO2 (M = noble metal) 
photocatalyst to gener-
ate separate charges, i.e., 
e− in the conduction band 
(CB) and h+ in the valence 
band (VB). Thus, biomass 
photoreformation can occur 
under anaerobic condi-
tions in combination with 
water splitting and biomass 
oxidation
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resources to generate hydrogen energy are necessary to 
limit uncontrolled degradation of these waste materials 
and their by-products (Kim et  al. 2016). Small-scale, 
inexpensive, electron-driven chemical processes are 
crucial for decentralized transformation of biomass to 
produce high-value specialty chemicals or lower-value 
commodity chemicals or fuels (Akhade et  al. 2020). 
Electrolytic hydrogen yields of 0.1 − 0.2  mg  mg−1 of 
raw biomass have been achieved at a cathode utiliz-
ing cellulose, starch, lignin, protein, and lipids of dif-
ferent biomasses (Hibino et  al. 2018). Hydrothermal 
carbonization of food waste followed by steam gasifica-
tion generated 28.08 mmol H2 g−1 dry waste (Duman 
et al. 2018). The theoretical potential of hydrogen yield 

through hydrogenogenic dark fermentation of vari-
ous lignocellulosic biomasses could reach 14–21 g H2 
kg−1 substrate (Sołowski et al. 2020). Therefore, waste 
organic biomasses could be an alternative feedstock for 
sustainable energy sources such as H2.

In this relevance, this review discusses the fun-
damental and practical features of various biomass-
derived hydrogen production technologies, includ-
ing thermochemical, photocatalytic, and biological 
processes and their possible technological advance-
ments to generate waste-to-value-added products. The 
assessment of techno-economic features describes 
the feasibility of biomass-derived hydrogen pro-
duction for industrial implementation of advanced 
technologies.

Fig. 2   Conversion of 
lignocellulosic biomass to 
produce H2 through direct 
and indirect pathways

Table 1   Reaction 
mechanisms and enthalpy 
of cellulosic biomass 
gasification reactions

Classification Stoichiometry Enthalpy 
(kJ g−1 mol−1) at 
300 K

Steam gasification C6H10O5 + H2O → 6CO + 6H2 310
C6H10O5 + 3H2O → 4CO + 2CO2 + 8H2 230
C6H10O5 + 7H2O → 6CO2 + 12H2 64

Pyrolysis C6H10O5 → 5CO + 5H2 + C 180
C6H10O5 → 5CO + CH4 + 3H2 300
C6H10O5 → 3CO + CO2 + 2CH4 + H2 − 142

Partial oxidation C6H10O5 + 1/2O2 → 6CO + 5H2 71
C6H10O5 + O2 → 5CO + CO2 + 5H2 − 213
C6H10O5 + 2O2 → 3CO + 3CO2 + 5H2 − 778

Water–gas shift methanation CO + H2O → CO2 + H2 − 41
CO + 3H2 → CH4 + H2O − 206
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2 � Hydrogen generation through chemical 
pathways

Production of hydrogen is feasible from biomass feed-
stock by numerous chemical and biological processes, 
including (1) direct gasification, where raw lignocel-
lulose biomass is converted to syngas containing H2 
and CO as major constituents and (2) indirect con-
version of biomasses to chemical intermediates and 
subsequent reformation, where oligomeric oxygen-
ated compounds are formed by pyrolysis/hydrolysis 
followed by reformation into gaseous H2 and CO2 
(Fig. 2) (Alonso et al. 2010; Navarro et al. 2009).

Biomass gasification is one of the oldest tech-
nologies to produce electricity and heat, having been 
employed since the 1940s (Huber et  al. 2006a). In 
this process, liquid or solid carbonaceous substrates, 

such as lignocellulosic biomasses react with oxygen, 
air, and/or steam at comparatively lower temperatures 
(700–1000 °C) than coal gasification to form syngas, 
which consists of H2, CH4, CO, CO2, and N2. Com-
bined reactions of steam gasification, pyrolysis, and 
partial oxidation result in solid, liquid, and gas phases 
in biomass gasification (Table  1) (Puga 2016). In 
steam reforming, the feedstock is reacted with water 
to yield CO2, CO, and H2. Pyrolysis involves thermal 
disintegration of the biomass feedstock into solid, 
liquid, and gaseous products in absence of steam or 
oxygen. Partial oxidation methods involve less O2 
than required by stoichiometry for combustion. The 
water–gas shift reaction (WGSR, where generation 
of H2 and CO2 occurs through a reaction between CO 
and water) and water–gas shift methanation (where 
the interaction of H2 and CO produces H2O and CH4) 

Fig. 3   Process elucidating the biomass gasification. Pyrolysis and gasification severity increase with temperature and time in direct 
gasification of biomass, producing H2, CO2, CO, and H2O as major products
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also take place in gasification. To promote the gasifi-
cation reactions, heat is produced through direct gasi-
fication (exothermic reaction and partial combustion 
within the gasifier generate heat) or indirect gasifica-
tion (heat is formed at the outer part of the gasifier 
and moves inside) (Sikarwar et al. 2016).

2.1 � Direct gasification

The direct gasification method involves primary, sec-
ondary, and tertiary processes (Fig. 3). In the first gas-
ification stage, gaseous CO2, H2O, oxygenated vapors, 
and primarily oxygenated liquids are produced as 
main products from solid biomass along with a few 
by-products including cellulosic molecules, lignin-
based methoxyphenols, hydroxyacetaldehyde, levo-
glucosan, and their corresponding hemicellulosic 
derivatives (Usino et  al. 2021). Initial pyrolysis of 
the organic substances generates nonreactive lower-
molecular weight vapor containing monomers and 
their fragments. This vapor is free of cracking deriva-
tives of subsequent gas-phase reactions. Charcoal is 
produced from slow pyrolysis, which preserves the 
characteristics of lignocellulose. In the second step, 
the primary liquids and vapors produce gaseous 
aromatics, olefins, CO2, CO, H2, H2O, and second-
ary compressed oils like aromatics and phenols. The 
primary vapors create cracking (regimes of second-
ary interaction) in the biomass upon heating above 
500 °C, while the temperature regime of the second-
ary reaction is within 700–850 °C. The products from 
the secondary reaction enter the tertiary reaction as 
temperature increases to 850–1000  °C, generating 
CO2, CO, H2O, H2, and polynuclear aromatics (PNA) 
substances containing methyl-derived aromatics like 
methyl naphthalene, methyl acenaphthylene, indene, 
and toluene (Sikarwar et  al. 2016). A liquefied ter-
tiary phase is generated from condensation of some 
tertiary substances including naphthalene, benzene, 
anthracene/phenanthrene, acenaphthylene, and pyr-
ene. Coke and soot are generated during the second-
ary and tertiary reactions. Coke is produced through 
thermolysis of organic vapors and liquids, while the 
decomposed yields of hydrocarbons after homoge-
neous nucleation at high temperature in the gaseous 
state produce soot (Alonso et al. 2010). Usually, the 

inorganic constituent of the gasification feedstock is 
transformed into bottom ash (further eliminated from 
reactor) or fly ash (leaves along with product gas). 
The constituents of ash include K2O, CaO, P2O5, 
SiO2, MgO, Na2O, and SO3. The operating tempera-
ture should be below 1000 °C (at which ash melts) to 
restrict slagging and sintering of ash (Herman et  al. 
2016).

The composition of gas released from the gasifi-
cation vessel is dependent upon the composition of 
biomass feedstock, the gasifying mediator, and the 
gasification method (Navarro et  al. 2009). Tars con-
taining heavier hydrocarbons cause clogging and 
blocked filters as they agglomerate on certain filters 
and in downstream pipes (Devi et al. 2003). Tars can 
also produce other downstream complications and 
choke fuel outlines and injectors in interior combus-
tion engines. Choosing a suitable gasification reactor 
and conditions can reduce the quantity of tars. Addi-
tion of solid catalysts including Ni, Pd, Pt, and Ru, 
reinforced on dolomite, Rh/SiO2/CeO2 and CeO2/
SiO2 within the gasification vessel can reduce the 
concentration of tar (Tomishige et  al. 2004). Wet 
impregnation or dry mixing of alkali metal catalysts 
including K2CO3, Na3H (CO3)2, Na2CO3, CsCO3, 
Na2B4O7·10H2O, NaCl, ZnCl2, KCl, and AlCl3·6H2O 
with biomass derivatives can decrease tar generation 
(Sutton et  al. 2001). However, alkali metals are not 
profitable due to char formation, increased ash con-
tent, reduced carbon transformation, and the compli-
cated recycling process. Nevertheless, a mixture of 
CO, H2, CO2, and some CH4 is produced along with 
other gaseous ingredients and solid offshoots like char 
through a one-step transformation of raw or mechani-
cally pretreated biomass feedstock in a direct gasifica-
tion process under oxygen and steam environments at 
high temperature (750–1000 °C) (Alonso et al. 2010; 
Navarro et  al. 2007). Tar generation can be reduced 
through movement of the gaseous products of the 
secondary reaction over the char bed as a catalyst 
(Sikarwar et al. 2016). Despite its limitations of harsh 
conditions, this adaptable gasification process can be 
altered for a varied array of biomass derivatives to 
achieve hydrogen yields of 50–80 g H2 kg−1 biomass 
(Parthasarathy and Narayanan 2014).
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2.2 � Indirect processes based on reforming and 
photoreforming of oxygenates

2.2.1 � Reforming of oxygenates

The indirect process is a combination of primary liq-
uification by pyrolysis to produce bio-oils and mixed 
oxygenated elements and by pretreatment/hydrolysis 
and fermentation of cross-linked, heavier biopolymers 
(lignin, hemicellulose, and cellulose) into mixed oxy-
genated chemical ingredients having lower molecular 
weight, followed by catalytic reformation (Demirbaş 
2001; Zinoviev et al. 2010). Producing H2 via refor-
mation of pyrolysis oils is a consistent route for rec-
lamation of complex and unstable biomasses such 
as lignocellulosic agricultural wastes, food waste, 
biopolymers, etc. H2-enriched gaseous streams are 
produced by reforming bio-oils in water (either liquid 
or steam) at high temperatures (~ 850  °C) with low 
retention time on reinforced Ni or noble metal cata-
lysts (Rioche et al. 2005). Another procedure involves 
reformation in aqueous phase under milder tempera-
tures (250–350 °C) (Vispute and Huber 2009). Nev-
ertheless, the required temperatures for the reform-
ing processes are high (250–850  °C) in both cases. 
Compounds with functional groups like carboxylic 
acids or carbonyls can be degraded (through conden-
sation, cyclisation, etc.), while saccharides can be 
decomposed by dehydration, polymerization, and so 
on. Therefore, thermo-catalytic reforming suffers due 
to formation of unwanted carbonaceous byproducts, 
which can deactivate the catalyst and initiate pyroly-
sis of saccharides even before their interactions with 
catalyst media to form CO in large amount (Fu et al. 
2005).

Reforming of various oxygenates derived from 
hydrolysis of lignocellulose in an aqueous phase fol-
lowed by sequential transformations is another indi-
rect pathway for biomass-to-hydrogen production 
(Cortright et  al. 2002; Huber et  al. 2003). As stated 
by Dumesic et al., usage of appropriate catalysts such 
as Pd, Pt, or Ni–Sn catalysts (desirably sustained on 
Al2O3) can regulate the selectivity of this process by 
minimizing alkane production (Davda et  al. 2005). 
These catalysts are highly active for water–gas shift 
reactions (WGSR), C–C scission, and dehydro-
genation to produce fewer side reactions, such as 
methanation or C–O scission. The formation of light 

oxygenates from lignocellulosic biomass and its sub-
sequent reformation in the aqueous phase to yield H2 
selectively at milder conditions in comparison to the 
one-step processes (gasification) indicates the indi-
rect process as a candidate for biomass-to-hydrogen 
production. However, the thermo-catalytic aspect is 
energy exhaustive and might require high pressures 
(~ 35  bar) and temperatures (550–900  °C) (Lewis 
et al. 2003; Naikoo et al. 2021). This causes side reac-
tions or degradation, which have unfavorable impacts 
on H2 selectivity (50–60% of the theoretic maximum) 
and produce excessive amounts of alkanes (Huber 
and Dumesic 2006). In this scenario, methods of aug-
menting the reformation (Eq. 1) while limiting other 
conversions are desired and would be advantageous 
for biomass-derived H2 production technologies.

There are four substantial reformation technologies 
for transforming biomass to hydrogen: catalytic steam 
reforming (CSR), catalytic partial oxidation (CPO), 
auto-thermal reforming (ATR), and aqueous phase 
reforming (APR) (Zinoviev et  al. 2010). CSR, the 
conventional reforming process, is adopted to produce 
H2 from fossil hydrocarbons, specifically methane. 
This technique is used to treat oxygenated substrates 
(CnHmOk, Eqs.  2 and 3) along with stoichiometric 
WGSR process for augmenting H2 production.

Reforming of biomass derivatives such as metha-
nol, glycerol, ethylene glycol, and sorbitol is ther-
modynamically more promising at low temperatures 
(~ 277 °C) with respect to hydrocarbons having simi-
lar numbers of C atoms (Davda et  al. 2005). There-
fore, the reforming procedure is more suitable for 
use with the WGSR than is hydrocarbon reforming 
as there is a possibility of further reactions of CO2 
and CO with H2 at lower temperatures (27–377 °C), 
producing alkanes by Fischer–Tropsch synthesis 
(FTS) or methanation (Shabaker et  al. 2004; Vaidya 
and Lopez-Sanchez 2017). In addition, gas phase 
homogeneous thermal disintegration of oxygenated 

(1)
CxHyOz + (2x − z)H2O → (2x + y∕2 − z)H2 + xCO2

(2)
CnHmOk + (n − k)H2O ↔ nCO + (n + m∕2 − k)H2

(3)
CnHmOk + (2n − k)H2O ↔ nCO2

+ (2n + m∕2 − k)H2
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hydrocarbons and cracking reactions (Eq.  4) on the 
acidic parts of the catalytic surface decrease the 
selectivity and disable the catalyst.

Coke formation over the catalyst support is facili-
tated during the reformation of oxygenated organic 
substances because of higher molecular weights, 
more instauration, and aromaticity. Hence, reforming 
requires specific biomass characteristics such as less 
molecular weight, saturation, and non-aromaticity to 
curtail the generation of or eliminate coke byproducts 
from the catalyst by steam gasification.

CPO (Eq.  5) is a noteworthy alternative to CSR 
technology, where the fuel interacts with a lower 
amount of oxidizer (O2) than that required by stoichi-
ometry for complete combustion.

The CPO process has several advantages over the 
CSR method, such as lack of coking, smaller reac-
tor size, and facile CO2 recovery. Nevertheless, this 
process has risks associated with explosions, specifi-
cally in the region of premixing, while maintaining 
the stability of the catalyst is also critical. The pro-
cess has been well-explored for H2 production from 
lightweight alcohols compared to complex oxygen-
ated substances (Liguras et al. 2004; Miyazawa et al. 
2006; Navarro et al. 2007). The autothermal reform-
ing (ATR) process is a combined CPO and CSR 
approach providing a thermally self-sustaining faster 
method, where oxygen, hydrocarbons/oxygenated 
hydrocarbons, and steam are reactants (Eq. 6).

In contrast, aqueous phase reforming (APR) is an 
adaptable single-step technology for biomass deriva-
tives (oxygenated alcohols, sugars, glycerol, ethyl-
ene glycol) to produce H2, using reinforced metals 
and metal amalgams in the form of heterogeneous 
catalysts (Chheda et al. 2007; Cortright et al. 2002). 
This process involves the breakage of C–C and C–H 
and/or O–H bonds to produce adsorbed species over 
the catalyst support. There are several advantages of 
the APR process in comparison to CSR, including 

(4)
CnHmOk → CxHyOz

+
(

H2, CO, CO2, CH4, Hydrocarbons
)

+ coke

(5)CnHmOk + (n − k∕2)O2 → nCO2 +
(

m

2

)

H2

(6)
2C

n
H

m
O

k
+ (2n − k∕2)H

2
O + (n − k∕2)O

2
→

2nCO
2
+ (2n + m − k)H

2

(1) no need to vaporize the feed, (2) use of relatively 
high pressures (15–50  bar) and low temperatures 
(150–270  °C) that promote the WGSR and yield a 
small amount of CO (< 1000  ppm), (3) use of low 
temperatures to reduce unwanted disintegration reac-
tions like cracking, and (4) use of high pressures to 
support the refinement of H2 (e.g., by membranes 
or PSA) by sequestering CO2 (Ghasemzadeh et  al. 
2016; Huber et al. 2006b). However, use of expensive 
noble-metal-assisted catalysts at high pressure for an 
elevated reaction time increases the unit cost of H2 
production from dilute feedstock solutions in this pro-
cess. The use of strong mineral acids in the aqueous 
phase leads to the leaching of the active noble metal 
in the solution, which limits the recyclability of the 
catalysts and causes corrosion in the reactor. Aqueous 
discharges of this process also pose serious environ-
mental concerns due to the leaching of metal catalysts 
(Vaidya and Lopez-Sanchez 2017).

Separation of hydrogen from the mixture of gas-
eous contaminants requires separate purification/
refinement processes. The selection of a suitable H2 
purification method is dependent on the concentra-
tions and downstream impacts of contaminants like 
N2 and CO (Santhanam et  al. 2017). The biomass-
derived H2 contains several gaseous contaminants 
including O2, CO2, CO, CH4, and moisture. The fore-
most H2 refining technologies can be divided into 
four categories of (1) physical adsorption (Liu et  al. 
2009), (2) chemical absorption, (3) cryogenic pro-
cesses (Lu et al. 2007), and (4) membranes (Bernardo 
et  al. 2010, 2009; Drioli and Giorno 2009). In this 
context, WGSR plays pivotal role in regulation of the 
CO/H2 levels as CO forms CO2 and H2 upon inter-
action with water (Table 1). Industrial H2 generation 
by the WGSR is performed in a set of two reactors: 
(1) a high-temperature WGS reactor at 350–500  °C 
having a Fe-oxide-mediated catalyst and (2) a low-
temperature WGS reactor at 200  °C possessing Cu-
functionalized catalyst (Bartholomew and Farrauto 
2010). In the first reactor, the concentration of CO 
decreases to ~ 2–3%, which reduces further to ~ 0.2% 
in the second reactor under low-temperature. Pressure 
swing sorption, preferential air oxidation (PROX), 
and Pd membranes can be used to produce highly 
purified H2 (Rostrup-Nielsen 2001). Nanometer-sized 
Au-amended catalysts are highly effective for oxida-
tion of CO in WGSR (Carrettin et al. 2004; Fu et al. 
2005, 2003). Kim et  al. developed an alternative 
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to the WGS called the PROX method, where CO is 
transformed to CO2 and electrical energy at higher 
rates by consuming aqueous polyoxometalates (POM) 
in comparison to the WGSR (Kim et al. 2005a, 2004). 
The complete reaction involves oxidation of CO and 
H2O to produce CO2 and protons with POM, e.g., 
H3PMo12O40, in the presence of Au catalyst. The 
aqueous and reduced mixture of POMs and H+ can be 
utilized to generate electricity at the anode of a pro-
ton exchange membrane (PEM) containing fuel cell 
(Kim et al. 2005b). In this method, the POM solution 
is re-oxidized, and the consumption rate of CO (as 
turnover frequency of 0.75–5 s−1) is greater than that 
of WGS at room temperature.

2.2.2 � Photoreforming of oxygenates

Light-driven oxygenate reformation to produce H2 
and CO2 upon suitable photocatalytic substances has 
excellent potential to drive next generation advance-
ments. This technique involves effective reformation 
of various oxygenates (that can be biomass derived) 
including alcohols, carboxylic acids, saccharides, pol-
ymers in an aqueous medium using semiconductor-
supported photocatalysts. Operation at 20–60 °C dur-
ing the reaction minimizes the scope of degradation 
and creates high H2 selectivity (Chen et  al. 2010). 
Kondarides and colleagues demonstrated transfor-
mation of typical biomass-based oxygenates such as 
alcohols, glycerol, saccharides, biopolymers to H2 on 
Pt/TiO2 photocatalysts simulated by sunlight without 
deactivation (Daskalaki and Kondarides 2009; Kond-
arides et  al. 2008). In some cases, the reformation 
process is endergonic (ΔG0 = 237  kJ  mol−1), which 
signifies the storage of solar energy into the produced 
products as chemical energy and increases the total 
heat content of the produced fuel (Cargnello et  al. 
2011). The photocatalytic reformation of biomass 
oxygenates broadens the selection routes for direct 
H2 generation because it involves inexpensive feed-
stocks and solar light as the energy source, and the 
process is proficient, adaptable, and energy efficient. 
Solid materials consisting of light-absorbing semi-
conductors such as Au/TiO2, Pt/Ti-MOF-NH2, Ni/
Au/TiO2 along with metallic co-catalysts act as pho-
tocatalysts during H2 evolution from aqueous phase. 
The semiconductors allow formation of charge trans-
porters (electrons and holes) through light absorption, 
and they transfer to the substance surfaces, where the 

redox reaction occurs. Therefore, the semiconductor 
band gap must be matched with the incident photon 
energy. That is, the electrons are promoted from their 
valence to conduction band at a shorter wavelength 
compared to the material absorption as dictated by 
its band gap. The electron transfers from the conduc-
tion band to acceptor, and donor to valence band–hole 
annihilation occurs only when the energy points are 
respectively higher and lower than the consistent 
redox pairs. Co-catalysts are usually integrated on the 
semiconductor surface and can improve the efficiency 
by delivering active parts for H2 evolution by reduc-
ing protons or associated substances. At the oxidation 
half reactions, the semiconductor surface itself cata-
lyzes the transfer of holes to oxygenates or electron 
from oxygenates to the semiconductor with associ-
ated extinction of the photogenerated holes (Fang and 
Shangguan 2019; Hu et al. 2014; Sun et al. 2019b).

Oxide semiconductors having d0 or d10 metals are 
considered the most efficient photocatalysts. TiO2 
is generally the ideal semiconductor to design het-
erogeneous photo-catalysts and anodes (Martha et al. 
2015; Naldoni et  al. 2019). The conduction band 
energy is slightly higher than the redox potential of 
H+/H2 in TiO2, and band flexibility imparts additional 
advantages in the H2 formation reaction in solution 
(Fig. 4a). Light-triggered electrochemical water split-
ting can be achieved using platinum black as a cath-
ode and rutile TiO2 as the photoanode (Fujishima-
Honda process). The high photoactivity of TiO2 in 
oxidation half-reactions increased its popularity for 
light-stimulated H2 production from various oxy-
genated biomass feedstocks (Schneider et  al. 2014). 
Nevertheless, enhanced surface area with availabil-
ity of more surface sites, superior crystallinity, and 
lesser propensity toward electron–hole rearrange-
ment enhances the efficiency of TiO2 (Moretti et  al. 
2014). Similarly, WO3 amended with Pt/Au or SnO2/
self-doped with Sn (II)/co-doped with Ce and Sb can 
catalyze photoreformation of biomass-derived glyc-
erol (Liu et al. 2015a; Tanaka et al. 2014). ZnO has 
also demonstrated noteworthy photoactivity to pro-
duce H2 from methanol or formaldehyde (Guo et al. 
2015). ZnO nanoroads formed on graphene showed 
high efficiency for glycerol photoreformation under 
Xe light, while generation of ZnS in the presence of 
thiosulfate anions mediated hydrothermal treatment 
and improved the efficiency (Bao et al. 2015; Lv et al. 
2015). NiO, ZnO, CuO, Cu2O, Fe2O3, Co3O4, and 
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Fig. 4   Generation of H2 through photoreformation using semiconducting photocatalysts of TiO2 (a), CdS (b), Cd-MOF and Cu-
MOF (c), and TpDTz COF (d) (Biswal et al. 2019; Naldoni et al. 2019; Song et al. 2017; Zhao et al. 2020)
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VO2 also showed high efficiency in the photorefor-
mation process. Mixed oxides including SrTiO3 
(Peng et  al. 2015a), BiVO4 (Xue and Wang 2015), 
and Bi2WO6 (Panmand et  al. 2015) have recently 
emerged as excellent photocatalysts to produce H2 by 
photoreformation.

Metal chalcogenides appeared as efficient pho-
tocatalysts because of their small band gaps, which 
produce visible light activity. The higher electronic 
energy states in comparison to oxides facilitate the 
reduction of conduction band photoexcited electrons 
(Peng et  al. 2016). CdS is used to facilitate H2 gen-
eration due to its relatively negative conduction band 
energy in comparison to proton reduction (Fig.  4b) 
(Zhao et  al. 2020). H2 generation from glycerol and 
ascorbic acid using Pt/CdS as a photocatalyst com-
posite has recently been explored (Bastos et al. 2014; 
Zhou et  al. 2015), while surface layer formation on 
ZnS has proven advantageous for continuous formic 
acid reforming (Wang et al. 2014). Nevertheless, use 
of porous metal organic frameworks (MOFs) like 
UiO-66 could resist Cd2+ leaching (Shen et al. 2015; 
Zhou et al. 2015). Photoreforming of lactic acid has 
been studied using metal sulfide composites such 
as MoS2-CdS, CdS, and NiS-CdS microstructures 
embedded with Te microspheres (Hu et  al. 2015). 
Solid mixtures of Zn and Cd sulfide composites with 
Zn/Cd ratio 0.4:0.6 (CdxZn1−xS) have also shown 
adjustable band gaps for H2 production by photore-
forming (Kozlova et  al. 2014; Lopes et  al. 2015). 
Similarly, ZnS-Bi2S3 nanoparticle composites accu-
mulated on ZnO nanotubes on graphene have shown 
efficiency in glycerol photoreforming (Xitao et  al. 
2014). CuInS2 has recently been used in the photore-
forming of ethanol (Li et al. 2015a), while quaternary 
chalcogenides like AgInZn7S9 are gaining signifi-
cance due to the possibility of controlled band gaps, 
facilitating photocatalytic H2 production (Peng et  al. 
2015b). Surface amendments of CdSe nanoparticles 
with suitable pendant groups having attached carbox-
ylate moieties reduces their water-solubility, while 
addition of Ni or Co to the resulting colloid make the 
systems highly efficient to produce H2 from ascorbic 
acid (Das et al. 2013; Gimbert-Suriñach et al. 2014; 
Han et al. 2015, 2012; Wang et al. 2015b).

Highly porous crystalline metal and organic frame-
works (MOFs and COFs) have been extensively 
studied in the last decade due to their high semicon-
ducting properties (Fig. 4c, d) (Bavykina et al. 2020; 

Stegbauer et  al. 2014). MOFs offer a potential plat-
form for photocatalytic formation of H2 due to their 
structural tunability and regularity, where H2 pro-
ductivity is equivalent to the transmission efficiency 
of photogenerated electrons. Cu-MOF shows more 
facile reduction to produce H2 at a photocatalytic rate 
of 18.96 μmol  h−1 due to its more negative conduc-
tion band compared to Cd-MOF (Song et  al. 2017). 
A series of bifunctional FeX@Zr6-Cu (X = Cl−, 
Br−, BF4

−, and AcO−)-functionalized MOFs exhib-
ited high efficiencies to generate H2 with a turnover 
number (TON) up to 33,700  h−1 due to the increase 
in H2 productivity (Pi et  al. 2020). Stegbauer et  al. 
explored photoactive COFs through the synthesis of 
1,3,5-tris-(4-formyl-phenyl)triazine (TFPT)-COF for 
photocatalytic H2 production (Stegbauer et al. 2014). 
Thiazolo[5,4-d]thiazole (TpDTz)-COF enabled long-
term (70  h) H2 production with a productivity of 
941 μmol h−1 g−1 (Biswal et al. 2019).

Nanocarbon materials and N- or P-doped semicon-
ducting graphene (g-C3N4) are considered efficient, 
metal-free catalysts for the photoreforming process 
(Latorre-Sánchez et al. 2013; Liu et al. 2015b; Xiang 
et al. 2015; Ye et al. 2015). Light-harvesting poly(3-
hexylthiophene) amended electron mediator g-C3N4 
composites and Pt co-catalyst have shown high H2 
production efficiency from aqueous ascorbic acid 
(Zhang et  al. 2015b). The catalytic Pt/g-C3N4 plat-
form resulted in hydrogen production from wastewa-
ter under visible light through consumption of H2O2 
by sacrificial macrolide antibiotics (Xu et  al. 2017). 
Incorporation of co-catalysts, such as metal oxide 
nanoparticles and gold nanoparticles, on a semicon-
ductor can enhance the efficiency of photoreforming 
(Serra et al. 2015; Xu and Xu 2015). Photocatalysis is 
attributed to various factors, including light-blocking, 
controlled substrate oxidation over semiconductor 
surfaces, and electron–hole rearrangement on dispro-
portionate co-catalyst. The rate of light-stimulated H2 
generation on Pd/TiO2 from aqueous MeOH is con-
trolled by the availability of the perimeter across the 
interface of co-catalyst and semiconductor surface. 
According to Bowker et al. charge transfer processes 
including the adsorbed substrate preferentially occur 
at the interface of metal-support, which becomes 
more abundant upon increased metal loading. At an 
optimum concentration, the particles merge with 
reduced-perimeter (Al-Mazroai et al. 2007). The ele-
ments Cu (Petala et al. 2015), Ni (Chen et al. 2015b; 
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Fujita et  al. 2016), Fe (Cao et  al. 2015d), and Co 
(Mahoney et al. 2015) have recently been explored to 
develop economical co-catalysts. Nanoparticles based 
on transition metal phosphide cocatalysts have gained 
attention for H2 production in light-triggered sys-
tems (Yue et  al. 2015). Co2P- and Ni2P-loaded CdS 
nanorods are highly efficient at producing H2 from 
mandelic and lactic acids (Cao et  al. 2015a, 2014, 
2015c). Co0.85Se and Ni2B supported on Se were 
recently found to be promising co-catalysts for inex-
pensive H2 evolution by a photoreforming approach 
(Cao et al. 2015b; Wang et al. 2015c). RGO/CdS and 
RGO/TiO2 composites have also been found to be 
effective for H2 production by photocatalysis from 
lactic acid/water or water/ethanol solutions (Babu 
et al. 2015; Nagaraju et al. 2015).

Biomass feedstocks have enormous potential to 
provide useful oxygenates for strategic conversion of 
bio-based wastes to H2 energy through biomass val-
orization (Taipabu et al. 2022). Lignocellulosic mate-
rials are most abundant as plant mass, which can be 
obtained from forest products (wood or shrubs), agri-
cultural offshoots (wheat straw, rice husks, or corn 
hobs), energy-based plants (water hyacinth or sor-
ghum), and various urban and industrial waste mate-
rials (Dahmen et  al. 2019). Crops supplying starch/
sugar and vegetable oil are also advantageous for 
generating H2 due to the presence of hydrogen-rich 
polysaccharides and long chain fatty acids (LCFAs), 
respectively (Salama et  al. 2019; Sołowski et  al. 
2018). Biomass-derivatives are composed of various 
oxygen-enriched functional groups including acetals, 
carbonyls (aldehydes and ketones), carboxylic 
groups, ethers, and hydroxyl (alcohols, phenols, and 
polyols) (Wu et  al. 2016). Various biomass-derived 
potential substances like alcohols, aldehydes, polyols, 
ketones, saccharides, and carboxylic acids play a key 
role in producing H2 by photoreforming of biomass 
feedstocks (Table 2). Thus, various renewable waste-
derived feedstocks can produce H2 at high rates, 
opening an opportunity for waste valorization.

3 � Hydrogenogenic fermentation for evolution 
of hydrogen

Fermentative biohydrogen is considered a potential 
contender for many conventional energy sources due 

to its environmentally friendly nature, which lessens 
fossil fuel consumption and pollution control meas-
ures (Ahmed et  al. 2021). There are two fermenta-
tive processes that can yield H2: dark fermentation 
(anaerobic hydrogenogenic acidogenic fermentation) 
and photo-fermentation. These technologies have the 
potential to become cost competitive as they can use 
low-value waste biomasses as feedstock (Jiao 2021). 
The dark fermentation pathway is light-independent 
and performs heterotrophic fermentation using fac-
ultative or obligate anaerobic microbes (Basak et al. 
2020; Chang et al. 2018). In this process, hydrogeno-
genic microorganisms anaerobically utilize solid/sol-
uble organic matter from low-cost organic wastes and 
municipal/industrial wastewater producing gas mix-
ture (i.e., H2, CO2) and various byproducts including 
volatile fatty acids (VFAs), ethanol, acetone, pro-
panol, and butanol (Eqs. 7–12) (Wang and Yin 2021; 
Zhou et  al. 2018). The yields of H2 vary depending 
on the fatty acid pathway and the type of sugar pre-
sent in the waste biomasses (e.g., glucose, sucrose, 
xylose) (Sarangi and Nanda 2020).

Substrates such as polysaccharidic waste bio-
masses, which are rich in glucose, sucrose, starch, 
cellulose, and lignocellulose, are considered suitable 
for dark fermentation due to their conversion effi-
ciency to hydrogen and low cost to enhance hydro-
gen productivity by minimizing the process cost 
(Chen et  al. 2006; Nasr et  al. 2015; Reaume 2009). 
However, the complex structure of waste biomasses 
requires an efficient pretreatment process before fer-
mentation to create microbial accessibility to fer-
mentable sugars (Saha et  al. 2016). Dark fermenta-
tion involves converting complex organic matter into 
simpler products through hydrolysis and acidogenesis 

(7)
C5H10O5 + 3.33H2O → 1.67C2H4O2 + 1.67CO2 + 3.33H2

(8)
C5H10O5 + 1.67H2O → 0.83C4H8O2 + 1.67CO2 + 1.67H2

(9)C6H12O6 + 2H2O → 2C2H4O2 + 2CO2 + 4H2

(10)C6H12O6 → C4H8O2 + 2CO2 + 2H2

(11)
C6H12O6 + H2O → C2H6O + C2H4O2 + 2CO2 + 2H2

(12)C12H22O11 + H2O → 2C4H8O2 + 4CO2 + 4H2
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Table 2   Photocatalytic H2 production from various biomass-derived oxygenates via photoreformation

Reaction medium Photocatalyst Source of light P/W (I/mW 
cm−2)

Temperature 
(°C)

H2 produc-
tivity (µmol 
gcat

−1 h−1)

References

H2O/MeOH (v, 
9:1)

Pt (1%) + TiO2 Xe 300 – 10,860 Wang et al. 
(2015a, b, c)

H2O/MeOH (v, 
7:3)

Pt (1%)/P25TiO2/SiO2 Solar simulator 100 280 571,000 Han and Hu, 
(2015)Solar simulator 

(> 420 nm)
497,000

MeOH (aq, 
2.5 M)

Pt (1%)/(CNT + TiO2) Hg 150 25 1380 Silva et al. 
(2015)

Glucose (aq, 
0.02 M)

99

Fructose (aq, 
0.02 M)

51

Cellobiose (aq, 
0.02 M)

79

Arabinose (aq, 
0.02 M)

Pt(1%)/TiO2 (anatase) 105

H2O/MeOH (v, 
1:1)

Pt (0.5%)/TiO2/CNT 
(10%) (nanofibers)

Hg 200 – 40,600 Moya et al. 
(2015)
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Table 2   (continued)

Reaction medium Photocatalyst Source of light P/W (I/mW 
cm−2)

Temperature 
(°C)

H2 produc-
tivity (µmol 
gcat

−1 h−1)

References

H2O/MeOH (v, 
9:1)

Au (1.5%)/P25TiO2 UV (365 nm) 6.5 – 13,500 Chen et al. 
(2015a)

Au (1.5%)/TiO2 
(anatase)

8500

Au (1.5%)/TiO2 
(brookite)

6700

Au (1.5%)/TiO2 
(rutile)

900

H2O/EtOH (v, 
9:1)

P25TiO2 1300

Au (1.5%)/P25TiO2 9800

Au (1.5%)/TiO2 
(anatase)

7300

Au (1.5%)/TiO2 
(brookite)

4900

Au (1.5%)/TiO2 
(rutile)

400

Au (0.5%)/H2Ti3O7 
(nanotubes)

200

Au (0.5%)/TiO2 
(rutile)

400

Au (0.5%)/TiO2 
(anatase nanotubes)

31,800

TiO2 (anatase nano-
tubes)

900

Au (1.5%)/P25TiO2 32,200

H2O/glycerol (v, 
9:1)

P25TiO2 1900

Au (0.5%)/P25TiO2 27,900

Au (0.5%)/TiO2 
(anatase)

15,000

Au (0.5%)/TiO2 
(brookite)

13,800

Au (0.5%)/TiO2 
(rutile)

3200

Au (0.5%)/TiO2 
(anatase nanotubes)

29,200

H2O/ethylene 
glycol (v, 9:1)

Au (1.5%)/P25TiO2 20,900

Au (1.5%)/TiO2 
(anatase)

12,000

Au (0.5%)/TiO2 
(anatase nanotubes)

22,700

Au (1.5%)/P25TiO2 23,100
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Table 2   (continued)

Reaction medium Photocatalyst Source of light P/W (I/mW 
cm−2)

Temperature 
(°C)

H2 produc-
tivity (µmol 
gcat

−1 h−1)

References

H2O/MeOH (v, 
10:1)

Au (Au/Ti = 0.017) @
TiO2 (nanotubes)

Xe (> 400 nm) 100 – 482 Yang et al. 
(2015)

Au (Au/Ti = 0.015) @
TiO2 (nanotubes)

223

H2O/MeOH (v, 
3:1)

Au (0.9%)/P25TiO2 Solar simulator 1000 35 7010 Serra et al. 
(2015)

H2O/MeOH (v, 
3:1)

RGO/TiO2 Xe–Hg 300 25 1200 Nagaraju et al. 
(2015)

H2O/MeOH (v, 
4:1)

TiO2-x Xe (> 420 nm) 750 – 36 Jiang et al. 
(2015b)

H2O/MeOH (v, 
9:1)

ZnO Xe 300 Room tempera-
ture

30,000 Guo et al. (2015)

H2O/formalde-
hyde (v, 9:1)

33,750

H2O/EtOH (v, 
20:1)

Pt (1%)/TiO2 (anatase) UV (> 365 nm) 2 – 3630 Bashir et al. 
(2015)

EtOH (96%) Pt (0.2%)/TiO2 
(anatase/brookite)

Solar simulator 150 25 930 Romero Ocaña 
et al. (2015)

EtOH (aq, 
7.34 M)

Pt (2.1%)/TiO2 UV 300–
400 nm

12 × 15 – 11,074 López et al. 
(2015)

Glycerol (aq. 
7.34 M)

6335

Ethylene glycol 
(aq, 7.34 M)

7565

H2O/EtOH (v, 
1:4)

P25TiO2 UV 6.5 – 1200 Chen et al. 
(2015b)

H2O/EtOH (v, 
1:19)

Ni (0.5%)/P25TiO2 24,000

H2O/EtOH (v, 
1:4)

Au (2%)/P25TiO2 32,400

H2O/EtOH (v, 
9:1)

Ag-Fe–Ni/TiO2 Xe 500 30 794 Sun et al. (2015)

H2O/EtOH (v, 
4:1)

CuInS2(2.5%)/P25TiO2 Xe 300 – 273 Li et al. (2015a, 
b)

H2O/EtOH (v, 
1:1)

SrTiO3 Hg 500 – 95 Peng et al. 
(2015a, b)

H2O/glycerol (v, 
30:1)

Pt (1%)/P25TiO2 Xe (> 320 nm) 300 10 4280 Jiang et al. 
(2015a, b)

Glycerol (aq, 
1 M)

CuO (0.4%)/P25TiO2 Xe 250 – 863 Petala et al. 
(2015)

Glycerol (aq, 
0.1 M)

Cu2O/P25TiO2 Xe (> 420 nm) 1.5 – 240 Kum et al. 
(2015)

H2O/glycerol (v, 
9:1)

Cu (10% mol)/TiO2 Halogen 500 24 5772 Bashiri et al. 
(2015)

H2O/glycerol (v, 
19:1)

Cu (1.5%)/TiO2 
(nanorods)

Sunlight – – 50,339 Praveen Kumar 
et al. (2015)

TiO2 (nanorods) 2950
P25TiO2 2100
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Table 2   (continued)

Reaction medium Photocatalyst Source of light P/W (I/mW 
cm−2)

Temperature 
(°C)

H2 produc-
tivity (µmol 
gcat

−1 h−1)

References

H2O/glycerol (v, 
9:1)

NiO (2%)/TiO2 
(anatase/rutile, 7:3)

Hg 500 50 1230 Fujita et al. 
(2016)

CuO (2%)/TiO2 
(anatase/rutile, 7:3)

1370

CoO (2%)/TiO2 
(anatase/rutile, 7:3)

660

H2O/glycerol (v, 
19:1)

RGO (3%)/TiO2 Hg 250 – 8226 Babu et al. 
(2015)Cu2O (1%)/TiO2 16,653

RGO (3%)-Cu2O (1%)/
TiO2

110,968

H2O/glycerol (v, 
19:1)

ZnO (nanorods)/RGO 
(12%)

Xe 300 Room tempera-
ture

92 Lv et al. (2015)

H2O/glycerol (v, 
1:1)

Bi2WO6 Xe 300 – 7400 Panmand et al. 
(2015)

H2O/glycerol (v, 
9:1)

ZnS/ZnO (nanotube 
arrays)

Xe 350 25 384 Bao et al. (2015)

ZnS 232
ZnO (nanotube arrays) 38

Glycerol (aq, 
1.368 M) + 1 M 
NaOH

Pt (0.5%)/Cd0.5Zn0.5S Hg (> 420 nm) 250 – 630 Peng et al. 
(2016)

Glycerol (v, 
1:1) + 1.5 M 
NaCl

Pt/Cd0.6Zn0.4S:(γ-Zn 
(OH)2)

Hg–Xe 
(> 418 nm)

500 – 239 Lopes et al. 
(2015)

H2O/formalde-
hyde (v, 7:1)

Cu (Fe/Cu = 4)/
LaFeO3

Xe (> 400 nm) 125 – 343 Li et al. (2015b)

H2O/lactic acid 
(v, 7:3)

Pt (5%)/TaO2.18Cl0.64 Xe 300 – 1500 Tu et al. (2015)

H2O/lactic acid 
(v, 7:1)

Ce (4% mol): Sb 
(10%): SnO2

Xe (> 320 nm) 300 – 8.5 Liu et al. (2015a, 
b)

H2O/lactic acid 
(v, 9:1)

MoS2 (2.5%)/CdS Xe (> 420 nm) 350 – 543 Lang et al. 
(2015)Pt (0.25%)/CdS 450

RGO-MoS2(2.5%)/
CdS

621

H2O/lactic acid 
(v, 20:3)

CdS + Co0.85Se (5%)/
RGO-PEI (PEI: 
poly(ethyleneimine)

LED 
(> 420 nm)

30 × 3 – 17,600 Cao et al. 
(2015b)

Pt (0.1%)/CdS 18,600
H2O/lactic acid 

(v, 9:1)
NixB (0.8%)/CdS Xe (> 420 nm) 180 – 4800 Wang et al. 

(2015a, b, c)
H2O/lactic acid 

(v, 19:1, pH 
3) + NaOH

CoP + CdS LED 
(> 420 nm)

30 × 3 Room tempera-
ture

202,800 Cao et al. 
(2015c)Ni2P + CdS 143,600

Cu3P + CdS 77,600
H2O/lactic acid 

(v, 10:1)
MoP (16.7%)/CdS 

(nanorods)
visible 

(> 420 nm)
– – 163,200 Yue et al. (2015)
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by producing short- and medium-chain fatty acids 
(SCFAs-MCFAs) and gaseous hydrogen (Fig.  5) 
(Chang et  al. 2018). Several microorganisms harbor 
various hydrogenase enzymes (such as [FeFe]-hydro-
genase, [NiFe]-hydrogenase, and [NiFeSe]-hydro-
genase), which stimulate production and recycling 
of hydrogen under an anaerobic environment (de Sá 
et  al. 2011). Among these enzymes, only [FeFe]-
hydrogenase catalyzes hydrogen production, while 
the other two utilize produced hydrogen and are often 
found in hydrogen-consuming microorganisms. Com-
paratively higher expression of [FeFe]-hydrogenase 
(around 100-fold) than [NiFe]-hydrogenase in strict 
and facultative bacteria allows production of enough 
hydrogen during dark fermentation (Sołowski et  al. 
2018). Clostridia, Escherichia coli, Enterobacter, 

Citrobacter, Alcaligenes, and Bacillus strains of 
Gram-positive or Gram-negative bacteria are domi-
nant in fermenters or digesters under strict or facul-
tative anaerobic environments (Ferraren-De Cagali-
tan and Abundo 2021). Metabolic pathways and 
substrate diversity studies revealed the dominance 
of Clostridium species in dark fermentation utilizing 
a wide variety of substrates for the production of H2 
(3.94 mol H2 mol−1 hexose − 5.42 mol H2 mol−1 car-
boxymethylcellulose) through acetate, butyrate, and 
propionate pathways (Wang and Yin 2021).

Production of hydrogen reached the maximum of 
1.5 mol H2 mol−1 of fructose and 1.3 mol H2 mol−1 
of sucrose when Firmicutes dominant anaerobic 
consortium from brewery wastewater was used as 
inoculum (Pachiega et  al. 2019). Here, the yield of 

Table 2   (continued)

Reaction medium Photocatalyst Source of light P/W (I/mW 
cm−2)

Temperature 
(°C)

H2 produc-
tivity (µmol 
gcat

−1 h−1)

References

H2O/lactic acid 
(v, 9:1)

NiS (9%)-CdS (37%)/
Te

Xe (> 420 nm) 300 – 317 Hu et al. (2015)

Pt (11%)-Pd (15%)/
CdS (31%)/Te

236

H2O/lactic acid 
(v, 9:1)

MoS2 (1.5%)/CdS/
UiO-66 (50%) (UiO-
66: poly-Zr–ben-
zenedicarboxylate 
MOF)

Xe (> 420 nm) 300 – 32,500 Shen et al. 
(2015)

Glycerol Pt-Bi2Ti2O7 UV – – 41.4 Musso et al. 
(2023)

Ethanol (v, 10%) Ni/Urea-CN Fluorescent 
lamp

 ~ 5 Room tempera-
ture

760.5 Gunawan et al. 
(2022)

H2O/Glycerol (v, 
10%)

Au/TiO2@n-octade-
cane

Xe lamp 35 – 5444 Zhong et al. 
(2022)

H2O/glycerol (v, 
14%)

Pt@UiO-66(Zr)-NH2 Solar simulator 230 – 766.67 Rueda-Navarro 
et al. (2022)

Formaldehyde g-C3N4 LED lamp 
(400–800 nm)

12.5 – 204.44 Munusamy et al. 
(2022)

Glucose Ni0.05Au0.45/ TiO2 Visible light – – 6391.86 Eqi et al. (2022)
H2O/ethanol (v, 

80:20)
FeOSnS/PdOx/MnOx Hg lamp 4.4 – 546,000 Etemadi et al. 

(2022)
Glucose (aq, 

5.3 mM)
Pt (0.5%)/P25TiO2 UVA (366 nm) 15 × 4 – 357 Speltini et al. 

(2015)
H2O/olive mill 

wastewater (v, 
3.3%)

183
342

Solar simulator 25 20
Municipal waste-

water
Au (0.5% mol)/TiO2 Sunlight – – 22 Malato et al. 

(2016)
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hydrogen depends on specific parameters such as sub-
strate type, loading rate, system pH and temperature, 
microbial adaptability to specific substrate, inoculum-
to-substrate ratio, and concentrations of various addi-
tives in the fermentation broth (Akhlaghi et al. 2019; 
Li et al. 2021; Ren et al. 2022; Saha et al. 2020). An 
increase of microalgal loading as fermentation sub-
strate to 40 g dry cell weight L−1 in mesophilic dark 
fermenters achieved a maximum hydrogen yield of 
36  mL H2 g−1 through the acetate pathway, which 
decreased upon further loading (Fig.  5a) (Yun et  al. 
2016). Around a 13% decrease in the hydrogen yield 
occurred when sucrose was the primary substrate 
compared to fructose (1.5  mol H2 mol−1) (Pachiega 
et  al. 2019). Clostridium acetobutylicum produced 
63 ml H2 g−1 starch in solid state (total solid: 20%) 
dark fermentation of ground wheat (Ozmihci 2017). 
Use of waste activated sludge in thermophilic (55 ℃) 
reactors produced 317% higher hydrogen yield at pH 
10 over mesophilic (37 ℃) reactors (Fig.  5b). How-
ever, VFA production (especially, acetate and propi-
onate) was much higher in the mesophilic reactors 

(Wan et  al. 2016). Production of hydrogen (3.8  mol 
H2 mol−1 of sugar) reached its theoretical yield 
(4  mol H2 mol−1 of glucose) during hyperthermo-
philic fermentation of fruit and vegetable waste using 
the halophilic bacterium Thermotoga maritima (Saidi 
et  al. 2018). Acidogenic dark fermentation of food 
waste (FW) at an inoculum-to-substrate ratio of 50:50 
produced 160 L H2 kg−1 TOCFW during mesophilic 
operation at pH 5.5 (Fig. 5c) (Akhlaghi et al. 2019). 
Incorporation of ryegrass into sewage sludge fermen-
tation increased the final hydrogen yield (60 mL g−1 
VS) by five times at a ratio of 30:70 compared to the 
yield in sludge alone (Yang and Wang 2017). Thus, 
the hydrogen productivity varies depending on sub-
strate variations and fermentation conditions.

Acclimatization of the microbial inoculum to 
enrich the hydrogenogenic bacterial population 
improved the conversion of specific substrates to 
hydrogen. Hydrogen yield was boosted to 19.5 L 
H2 L−1 in thin stillage using acclimatized anaero-
bic digester sludge due to enrichment of acidogenic 
Clostridium acetobutyricum, Klebsiella pneumonia, 

Fig. 5   Metabolic pathways involved in dark fermentation of 
complex organic substrates such as microalgae (a), waste acti-
vated sludge (b), food waste (c), and fat, oil, grease (d) to pro-
duce hydrogen, short- and medium-chain fatty acids, ethanol, 

and butanol (Akhlaghi et  al. 2019; Elsamadony et  al. 2021; 
Saha et  al. 2019; Wan et  al. 2016; Wang and Yin 2021; Yun 
et al. 2016)
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Clostridium butyricum, and Clostridium pasteuri-
anum, which improved the specific hydrogen produc-
tion rate (3.5 times higher than with unacclimatized 
sludge) (Nasr et  al. 2011). Bioaugmentation with 
Clostridium thermocellum improved hydrogen yield 
by 96.80% in thermophilic fermentation of paper 
sludge through increase of holocellulose degrada-
tion rate (32.95%) (An et al. 2018). The presence of 
active acidogenic bacteria belonging to the phyla Fir-
micutes and Bacteroidetes in the acclimatized inocu-
lum improved the hydrogen yield by 48% compared 
to its unacclimatized counterpart (Chang et al. 2018). 
Cellobiose-acclimatized sewage sludge enriched the 
population of genus Clostridium as a main hydro-
gen producer and produced 2.08  mmol H2 g−1 filter 
paper (Ho et al. 2012). Enrichment of iron-dependent 
hydrogenases expressing Anaerofilum sp. in the bio-
reactors enhanced the hydrogen yield to 13.64 mmol 
in five months of operation (Venkata Mohan et  al. 
2011). A combination of various additives such as 
zero-valent iron, nano zero-valent iron, Ni0 nano 
particles, and biochar stimulated the acidogenesis 
process through the activation of various hydroge-
nases to achieve hydrogen yields near the theoreti-
cal potential of the substrate (Mohd Jamaludin et al. 
2023; Ren et  al. 2022). Metallic additives improved 
enzymatic activities through oxidation/reduction to 
promote hydrogen production (Saha et  al. 2020). 
Upon addition to fermentation reactors, zero-valent 
metals oxidize in the aqueous phase and promote 
the synthesis and activity of major enzymes such as 
hydrogenase and ferredoxin (Taherdanak et al. 2015). 
Shifting of a microbial population toward Clostrid-
ium occurred upon addition of Fe2+ ions in grass-
fermenting reactors, which enhanced the hydrogen 
yield (72.8  mL  g−1 dry grass) by 49.6% (Yang and 
Wang 2018a). Fe0 nanoparticles at a concentration 
of 400 mg L−1 increase the hydrogen production rate 
and yield by 128% and 73%, respectively, by shorten-
ing the lag period and facilitating substrate hydrolysis 
and utilization through the enrichment of Clostridium 
sp. (Yang and Wang 2018b). Fe0 nanoparticle supple-
mentation in dark fermentation improved the hydro-
gen yield to 20  mL H2 g−1 VS of microalgae (6.5 
times higher than the control) by enriching the popu-
lations of Clostridium and Terrisporobacter sp. (Yin 
and Wang 2019).

Addition of magnetite at a concentration of 
100  mg L−1 induced the growth of acidogenic 

bacteria such as Sporolactobacillus, Clostridium, 
and Coprothermobacter, which increased the hydro-
gen production by 46% (Gökçek et  al. 2023). Mag-
netite nanoparticles embedded in granular activated 
carbon (GAC) improved the hydrogen productivity 
rate in dark fermentation by 63.99% compared to 
non-magnetite GAC (Mohd Jamaludin et  al. 2023). 
The high specific surface area and porosity of bio-
char act as a support matrix to microbial attachment, 
growth, and cellular vitality and improve syntrophic 
interspecies interactions, further expediting the holis-
tic conversion of substrate to fermentative products. 
Use of granular activated carbon as a support matrix 
for biofilm development enhanced the hydrogen 
yield of 1.77  mol H2 mol−1 substrateconsumed during 
thermophilic dark fermentation (Jamali et  al. 2016). 
Biofilm formation on the surface of biochar during 
co-culture of Enterobacter aerogenes and E. coli in 
fermentation of municipal solid waste maximized the 
hydrogen yield to 96.63 ml H2 g−1 carbohydrateinitial 
by accelerating COD removal (53%) and shorten-
ing the lag phase from 12.5 h to 8.1 h (Sharma and 
Melkania 2017). Supplementation of sugarcane 
bagasse-derived biochar improved hydrogen produc-
tion (84.58 mL) by enhancing the hydrogen produc-
tivity (> 74%) of Ethanoligenens harbinense (Li et al. 
2021). The synergistic effect of combining biochar 
and Fe0 nanoparticles at concentrations of 600  mg 
L−1 and 400  mg L−1, respectively, enhanced the 
hydrogen yield to 50.6 mL  g−1 dry grass and short-
ened the lag phase by accelerating enriched Clostrid-
ium-mediated hydrolysis and fermentation (Yang and 
Wang 2019). Addition of zero-valent iron-activated 
carbon to wastewater sludge fermentative reactors 
improved the hydrogen yield (1.33 mol H2 mol−1 glu-
cose) by 50% through enrichment of the Clostridium 
spp. population (Zhang et al. 2015a). The synergistic 
impact of biochar (621  mg L−1) and Ni0 nanoparti-
cle (17.2 mg L−1) in dark fermentation increased the 
hydrogen production rate (558  mL  h−1) and hydro-
gen yield (237 mL  g−1) by decreasing the lag phase 
to 4.82 h (Sun et al. 2019a). Thus, a combination of 
metallic additives as co-factor for hydrogenases and 
biochar improved the microbial enzymatic activities 
through induction of electron transport among syn-
trophic partners and enriched the hydrogenogenic 
bacterial population in acidogenic fermenters for 
improved hydrogen production from organic biomass.
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Utilization of lipidic waste such as FOG (fat, oil, 
grease) in dark fermentation produced a large amount 
of hydrogen from saturated and unsaturated LCFAs 
along with C4–C7 carboxylates through carboxylic 
chain elongation of SCFAs (Fig.  5d) (Saha et  al. 
2019). β-Oxidation of saturated (e.g., stearic acid, 
palmitic acid, myristic acid) and unsaturated (lin-
oleic acid, linoelaidic acid, oleic acid) LCFAs during 
anaerobic fermentation generated C2 carboxylate and 
H2 as an electron acceptor (Eq. 13) (Cavaleiro et al. 
2016; Elsamadony et al. 2021). These C2 carboxylate 
and H2 play a major role in the thermodynamic fea-
sibility of the β-oxidation pathway, which demands 
a low hydrogen partial pressure of 1  Pa and acetate 
concentration of 8 or 9  mmol  l−1 in the reactors 
(Saha et  al. 2020). Failing to retain these conditions 
led to accumulation of saturated LCFA (palmitic 
acid, ∼90%) in the fermenters as a major intermedi-
ate of the degradation pathways of the longer chain 
unsaturated LCFAs (Saha et al. 2019). Palmitic acid 
and myristic acid emerged as the main intermedi-
ates of the monounsaturated LCFAs degradation 
in the absence of methanogenic activity, leading to 
their accumulation in the reactors (Cavaleiro et  al. 
2016). Syntrophic coupling among acidogenic LCFA-
degrading bacteria with acetate-utilizing and hydrog-
enotrophic microorganisms help sustained an opti-
mum environment to facilitate continuous β-oxidation 
(Cavalcante et  al. 2017). The occurrence of reverse 
metabolic traits is feasible in the presence of energy-
rich, reduced compounds such as ethanol and lactate 
to provide energy and reduce equivalents and acetyl-
CoA during the anaerobic reactor microbiome-medi-
ated β-oxidation (Fig. 5) (Spirito et al. 2014). Various 
MCFAs such as C4–C6 carboxylates are the products 
of secondary anaerobic fermentation of SCFAs after 
acidogenic fermentation, where ethanol acts as an 
electron donor for carboxylic acid chain elongation/ 
reverse β-oxidation (Eqs. 14 and 15) (Angenent et al. 
2016; Cavalcante et al. 2017).

(13)
nCH3(CH2)nCOOH + nH2O
→ CH3(CH2)n−2COOH + nC2H4O2 + nH2

(14)
5C2H6O + 3C2H4O2 → 4C4H8O2 + 3H2O + 2H2

(15)
12C2H6O + 3C2H4O2 → 5C6H12O2 + 8H2O + 4H2

Syntrophic cooperation among ruminal mixed 
microbiome and cellulose-converting Clostridium 
kluyveri produced valeric and caproic acids in the 
presence of ethanol (Weimer et  al. 2015). Anaero-
bic fermentation of municipal solid waste in a two-
stage system consisting of an acidification and a chain 
elongation reactors achieved caproate production of 
12.6 g l−1, the highest among MCFAs (Grootscholten 
et  al. 2014). A MCFA yield of 67% was obtained 
during anaerobic fermentation of wine lees (settled 
yeast cells and ethanol) using acclimatized inocu-
lum along with hydrogen (45% of produced biogas), 
which primarily consists of caprylate and caproate at 
36% each (Kucek et al. 2016b). Production of hydro-
gen (3000  ppm) occurred in an anaerobic up-flow 
bioreactor producing caprylate (0.33 g L−1  h−1) as a 
major MCFA when ethanol and acetate were used as 
feedstocks (Kucek et al. 2016a). The thermodynamic 
feasibility of MCFA production in dark fermentation 
is highly supportive due to presence of a secondary 
by-product (ethanol), and it promoted the growth and 
syntrophic relationship among Clostridium kluyveri 
and ethanol-producing bacteria to facilitate the pro-
duction of 10–20% more hydrogen with MCFA (espe-
cially, caproate) (Ding et al. 2010). Thus, conversion 
of organic biomass in dark fermentation could lead 
to the production of various value-added chemicals 
and increase hydrogen yield through the induction of 
microbial metabolic syntrophy.

4 � Techno‑economic assessment of hydrogen 
technologies

The sustainable production of hydrogen is of prime 
importance for its commercialization as a fuel. A 
competitive and reasonable price of hydrogen fuel 
can be achieved through increased rate of production 
and reliability of processing (Godvin Sharmila et al. 
2022). There are several key drivers that mainly influ-
ence the green hydrogen economy, i.e., (a) cost of 
substrate/feedstock and pretreatment, (b) cost of the 
hydrogen production system, (c) cost of downstream 
processing for purification of hydrogen, (d) cost 
of transportation and storage, and (e) cost of distri-
bution (Lane et  al. 2021; Prabakar et  al. 2018). The 
physicochemical processes for production of hydro-
gen are highly efficient with respect to productivity 
and purity; however, the economic viability of these 
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processes is low due to their high energy requirements 
(Godvin Sharmila et  al. 2022). Various technolo-
gies have been developed and tested for commercial 
hydrogen production. The chemical processes with 
broad industrial applications include water splitting 
by electrolysis, gasification of coal, and steam reform-
ing, while biological processes include photobiologi-
cal hydrogen production and dark fermentation (Brar 
et al. 2022; Mahmod et al. 2021; Qyyum et al. 2022). 
Among chemical pathways, electrolysis is widely 
employed, whereas steam reforming of methane is the 
most cost-effective method for hydrogen production, 
with a cost of US$ 7 GJ−1 (Kalamaras and Efstathiou 
2013). The combination of electrolysis with a geo-
thermal process for energy could cost around US$ 
1.09 kg−1 (Yilmaz et al. 2019). The pyrolysis and gas-
ification of biomass could generate hydrogen fuel at 
a cost of around US$ 8.9–15.5 GJ−1 and US$ 10–14 
GJ−1, respectively, which varies with the cost of raw 
materials (Balat and Balat 2009).

Biological processes are comparatively expensive 
because of applicability issues. The major bottlenecks 
include the high operational costs of bioprocessing, 
process instability, and low H2 yields (Das and Basak 
2021). For instance, hydrogen production via a photo-
fermentation process costs around US$ 502.10 GJ−1, 
which amounted to 90% of the total cost (Bhatia et al. 
2021). One of the major hurdles in commercialization 
of hydrogen production through dark fermentation is 
the excessive cost of substrates (Yukesh Kannah et al. 
2021). The cost of dark fermentative hydrogen pro-
duction from glucose increased 5–10 times higher 
than that of photofermentation (US$ 2  kg−1 H2) and 
indirect biophotolysis (US$ 1.42 kg−1 H2) due to high 
cost of substrate, which consumed 88% of the produc-
tion cost (Ahmed et al. 2021; Godvin Sharmila et al. 
2022). The cost for bioprocessing can be significantly 
reduced if waste biomasses from industrial or agricul-
tural sectors are utilized, since complex carbohydrates 
are available in massive quantities at comparatively 
cheaper prices. The waste-based hydrogen economy 
can overcome the largest electricity/energy bar-
rier and encourage sustainable fuel production with 
greater energy security. The biomass substrate cost is 
highly subject to principal, operational, and mainte-
nance costs, for levelled energy cost (LCOE) is less 
responsive to biohydrogen, which costs around US$ 
7  kg−1 (Ahmed et  al. 2021; Lee et  al. 2008). Palm 
oil milling effluent is a by-product of the process and 

must be treated to meet environmental regulations. It 
can be utilized as a cost-effective feedstock for hydro-
gen production considering its low cost (Nurul-Adela 
et  al. 2016). Hydrogen production through dark fer-
mentation of food waste is inexpensive, US$ 0.814 
kWh−1, which provided an investment return of 
29.8% within 7.2 years of the payback period (Cud-
joe et al. 2022). The two-stage anaerobic technology 
is thought to be cost effective as its payback time is 
substantially shorter than its expected life (Mahmod 
et al. 2021).

Industrial effluents from dairy; slaughterhouse; 
and food and starch processing industries; and oil 
refineries also can be an effective feedstock for hydro-
gen production as it contains ample organic matter. 
A techno-economic study of hydrogen production 
using black liquor as a substrate via dark fermenta-
tion showed H2 productivity of 12,450 m3 year−1 and 
annual revenue of US$ 35,481, with an initial invest-
ment payback period of 5.92  years (Tawfik et  al. 
2021b). Another study of H2 and CH4 generation from 
biscuit wastewater treatment via anaerobic diges-
tion indicated payback periods of 5.7 and 7.1 years, 
respectively, although the initial investment for H2 
was 22% higher than that of CH4 production due to 
more sophisticated processing (Tawfik et  al. 2021a). 
These technologies achieved green energy produc-
tion and industrialization with pollution prevention 
to address sustainable development goals (SDGs). 
The investment profits and payback period for hydro-
genation of petrochemical industry wastewater under 
psychrophilic conditions were US$ 24,295 year−1 and 
7.13 years, respectively (Elreedy et al. 2019).

The world’s biggest economies including USA, 
China, Japan, and India have encouraged investment 
in the development of hydrogen fuel (Lee et al. 2011). 
Among these four nations, China created the largest 
market for biohydrogen and has expected to reach 
the industry’s output value to US$ 157.44 billion in 
2025 (Koty 2022; Nakano 2022). Japan, USA, and 
India have started investment of around US$ 3.4, 8, 
and 25 billion, respectively to bring down the cost of 
green hydrogen to US$ 1  kg−1 by 2030 (Chaudhary 
2022; DOE 2022; Nakano 2021). Such a large invest-
ment by these big economies will ensure state-of-the-
art developments in biohydrogen infrastructures and 
technologies that will eventually produce more ben-
efits than investment with better cost feasibility. The 
hydrogen economy significantly prevents pollution. 
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It has been estimated that utilization of hydrogen 
fuel instead of gasoline for more than 15  years can 
save ~ 29.9 million tonnes of CO2-eq (Wulf and 
Kaltschmitt 2012). Moreover, the efficiency of die-
sel and hydrogen engines appears to be comparable 
(Stichnothe and Azapagic 2009). Therefore, employ-
ing hydrogen as a substitute fuel for conventional fos-
sil fuels might significantly reduce GHG emissions. 
The future of hydrogen industry is bright as this green 
economy can play a key role in achieving SDGs by 
supporting eco-friendly technologies, instigating sus-
tainable production methods, and conserving natural 
resources (Qyyum et  al. 2022). The hydrogen econ-
omy fosters societal equity, promotes sustainable 
growth, and reduces environmental risk and resource 
requirements. Regulations supporting low carbon 
emissions or minimized CO2 emission to overcome 
economic challenges should be employed (Prabakar 
et al. 2018). Development of novel technologies such 
as single-pot processes and integrated bioprocessing 
are necessary to reduce the costs of processing.

5 � Concluding remarks and outlook

The feasibility of hydrogen production from various 
organic waste biomasses has been assessed through 
numerous thermochemical, photocatalytic, and bio-
logical processes over the past decades. Conversion 
of oxygenated biomass derivatives to green hydrogen 
through selective light-triggered reformation (pho-
toreformation) at ambient conditions in the presence 
of active metallic photocatalysts has emerged as a 
sustainable method preferable to thermocatalytic deg-
radation or gasification. The use of graphene-based 
carbonaceous photocatalysts and earth-abundant low-
cost metals, such as Cu and Ni, could be advanta-
geous to resist the photocorrosion of metal sulfides. 
Alternatively, dark fermentation has appeared as 
a potential contender due to its ability to produce 
multiple value-added chemicals along with hydro-
gen. Optimization of operational parameters such as 
substrate type, loading rate, system pH, temperature, 
microbial acclimatization to specific substrate, inoc-
ulum-to-substrate ratio, and concentrations of various 
additives (especially, Fe and Ni ions and biochar) in 
dark fermentation could improve the holistic conver-
sion of organic wastes and simultaneous maximiza-
tion of product yields. Upgrading produced hydrogen 

and downstream processing of value-added chemicals 
in the fermentation broth require substantial research 
to facilitate maximum energy recovery from organic 
wastes to ensure long-term sustainability. Thus, fos-
tering eco-friendly technologies such as photorefor-
mation and dark fermentation for hydrogen produc-
tion from waste bioresources and promoting green 
energy utilization for prevention of environmen-
tal pollution could brighten the future of hydrogen 
industry.
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