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1 Introduction

Fossil fuels are the major energy sources, but the con-
cerns over  CO2 emission and climate change elicited 
the need for the development of alternatives. Biofuels 
such as biodiesel, bioethanol, biobutanol, and bio-
alkanes are promising alternatives to fossil fuels. In 
the present time, butanol, the next-generation biofuel, 
has its use as a fuel additive or gasoline substitute due 
to their similarity in their characteristics (Lee et  al. 
2008). Apart from that, butanol is an important chem-
ical feedstock used for the synthesis of butyl acrylate 
and methacrylate esters, butyl glycol ether, butyl ace-
tate, etc., and even as a solvent for the preparation of 
pharmaceutical products such as antibiotics, vitamins, 
and hormones (Kirschner 2006; Lee et al. 2008). It is 
used as an efficient diluent solvent in the oil industry, 
perfume industry and as an extracting agent (food-
grade) in the flavor industry.

Butanol is a better fuel additive than ethanol 
due to its higher energy content, lower hygrosco-
picity, and corrosiveness. There are four isomeric 
structures of butanol depending on the hydroxyl 
group position: n-butanol (1-butanol), sec-butanol 
(2-butanol), isobutanol (2-methyl-1-propanol), 
and tert-butanol (2-methyl-2-propanol). Out of all 
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the isomers, n-butanol and isobutanol are mainly 
studied as potential biofuel candidates due to their 
advantageous properties. Butanol can be blended in 
higher ratios with gasoline due to their similar prop-
erties, and due to its high boiling point, the rate of 
burning is also slower than ethanol (Sarathy et  al. 
2012; Ndaba et al. 2015). Butanol has 90% of gas-
oline’s energy density and can be used as a 100% 
replacement for gasoline (Hönig et al. 2014). It suits 
the present time infrastructure for storage, transport, 
used in standard engines without modification, and 
may be used as jet fuel (Brownstein 2014).

Butanol is naturally produced by microorgan-
isms with acetone and ethanol in a mixture by ABE 
fermentation. Louis Pasteur, in 1861 first reported 
butanol synthesis from microbes, and in 1915, the 
use of Clostridium acetobutylicum for acetone-
butanol synthesis was patented, following which 
industrial production of butanol started in 1916 
(Pasteur 1862; Sauer 2016). Clostridium strains 
are used for the first large-scale butanol production 
in the UK in 1912 by ABE fermentation, where a 
mixture of solvents (acetone, butanol, and ethanol), 
organic acids (acetic acid, lactic acid, and butyric 
acid), and gases  (CO2 and  H2) (Mansur et al. 2010) 
are produced. Commercial Clostridium strain pro-
duced 14 to 20  gL−1 butanol in batch fermentation 
(Green 2011), but the use of anaerobic heterotrophic 
bacteria for biofuel production is not economical. 
Therefore, many other non-native microbial strains 
have been genetically modified to produce butanol 
(Nawab et  al. 2020). The major disadvantage of 
heterotrophic hosts for biofuel production is the 
requirement of the constant supply of costly organic 
carbon sources. Agricultural biomass utilization for 
biobutanol production also needs rigorous pretreat-
ment and inhibitor removal steps, making the pro-
cess cumbersome.

Microalgae/cyanobacteria are photosynthetic 
microorganisms that can serve both as autotrophic 
non-native host or energy feedstock for butanol pro-
duction and require no additional carbon and arable 
land for growth. Advancement in synthetic biology 
and the availability of modern genetic tools have 
led to the engineering of cyanobacterial chassis for 
light-driven biofuel production. Cyanobacterial strain 
improvement and the development of cultivation 
systems, and optimization of process parameters are 
presently required for scaling up butanol production.

Advances in biobutanol production and chal-
lenges associated with the utilization of heterotrophic 
native and non-native butanol producers have been 
discussed considerably (Zheng et al. 2009; Ou et al. 
2015; Moon et  al. 2016; Nanda et  al. 2017; Koles-
inska et  al. 2019; Nawab et  al. 2020). However, a 
detailed review of photosynthetic biobutanol pro-
duction is still not available. In this review, recent 
advances in cyanobacteria-based butanol production 
are summarized. This review will discuss genetic 
modification of cyanobacteria for butanol production 
as well as challenges associated with large-scale pro-
duction of butanol via cyanobacteria. It will focus on 
solutions for improving the process and highlight the 
possible areas for researchers to emphasize for utiliz-
ing the potential of cyanobacteria for industrial-scale 
biobutanol production.

2  Cyanobacteria: a platform for biobutanol 
production

2.1  Cyanobacteria

Cyanobacteria are Gram-negative microorganisms, 
the oldest photosynthetic prokaryote, which origi-
nated more than 3 billion years ago (Hedges et  al. 
2001). Cyanobacteria require  CO2, sunlight, and 
minimal nutrients for growth and convert 3–9% of 
solar energy into biomass (Lau et al. 2015). Cyano-
bacteria have been studied for many decades by 
scientists due to their attractive features. These 
organisms survived varied and harsh environ-
ments from ancient times and were responsible for 
transforming our atmosphere and still contributing 
majorly to global carbon fixation (Field et al. 1998). 
Cyanobacteria do not require fermentable sugars 
and arable lands for their cultivation as they can 
fix and utilize dissolved  CO2 at elevated concentra-
tions under submerged conditions (Sheehan et  al. 
1998; Dismukes et  al. 2008). On the other hand, 
the capability of cyanobacteria to grow in diverse 
locations with minimal nutrients and  CO2 provides 
a scope of mass-cultivation in unproductive lands. 
Further, atmospheric nitrogen fixation by several 
cyanobacteria provides an additional advantage of 
survival and product synthesis even under nitrogen-
deficient conditions. The simple cell structure and 
genetic makeup of this prokaryote make genetic 
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modification comparatively easier than plants (Kok-
sharova and Wolk 2002). Due to all these advan-
tages, much work has been done in the past decade 
to develop cyanobacteria as a photosynthetic cell 
factory to synthesize biofuels, bioplastics, and other 
value-added compounds from  CO2, light, and inor-
ganic nutrients (Machado and Atsumi 2012; Lai 
and Lan 2015; Katayama et  al. 2018). Cyanobac-
teria have also been utilized as single-cell protein 
or a source of valuable metabolites, including fatty 
acids, terpenoids, phytohormones, polysaccharides, 
phycocolloides, phenolic and photoprotective com-
pounds, and cyanotoxins (Raja et  al. 2008; Singh 
et al. 2017). This direct and indirect chemical syn-
thesis ability of these photosynthetic prokaryotes 
makes them a promising candidate for sustainable 
industrial biofuel production. Eukaryotic photo-
synthetic microorganisms although accumulate 
lipids in reasonable amounts for biofuel production 
(Pate et  al. 2011), but the requirement of intracel-
lular product recovery and lack of synthetic biol-
ogy tools for strain improvement still makes biofuel 
production from eukaryotic algae remain unfeasible 
for industries. Development and improvement of 
cyanobacterial model strains and modern synthetic 
biology tools will further provide an opportunity 
to utilize photosynthetic microorganisms for bio-
fuel production. The high photosynthetic efficiency, 
fast growth rates, ease of genetic manipulation, 
low nutrient requirements, and the ability to grow 
in wastewater make this organism an ideal choice 
for developing it as an industrial biochemical ‘pro-
ducer’/ an alternative and eco-friendly platform for 
biofuel production.

2.2  Alternative carbon and energy source utilization

The oxygenic photosynthetic reaction occurs by 
absorption of light energy by the cyanobacterial pig-
ments leading to the synthesis of major organic car-
bon compounds with the evolution of oxygen as a 
byproduct. The light energy absorbed in the visible 
range (400–700 nm) is utilized to synthesize organic 
molecules from inorganic carbon and water. The 
abundantly available solar energy can therefore be 
harnessed by the cyanobacterial cells for biomass and 
product synthesis. Butanol production from hetero-
trophs requires a continuous supply of organic carbon 

sources, which are also utilized for biomass genera-
tion, thereby increasing the cost of the product.

2.3  Cyanobacterial nutritional requirement

Cyanobacteria utilize radiant energy for biomass 
generation and valuable chemical production is pos-
sible using readily available natural resources like 
 CO2, water, and essential nutrients (N, P, S, K, Fe, 
etc.). Cultivation of cyanobacteria is done in a vari-
ety of culture mediums, including Pringsheim’s 
medium (Pringsheim 2016), BG11 medium (Rip-
pka et  al. 1979), Fogg’s medium (Fogg and Thake 
1987), and others, with BG11 and  BG110 being the 
most widely used ones. The most important nutrients 
for cyanobacterial growth are carbon, nitrogen, and 
phosphorus. For cyanobacterial cultivation, primarily 
inorganic nutrients are used, but some organic forms 
can also be utilized. These photosynthetic microor-
ganisms take up carbon in the inorganic form  (CO2). 
The carbon content in a species may vary depending 
upon the species type and culture condition from 17.5 
to 65% by dry weight but generally contain 50% car-
bon (Grobbelaar 2004). The  CO2 is fixed by the Cal-
vin cycle, where most species possess a C3 pathway 
while some have C3-C4 intermediate photosynthesis 
(Roberts et  al. 2007; Xu et  al. 2012). RuBisCO, the 
carbon fixing enzyme of the C3 cycle, can use the 
only  CO2 as a substrate for carbon fixation (Price 
et al. 2008). Although both  CO2 and  HCO3

− are taken 
up by many cyanobacterial species, some may selec-
tively utilize only  CO2 or  HCO3

− (Camiro-Vargas 
et  al. 2005).  CO3

2− can also be used as a source of 
inorganic carbon by extremely alkaliphilic cyano-
bacteria (Mikhodyuk et  al. 2008). Some species 
of cyanobacteria are also able to utilize the organic 
nutrients heterotrophically or mixotrophically as 
energy and carbon sources (Chojnacka and Marquez-
Rocha 2004; Perez-Garcia et  al. 2011). The type of 
organic nutrient supplementation such as monosac-
charides, acetic acid, glycerol, and urea (Chen and 
Zhang 1997; Hsieh and Wu 2009a, b; Heredia-Arroyo 
et al. 2011) is species and strain-dependent (Mühling 
et al. 2005). The mechanisms involved in the carbon 
uptake by microalgal cells are diffusion, active trans-
portation, and phosphorylation of carrier proteins 
(Perez-Garcia et  al. 2011). This ability of microal-
gae/cyanobacteria to utilize the organic compounds 
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can be used for wastewater treatment (Markou et  al. 
2014).

Cyanobacterial cells are rich in protein content 
and therefore, demand for high nitrogen supply for 
growth (Becker 1994). Uptake of nitrogen takes 
place in inorganic  (NO3,  NO2

−, NO,  NH4
+), molec-

ular  N2, and in organic form (urea and amino acids) 
(Flores and Herrero 2005) by energy-requiring active 
mechanisms. Nitrate salt,  NaNO3, is mainly used, fol-
lowed by  KNO3 (Grobbelaar 2004), and microalgal 
cells can tolerate nitrate up to 100  mM, but further 
concentration higher showed toxic effects (Jeanfils 
et al. 1993). Nitric oxide (NO) from flue gas can also 
be provided as a nitrogen source as it gets oxidized 
to nitrite/nitrate in medium to be utilized by micro-
algae (Nagase et  al. 2001), but tolerance level var-
ies with species type (Brown 1996). Cyanobacteria 
also preferably use ammonia and require less energy 
for uptake and assimilation (Boussiba and Gibson 
1991). Ammonia as a nitrogen source showed a simi-
lar growth rate with the one having nitrates (Bouss-
iba 1989; Park et  al. 2010), but cells are adversely 
affected even at low concentrations of free ammonia 
(Azov and Goldman 1982) while the tolerance varies 
from species to species. Many cyanobacteria can fix 
the atmospheric nitrogen and utilize it as their only 
nitrogen source (Gallon 2001); however, the reduc-
tion of  N2 to ammonium by the nitrogenase complex 
is an energy-requiring process (Großkopf and LaRo-
che 2012; Peccia et al. 2013). Organic nitrogen, urea, 
and amino acids can also be utilized for cyanobac-
teria cultivation, but the type of organic nitrogenous 
compound utilization and the growth rate is species-
dependent (Flores and Herrero 2005). However, stud-
ies showed the possibility of utilizing organic nitro-
gen-containing wastewater for microalgal cultivation 
to remove nutrients and biodiesel production (Li et al. 
2011a, b). Phosphorous is another essential, but non-
renewable nutrient required for microalgal/cyanobac-
terial cultivation media and is mostly in limiting con-
ditions in natural conditions. Potassium, sodium, and 
ammonium salts of phosphorous and superphosphates 
derived from phosphate rocks are used for cultivation. 
Microalgae/cyanobacteria can store phosphorous 
intracellularly as polyphosphate granules (Powell 
et al. 2009), and so they were used to remove phos-
phate from wastewater (Powell et  al. 2011). Intra-
cellular phosphate storage by these microorganisms 
from the production medium will be a problem during 

mass cultivation with the aim of biomass accumula-
tion and associated products. Therefore, the solution 
to this problem can be optimization of the cultiva-
tion media with limited phosphate or develop a strat-
egy for slow/controlled release of phosphates during 
cell growth. Potassium, an important macronutrient 
required for the growth of microalgae/cyanobacteria 
and is provided as  K2HPO4,  KH2PO4,  KNO3,  KSO4, 
KCl salts in most cultivation mediums. At lower con-
centrations, potassium is actively transported by the 
cells while taken passively when present in higher 
concentrations (Malhotra and Glass 1995). Besides 
the above macronutrients, Mg, S, Ca, Na, Cl, Fe, Zn, 
Cu, Co, Mo, Mn, B, and Co are the micronutrients, 
and all of these have a significant role in cell growth 
and metabolism.

Most of the freshwater cyanobacterial strains are 
cultured in BG11 with/without minor modifications. 
The composition of BG11: 1.5  gL−1  NaNO3, 0.040 
 gL−1  K2HPO4, 0.075  gL−1  MgSO4·7H2O, 0.036  gL−1 
 CaCl2·2H2O, 0.006  gL−1 Citric acid, 0.006  gL−1 fer-
ric ammonium citrate, 0.001  gL−1  Na2EDTA, 0.04 
 gL−1  Na2CO3, 1,000 × trace metals (S, Ca, Na, Cl, Fe, 
Zn, Cu, Co, Mo, Mn, B). For cyanobacterial biobu-
tanol production, BG11 has been used without any 
optimization. However, a study showed the positive 
effect of nitrogen starvation on butanol production 
from Synechocystis sp. PCC 6803 mutant strain inca-
pable of PHB synthesis (Anfelt et  al. 2015). There-
fore, a proper understanding of the role and effects of 
different nutrient components on the cyanobacterial 
cells is essential, which is to be followed by media 
optimization for increasing biomass and associated 
product.

One of the important hurdles to industrial-scale 
cyanobacterial cultivation is the increase in the pro-
duction cost due to the requirement of freshwater 
for culture medium in huge amounts (Yashavanth 
et al. 2021). Microalgae/cyanobacteria are capable of 
growing in wastewater and during growth also release 
oxygen during photosynthesis, reducing the biologi-
cal oxygen demand in these effluents. Cyanobacteria 
can remove excess nutrients and organic pollutants 
(Singh et al. 2016) and can also be used as chelating 
agents for heavy metal removal (Jiang et  al. 2016; 
Shen et  al. 2018). The use of wastewater for cyano-
bacterial cultivation can therefore be an economi-
cal and environment-friendly strategy (Mahesh et al. 
2021). Nitrogen and phosphorus-rich wastewater are 
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generated from households, agriculture, aquaculture, 
and livestock production. Optimization of the nutri-
ent content in these wastewaters can help formulate 
cultivation media for cyanobacteria. Sewage waste-
water optimized for growing microalgae favored both 
biomass and lipid accumulation (Gebremedhin et al. 
2018). Cultivation of PHB-producing cyanobacte-
rial strains in shrimp wastewater, aquaculture, and 
agricultural run-off using different strategies showed 
cell growth, nutrient removal, and polymer accumula-
tion (Samantaray et al. 2011; Krasaesueb et al. 2019; 
Rueda et  al. 2020). For cyanobacteria-based butanol 
production, such strategies can make the process eco-
nomic while providing scope for reuse and effective 
wastewaters treatment.

2.4  Advances in genetic tool development

For genetic modification of any organism, the first 
requirement is the availability of an annotated genome 
sequence of the organism. The organism must allow 
easy uptake of foreign DNA with the generation of 
stable modified strains having the desired knock-ins 
or knock-outs. Some model and fast-growing non-
model cyanobacterial strains (Table 1) are promising 
candidates for biochemical production (Gale et  al. 
2019; Mukherjee et al. 2020). The genetic constructs 
for strain modification can be transferred by favorable 
gene transfer methods (Table 1) and mainly depends 
on the strain type. In the case of cyanobacteria, lim-
ited genetic tools are available compared to the model 
heterotrophs like E. coli and S. cerevisiae (Sun et al. 
2018), but presently for enhancing the industrial 
potential of cyanobacteria, a lot of work is done for 
developing and improving the genetic tools of these 
photosynthetic microorganisms.

2.4.1  Promoters

Promoters are key synthetic biology elements for 
gene expression, and for cyanobacteria, both native 
and foreign promoters have been explored (Table 1). 
These can be classified depending on their function 
as inducible and constitutive promoters. Continuous 
gene expression can be obtained using constitutive 
promoters, but endogenous cyanobacterial promoters 
are regulated by circadian rhythm. Further, in the case 
of inducible promoters, limiting factors like toxic-
ity, leaky expression, and photoliability are obstacles 

for developing such promoters (Santos-Merino et  al. 
2019). Recently, many inducible promoters have 
been developed and implemented in the model and 
non-model cyanobacterial strains (Table  1). Among 
the heterologous promoter,  Ptac/Ptrc promoter in E. 
coli has been widely used in model cyanobacteria for 
high-level gene expression (Geerts et  al. 1995; Ng 
et  al. 2000; Atsumi et  al. 2009; Huang et  al. 2010; 
Niederholtmeyer et al. 2010a; Lan and Liao 2011). A 
version of  Ptac/Ptrc promoter  (Ptrc1O) showed fourfold 
higher expression than the promoter of ribulose bis-
phosphate carboxylase/oxygenase (RuBisCO) large 
subunit, PrbcL in Synechocystis sp. PCC 6803.  Plac, 
 Ptet, λ  PR are other E.coli promoters used for expres-
sion in the model cyanobacterium, but the previous 
study showed poor activities in them (Huang et  al. 
2010). Another E. coli derived inducible promoter, 
L03 promoter induced by anhydrotetracycline (aTc) 
were used in many cyanobacteria (Huang and Lind-
blad 2013), but aTc is light-sensitive, and so stable 
controlled expression is a problem in cyanobacteria 
(Zess et  al. 2016). Recently, the metabolite-induced 
promoters of E. coli, such as L-arabinose-inducible 
araBAD promoter and rhamnose-inducible rhaBAD, 
have also been implemented in Synechococcus elon-
gatus PCC 7942 (Cao et  al. 2017) and Synechocys‑
tis sp. PCC 6803 (Immethun et al. 2017; Kelly et al. 
2018). Another such promoter from Corynebacte‑
rium glutamicum, Pvan, which is induced by vanil-
late by binding to and removing the repressor VanR 
is used in Synechococcus elongatus PCC 7942 (Taton 
et  al. 2017). A number of native inducible promot-
ers such as arsB, ziaA, coat, nrsB, petE, nirA, etc., 
have also been successfully used in cyanobacterial 
gene expression (Table  1). Promoters such as  PrbcL, 
 Pcmp,  Psbt belong to the  CO2 fixation enzymes,  PpsaA, 
 PpsaD of photosystem I and  PpsbA1,  PpsbA2 of photosys-
tem II and  Pcpc of phycocyanin are native promoters 
of the genes required for photosynthesis. Commonly 
used native cyanobacterial constitutive promoters 
are  PcpcB and  PpsbA2 (Johnson et al. 1988; Mohamed 
and Jansson 1989). The gene expression by consti-
tutive promoters may not always be consistent and 
change under varying conditions due to their induc-
ible nature. The widely used native constitutive 
promoter,  PpsbA2, is also a light-inducible promoter 
and under constant light functions as a constitutive 
expression system (Stensjö et  al. 2018). For biobu-
tanol production from cyanobacteria, both inducible 
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and constitutive promoters are used (Liu et al. 2019). 
With the availability of cyanobacterial genomes along 
with transcriptomic and proteomic data related to 
a stress condition, there is a scope for finding more 
native inducible and constitutive promoters. Besides 
this, the development of synthetic promoters by tun-
ing of the available promoters, for example, Pcpc560 
based on PcpcB (Zhou et al. 2014) and truncated ver-
sion of psbA2 (Englund et al. 2016), showed elevated 
gene expression in Synechocystis sp. PCC 6803.

2.4.2  Other control elements

For initiating proper translation, the ribosome binding 
site (RBS) has an important role and allows interac-
tion between 16S rRNA and the Shine-Dalgarno (SD) 
sequence of RBS. The nucleotide sequence surround-
ing the RBS and spacing between SD and start codon 
can also influence the efficiency in translation (de 
Smit and Van Duin 1990; Chen et  al. 1994; Pfleger 
et  al. 2006). For predicting the efficiency of RBS, 
Salis et  al. have developed a thermodynamic model 
for calculating the impact based on the above factors, 
which predicts the expression of proteins in E. coli 
(Salis et  al. 2009), and optimization of RBS using 
such models can also be useful in cyanobacteria. 
Different RBS and their efficiencies have been stud-
ied by expressing the GFP in Synechocystis sp. PCC 
6803 and also found that the efficiency of the RBS 
may vary in different species (Heidorn et  al. 2011a, 
b). In Synechocystis sp. PCC 6803, 20 native RBS 
have recently been studied (Liu and Pakrasi 2018). In 
another study for cyanobacterial 2,3-butanediol pro-
duction, different RBS from E. coli used for overex-
pression of heterologous genes showed an increase 
in solvent production (Oliver et  al. 2013). A recent 
study demonstrated the effect of different RBS on the 
translation efficiency of heterologous proteins in Syn‑
echocystis sp. PCC 6803 and provided information 
regarding the selection of RBSs for overexpression 
of a gene or even in multicistronic constructs (Thiel 
et al. 2018).

Riboswitches are important regulatory ele-
ments present in the 5ʹ untranslated regions of 
mRNAs involved in controlling gene expression. 
Applications of riboswitches for gene regulation 
in cyanobacteria are not much explored. Firstly, in 
Synechococcus elongatus PCC 7942, tightly regu-
lated protein expression was obtained by the use of 

theophylline-dependent synthetic riboswitch (Naka-
hira et al. 2013), following which this riboswitch was 
also used in other cyanobacterial strains, Synechocys‑
tis sp. PCC 6803, Leptolyngbya BL0902, Anabaena 
sp. PCC 7120, and Synechocystis sp. strain WHSyn 
(Ma et  al. 2014; Armshaw et  al. 2015; Ohbayashi 
et al. 2016). Recently, two native riboswitches, cobal-
amin and glutamine dependent, have been reported 
in Synechococcus PCC 7002 and Synechocystis sp. 
PCC 6803 respectively (Pérez et al. 2016; Klähn et al. 
2018). Thus, there is a possibility of finding more 
native cyanobacterial riboswitches, which are yet to 
be identified. Another study showed that hybridiza-
tion of theophylline-responsive riboswitch with the 
 PrhaBAD could initiate the expression of CRISPR inter-
ference (CRISPRi) mechanism for targeting photo-
system II in Synechocystis sp. PCC 6803 (Liu et  al. 
2020). Thus, a combination of different regulatory 
mechanisms can provide a scope for making improve-
ments in expression of desired genes.

2.4.3  Reporter genes

Reporter genes coding for reporter proteins helps in 
the quantification of gene expression, protein inter-
actions, and visualization of subcellular localiza-
tions (Berla et  al. 2013) and for characterization of 
synthetic genetic tools. In cyanobacteria, autofluo-
rescence of phycobilins and chlorophyll molecules 
causes a problem in the use of fluorophores (Ruffing 
et  al. 2016). In cyanobacteria, reporter, a mutant of 
green fluorescent protein, GFPmut3B, and enhanced 
yellow fluorescent protein, EYFP are mostly used 
(Huang et al. 2010; Yang et al. 2010; Heidorn et al. 
2011a, b; Huang and Lindblad 2013; Landry et  al. 
2013). Improved fluorophores, mOrange, mTurqui-
ose, mNeonGreen, and Ypet with higher brightness, 
photostability, and quantum yield, are also used 
recently (Chen et al. 2012; Ruffing et al. 2016; Jordan 
et al. 2017). Reporter genes are mainly used to char-
acterize the strength of promoters and other control 
elements, thereby contributing to the development of 
genetic tools for strain improvement.

2.4.4  Selectable markers

For genetic engineering and the selection of 
genetically modified organisms, selectable mark-
ers are the basic necessity. Antibiotics such as 
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chloramphenicol (Rouhiainen et al. 2000), erythro-
mycin (Vermaas 1998), gentamicin (Ng and Pakrasi 
2001), kanamycin (Rouhiainen et  al. 2000), neo-
mycin (Wolk et  al. 1984), spectinomycin (Golden 
et al. 1987), zeocin (Xu et al. 2004) are commonly 
used as selectable markers in cyanobacteria. For 
cyanobacterial biobutanol production, the antibi-
otic resistance cassettes are mostly used as selecta-
ble markers, and many genes at multiple sites have 
been inserted in a single strain by using combina-
tions of antibiotic resistance cassettes (Liu et  al. 
2019). Selectable markers were also developed by 
the genetic insertions in the cyanobacteria leading 
to change in the cell phenotype. In Synechococcus 
elongatus UTEX 2973, the removal of nblA gene 
involved in phycobilisome degradation resulted in 
non-bleaching phenotype under nitrogen starvation 
and therefore can act as selectable markers (Wendt 
et al. 2016).

2.4.5  Vectors

Cyanobacterial vectors designed were specific to a 
particular strain, while in recent years, such vectors 
have been designed for working with diverse strains. 
Using BioBricks standard (Shetty et al. 2008), a shut-
tle vector that allowed the assembly of constructs 
as well as expression in several cyanobacteria was 
developed. pPMQAK1 is the first broad-host range 
shuttle vector for cyanobacteria (Huang et al. 2010). 
For genetic modification in cyanobacteria, replicative 
as well as integration vectors have been developed 
(Fig.  1). The replicative vectors can replicate inside 
the cyanobacterial host and are either broad-host 
range (Mermet-Bouvier and Chauvat 1994; Ng et al. 
2000; Huang et al. 2010) or derived from endogenous 
plasmids (Wolk et al. 1984; Argueta et al. 2004; Iwaki 
et al. 2006). The integrative vectors integrate the for-
eign gene directly into the cyanobacterial genome 
by homologous recombination (Golden et  al. 1987; 
Eaton-Rye 2004; Heidorn et  al. 2011a, b), while 

Fig. 1  Schematic diagram showing different approaches for 
genetic modification and strain improvement of cyanobacte-
rial strains. a genome modification using integration vec-
tor by homologous recombination at neutral site (NS) having 
upstream (US) and downstream (DS) of the NS present within 
the vector. b use of shuttle/expression vector for strain engi-

neering. c CRISPR-based metabolic engineering for deletion 
and/or incorporation of gene of interest (GOIs) and pathways. 
Abbreviations: AbR, antibiotic resistance gene, Cas, CRISPR 
associated; CRISPR, clustered regularly interspaced short pal-
indromic repeats; tracrRNA, trans-activating CRISPR RNA, 
crRNA, CRISPR RNA
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these cannot replicate and removed from the cell if 
not integrated. A platform for constructing a broad-
host range vector system with replicative and inte-
grative modular plasmids was developed along with 
CYANO-VECTOR, a web server for in silico design-
ing of plasmids with assembly strategies (Taton et al. 
2014). Different chromosomal integration vectors tar-
geting the neutral sites in the chromosomes have also 
been developed for Synechococcus elongatus PCC 
7942 (Kim et  al. 2017), Synechococcus PCC 7002 
(Vogel et al. 2017), and Synechocystis sp. PCC 6803 
(Englund et al. 2015). CyanoGate was developed by 
Vasudevan et al. based on Plant Golden Gate MoClo 
kit and the MoClo kit. This system was a powerful 
tool for cyanobacterial vector assembly tested in Syn‑
echocystis sp. PCC 6803 and Synechococcus elonga‑
tus UTEX 2973 (Vasudevan et al. 2019).

2.4.6  CRISPR genome editing and gene regulation

In cyanobacteria, genome modification is carried 
out primarily using integrative plasmids through 
homologous recombination. Gene deletion in cyano-
bacteria by homologous recombination requires the 
use of antibiotic resistance markers for screening the 
mutant strain. There is always a need for a resistance 
marker for generating a strain with multiple dele-
tions, thereby requiring more research on develop-
ing selectable markers. Moreover, the presence of 
oligoploid or polyploid genomes in many cyanobac-
teria (Griese et  al. 2011) demands multiple segre-
gation steps to ensure that the genetic modification 
is present in all its chromosomes and so is cumber-
some. A solution to the above problems is the use 
of clustered regularly interspaced short palindromic 
repeats (CRISPR)-based technology for marker-
less genetic modification. The CRISPR-Cas system 
has been used for cyanobacterial genetic modifica-
tion (Behler et al. 2018), and it can precisely modify 
multiple genes at different sites at a time without any 
scar and edit all the chromosomes in a single selec-
tion (Fig. 1). In Synechococcus elongatus PCC 7942, 
the CRISPR-Cas9 genome editing tool was used for 
redirecting carbon flux from glycogen to succinate 
pathway for increasing succinate production (Li et al. 
2016). It was also used for deletion of nblA gene in 
Synechococcus elongatus UTEX 2973 involved in 
change in cell phenotype grown in the absence of 
nitrate (Wendt et al. 2016). However, this study also 

showed the toxicity of the cyanobacterial cells due to 
the accumulation of the Cas9 protein. The develop-
ment of the CRISPR-Cas12a system has shown less 
toxic effects in cyanobacteria than Cas9 (Patthara-
prachayakul et  al. 2020). nifH and nblA gene dele-
tion in Anabaena sp. PCC 7120 and Synechocystis 
sp. PCC 6803 respectively was done using CRISPR-
Cas12a (Ungerer and Pakrasi 2016). This technology 
has been used to introduce heterologous genes, point 
mutation, and knock-outs in different cyanobacterial 
species such as Anabaena sp. PCC 7120 (Ungerer and 
Pakrasi 2016; Niu et al. 2018), Synechococcus elon‑
gatus PCC 7942 (Li et al. 2016; Ungerer et al. 2018), 
Synechocystis sp. PCC 6803 (Xiao et al. 2018), Syn‑
echococcus elongatus UTEX 2973 (Ungerer and 
Pakrasi 2016; Wendt et  al. 2016). CRISPR-Cas sys-
tems have also been used to regulate gene expression 
by interfering with the process of transcription by 
using deactivated Cas proteins (dCas) (Zheng et  al. 
2019). CRISPRi with CRISPR-dCas9 and CRISPR-
dCas12a has been used for overexpression/repres-
sion of a number of genes in cyanobacteria, such as 
Anabaena sp. PCC 7120 (Higo et al. 2018; Higo and 
Ehira 2019a, b), Synechococcus elongatus PCC 7942 
(Choi and Woo 2020), Synechocystis sp. PCC 6803 
(Yao et al. 2016; Kaczmarzyk et al. 2018), Synecho‑
coccus elongatus UTEX 2973 (Knoot et  al. 2019). 
CRISPR-Cas-based genome editing and CRISPRi 
technologies have already been used for improving 
biofuel (fatty acids and fatty alcohol) and metabo-
lites (amino acids, succinate, pyruvate) productivity, 
but it has not yet been used directly for cyanobacte-
rial biobutanol production. The use of such technolo-
gies can help improve the butanol titer by solving the 
problems of improper segregation and the need for 
selectable markers for genetic modification.

3  Cyanobacterial biobutanol production

3.1  Third generation butanol production

The concept of utilizing microalgae/cyanobacterial 
biomass as an energy feedstock came in towards the 
end of the 1950s (Chen et al. 2010). The major work 
in this area started in 1970 with the oil crisis, fol-
lowing which extensive work is done on biofuel pro-
duction from photosynthetic microbes (Borowitzka 
2008). Many cyanobacteria contain a good amount of 
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starch and glycogen, which serve as raw materials for 
biofuel production (Ueda et al. 1996). Direct conver-
sion by pretreatment and fermentation of cyanobac-
terial biomass into carbohydrate-based biofuels has 
been explored (Arias et  al. 2021). A cyanobacterial 
cell is simple with the peptidoglycan layer as com-
pared to the eukaryotic microalgal cell wall, which 
is quite complicated (DS 2011). Further, the reserve 
carbohydrate in cyanobacteria is glycogen, which 
is not only water-soluble (Ball et  al. 2011) but also 
can be quickly mobilized compared to starch from 
microalgae (Mamo et  al. 2013). Cyanobacteria have 
been used as a feedstock for bioethanol production 
by yeast fermentation (John et al. 2011; Aikawa et al. 
2013; Möllers et  al. 2014). Butanol was produced 
by pretreated cyanobacterial biomass fermentation 
using immobilized Clostridium acetobutylicum cells 
(Efremenko et  al. 2012). Subsequently, studies were 
done for proper optimization of conditions for pre-
treatment of cyanobacterial biomass and release of 
sugar (Kushwaha et  al. 2017) and then fermentation 
of these hydrolysates to biobutanol (Kushwaha et al. 
2020).

3.1.1  Pretreatment of cyanobacterial biomass

An essential step of upstream processing is a proper 
conversion of biomass into sugar, thus significantly 
improving the efficiency of fermentation (Dürre 
2007). Physical, chemical, and physicochemical tech-
niques have been used depending upon the type of 
feedstock used for fermentation. Second-generation 
feedstock requires extensive pretreatment to access 
fermentable sugar due to its complex structure com-
prising of cellulose, hemicellulose, and lignin (Mox-
ley et al. 2008), while third-generation feedstock has 
a simpler cell structure making it a possible candi-
date for butanol production (Kushwaha et  al. 2019). 
Chemical pretreatment using acids, alkali, peroxides, 
ozone, and organic solvents is very often used for the 
breakdown of complex feedstock (Sun and Cheng 
2002; Zhao et al. 2008; Chen et al. 2015). Cyanobac-
terial/algal biomass containing substantial carbohy-
drate content with little lignin makes the pretreatment 
process simpler, thus serving as a suitable feedstock 
for the synthesis of biobutanol (Suutari et al. 2015). 
Carbohydrates from cyanobacteria can be converted 
to sugar with simple pretreatment strategies and con-
verted to alcohols such as ethanol by fermentation 

(Möllers et  al. 2014) and butanol (Efremenko et  al. 
2012; Ellis et al. 2012). The use of dilute acid/alkali 
with high temperature showed the release of sugar 
(33% of dry weight) from cyanobacterial biomass 
(Kushwaha et al. 2017).

3.1.2  Fermentation of cyanobacterial hydrolysates

Glycogen, a polysaccharide, is accumulated by 
cyanobacteria to around 50% of its biomass can serve 
as an essential substrate for the production of biofuel 
(John et al. 2011). Bioethanol has been produced by 
yeast fermentation from cyanobacterial biomass rich 
in glycogen (Aikawa et al. 2013; Möllers et al. 2014). 
Clostridium saccharoperbutylacetonicum N1–4 pro-
duced acetone, butanol, and ethanol (ABE) up to 
2.74  gL−1 from wastewater algal biomass as a source 
of carbon (Ellis et al. 2012). Clostridium beijerinckii 
ATCC 35,702 produced butanol (8.873  gL−1) from 
cyanobacterial (Lyngbya limnetica) hydrolysates as 
a carbon source with 10  gL−1 glucose supplementa-
tions (Kushwaha et al. 2020). Therefore, using suita-
ble Clostridium strain, butanol can be produced from 
the NPCM by fermentation of carbohydrates present 
in the hydrolysates. It can be concluded from Table 2 
that cyanobacterial biomass can serve as a potential 
feedstock for butanol production even better than 
first-generation feedstock with many disadvantages.

3.2  Fourth-generation butanol production

The genetic tractability of cyanobacteria can be com-
pared to Escherichia coli and yeast with a good num-
ber of genome sequences already or to be determined, 
making it more accessible for genetic modification. 
Genetic engineering in cyanobacteria has resulted in 
the synthetic of many value-added products such as 
ethanol (Deng and Coleman 1999), isobutyraldehyde 
(Atsumi et al. 2009), 1-butanol (Lan and Liao 2011), 
isoprene (Lindberg et al. 2010), ethylene (Sakai et al. 
1997), hexoses (Niederholtmeyer et  al. 2010a), cel-
lulose (Nobles and Brown 2008), lactic acid (Nie-
derholtmeyer et al. 2010a), fatty alcohols (Tan et al. 
2011) and fatty acids (Yu et  al. 2000). Although 
genetic information about cyanobacterial strains is 
available (Koksharova and Wolk 2002), a few strains 
are primarily used to research metabolic and genetic 
engineering (Flores et al. 2008; Heidorn et al. 2011a, 
b).
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Third and fourth-generation biobutanol produc-
tion utilize microalgae/cyanobacteria as photosyn-
thetic feedstock. The former generally requires no 
strain improvement for butanol synthesis, where the 
biomass is utilized as a carbon and nitrogen source 
for growth and production by heterotrophic butanol 
producers. The latter, however, involves the use of 
genetically modified cyanobacteria capable of butanol 
synthesis from  CO2 and light. The first demerit of 
third-generation biobutanol production comes with 
the dewatering of microalgal/cyanobacterial biomass 

before the pretreatment step (Uduman et  al. 2010). 
Secondly, the pretreatment of biomass in itself is 
an energy demanding process and further produces 
inhibitors that are known to interfere with the fer-
mentation process (Yoo et  al. 2015). In the case 
of fourth-generation, biobutanol can be produced 
in a single step by cyanobacterial strains having a 
butanol biosynthetic pathway. Such cyanobacterial 
strains capable of direct butanol secretion in the cul-
tivation media will decrease the butanol production 
cost. Recently a study evaluated the environmental 

Table 2  Comparison of the biobutanol performance using second and third generation feedstock

Feedstock Microorganism Pretreatment Butanol (g L-1) References

Chemicals Conditions

Lignocellulosic material (Plants)
Rice straw C. acetobutylicum 

NCIM 2337
1%  H2SO4 60 °C, 24 h, 121 °C, 

15 min
13.5 Ranjan et al. (2013)

Sugarcane bagasse C. acetobutylicum 
GX01

1% NaOH 121 °C, 2 h + enzyme 
treatment

14.17 Pang et al. (2016)

Barley straw C.acetobutylicum 
DSM 1731

1.5%  H2SO4 121 °C, 1.1 bar, 
60 min + enzyme 
treatment

7.9 Yang et al. (2015)

Bamboo C. beijerinckii ATCC 
55,025- E604

Cellulase:laccase 
treatment

50 °C, 10 h 6.45 Kumar et al. (2017)

Palm kernel cake C. saccharoperbutyl‑
acetonicum N1-4

Mannanase treatment 45 °C, 72 h 3.27 Shukor et al. (2016)

Algae
Ulva lactuca C. saccharoperbutyli‑

cum ATCC 27,021
1%  H2SO4 125 °C, 30 min 4 Potts et al. (2012)

Wastewater algae C. saccharoperbutyl‑
acetonicum N1–4

1 M  H2SO4, 5 M 
NaOH

90 °C, 30 min with 
 H2SO4, followed 
by NaOH, 90 °C, 
30 min

7.79 Ellis et al. (2012)

Chlorella vulgaris 
JSC-6

C. acetobutylicum 
ATCC 824

NaOH (1%),  H2SO4 
(3%)

121 °C, 20 min with 
NaOH, followed 
by  H2SO4, 121 °C, 
20 min

13.1 Wang et al. (2016)

Nannochloropsis sp. C. acetobutylicum 
B-1787

0.1 mM  H2SO4 108 °C, 30 min 13.2 Efremenko et al. 
(2012)

Cyanobacteria
Arthrospira platensis C. acetobutylicum 

B-1787
0.1 mM  H2SO4 108 °C, 30 min 0.43 Efremenko et al. 

(2012)
Oscillatoria obscura C. beijerinckii ATCC 

35,702
1.63 M  H2SO4 100 °C, 60 min, 

Autoclaved, 45 min, 
pH adjusted by 2 M 
NaOH

4.13 Kushwaha et al. 
(2020)

Lyngbya limnetica C. beijerinckii ATCC 
35,702

1.63 M  H2SO4 100 °C, 60 min, 
Autoclaved, 45 min, 
pH adjusted by 2 M 
NaOH

6.394 Kushwaha et al. 
(2020)
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impacts, and cumulation energy demand of third gen-
eration butanol production suggested the requirement 
of metabolic engineering of cyanobacteria for com-
peting with fossil fuels and other biofuels (Nilsson 
et al. 2020).

3.2.1  Engineering cyanobacterial PHB pathway

Direct butanol production from cyanobacteria is pos-
sible with the proper expression of the modified CoA-
dependent pathway (Fig. 2). The first cyanobacterium 
to be genetically engineered for butanol production is 
Synechococcus elongatus PCC 7942. This strain con-
taining the modified CoA-dependent 1-butanol path-
way showed only a detectable amount (0.0145  gL−1) 
of butanol due to the oxygen sensitivity of genes 

of the Clostridial pathway (Lan and Liao 2011). 
Replacement of oxygen-sensitive genes with toler-
ant ones becomes essential as cyanobacteria perform 
oxygenic photosynthesis and evolve oxygen during 
the photolysis of water. Firstly, the replacement of 
oxygen-sensitive bifunctional aldehyde alcohol dehy-
drogenase (AdhE2) and the utilization of ATP as a 
driving force resulted in an almost twofold increase in 
the butanol yield (0.030  gL−1) (Lan and Liao 2012). 
Overexpression of acetyl-CoA carboxylase (ACCase) 
from Yarrowia lipolytica and improved coenzyme-
a-acylating propionaldehyde dehydrogenase, PduP 
in S. elongatus PCC7942 gave 0.418  gL−1 butanol 
in 6 days (Fathima et al. 2018a, b). To eliminate the 
problem of oxygen sensitivity of the pathway genes, 
heterocyst of Anabaena sp. PCC7120 was targeted 

Fig. 2  A schematic representation of biochemical pathways 
used for butanol synthesis in cyanobacteria. The black arrows 
indicate the native cyanobacterial pathways. The red arrows 

indicate the synthetic pathway constructed for butanol produc-
tion with heterologous genes overexpression
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for enzyme expression, which yielded 0.0028  gL−1 
butanol (Higo and Ehira 2019a, b). Recently, a study 
with the cyanobacterium Synechocystis sp. PCC 
6803, with a remodeled Clostridial CoA-dependent 
1-butanol pathway, showed a maximum yield of 
0.836  gL−1 and a cumulative titer of 4.8  gL−1. In this 
work, a multi-level modular strategy was used for 
modification of the biosynthetic pathway with opti-
mization of the expression units, rewiring of endog-
enous carbon flux, and finally recasting the central 
carbon metabolism (Liu et  al. 2019). For n-butanol 
production, cyanobacterial strains modified with 
genes introduced/overexpressed and production ves-
sels used along with butanol yield are mentioned in 
Table 3. All these studies were done on a small scale 
in either plug-sealed or screw cap flasks, demanding 
the need for large-scale study for commercial produc-
tion. Many cyanobacteria can synthesize and store 
PHB inside their cells. An important intermediate of 
the native PHB pathway is 3-hydroxybutyryl-CoA 
which is synthesized from acetyl-CoA which can also 
be utilized for n-butanol production. Therefore, incor-
poration of a few more genes extending the native 
PHB pathway can also produce butanol from good 
PHB accumulating cyanobacterial strains.

3.2.2  Engineering of 2‑keto acid pathway

Branched amino acids are synthesized through the 
2-keto acid pathway where 2-ketoisovalerate, an 
intermediate of valine pathway, has been converted to 
isobutanol by enzymatic decarboxylation and reduc-
tion (Fig. 2). For the synthesis of isobutanol, the car-
bon fluxes are diverted into the synthetic isobutanol 
pathway from the valine synthesis pathway. In E.coli, 
overexpressed α-ketoisovalerate decarboxylase, Kivd, 
and alcohol dehydrogenase, ADH, resulted in 22 
 gL−1 of isobutanol through valine synthetic pathway 
(Atsumi et  al. 2008), and additional optimizations 
coupled with in situ removal of the product increased 
the titer to 50  gL−1 (Baez et al. 2011). Isobutanol was 
successfully produced through the Keto-acid pathway 
in other microbes such as Saccharomyces cerevisiae 
(0.14–0.18  gL−1) (Chen et  al. 2011; Kondo et  al. 
2012; Lee et  al. 2012), Corynebacterium glutami‑
cum (4.9–12.97  gL−1) (Smith et al. 2010; Blombach 
et  al. 2011), Bacillus subtilis (2.62  gL−1) (Li et  al. 
2011a, b), Zymomonas mobilis (4.0  gL−1) (Qiu et al. 
2020) from glucose as their main carbon source. The 

cyanobacterium Synechococcus elongatus PCC 7942 
was first used for isobutanol production by overex-
pression of acetolactate synthase (AlsS), acetohy-
droxy acid isomeroreductase (IlvC), dihydroxy-acid 
dehydratase (IlvD), Kivd, and ADHs from different 
aerobic heterotrophic bacteria (Atsumi et  al. 2009). 
This pathway has also been utilized for photosynthetic 
isobutanol production with the yield of 0.003–0.911 
 gL−1 in another model cyanobacteria Synecho‑
cystis sp. PCC 6803 (Varman et  al. 2013a, b; Miao 
et al. 2017; Miao et al. 2018a, b; Miao et al. 2018a, 
b). Although isobutanol could be synthesized from 
cyanobacteria, the yield is low compared to the het-
erotrophs. Overexpression of kivd from L. lactis along 
with ADHs (adh from L. lactis, yqhD and yjgB from 
E.coli, and slr0942 and slr1192 from Synechocystis) 
produced isobutanol and 3-methyl-1-butanol (3M1B) 
in Synechocystis sp. PCC 6803 (Miao et  al. 2017). 
2-methyl-1-butanol was also produced autotrophically 
from genetically modified Synechococcus elongatus 
PCC7942 having Kivd, YqhD, and citramalate path-
way genes (Fig.  2). The synthesis of other alcohols 
could be minimized here by designing the citramalate 
pathway so that the enzymes of the native isoleucine 
pathway could compete with the overexpressed Kivd 
and prevent direct 2-ketobutyrate conversion into 
1-propanol (Shen and Liao 2012). All these studies 
show that Kivd is the key player for cyanobacterial 
butanol synthesis via the ketoacid pathway. Further, 
the modification of the substrate-binding pocket of 
Kivd  (KivdS286T) showed its increased activity. It was 
also suggested that an elevated enzyme expression 
level will be required to enhance the isobutanol pro-
duction (Miao et al. 2018a, b; Miao et al. 2018a, b). 
Protein engineering for fine-tuning of these two main 
enzymes can therefore increase the specificity and 
activity which will ultimately help in improving the 
isobutanol yield.

3.2.3  Engineering 2‑oxoglutarate pathway

Butanol could be synthesized from α-ketoglutarate 
(2-oxoglutarate) of the TCA cycle and was done by 
expressing seven enzymes from different microorgan-
isms in E. coli K12. This engineered E. coli strain 
accumulated 85  mgL−1 1-butanol from glucose in a 
bioreactor (Ferreira et  al. 2019). In cyanobacteria, 
butanol production through this pathway will require 
the incorporation of seven genes involved in the 
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enzymatic conversion of 2-oxoglutarate to 1-butanol. 
Since the modified Clostridial CoA-dependent path-
way in cyanobacteria yielded low butanol, over-
expression of the first four enzymes of the 2-oxo-
glutarate pathway in the engineered strains could 
possibly increase the yield. TCA cycle intermediates 
are always at constant levels during the cyanobacte-
rial growth phase giving a constant flux through this 
pathway (Hendry et  al. 2017). Unlike heterotrophic 
hosts, cyanobacteria will not depend on the availabil-
ity of organic carbon sources, so continuous yield is 
possible with minimal nutrients.

3.2.4  Enhancing yield by genetic modulation

For increasing biofuel titer in cyanobacteria, rerout-
ing the carbon flux can play a crucial role in improv-
ing the flow of carbon in the desired pathway (Dex-
ter et  al. 2015; Hendry et  al. 2017). Competitive 
pathways of butanol production in cyanobacteria 
are those involved in the synthesis of storage com-
pounds, glycogen and PHA, acting as important car-
bon sinks. Besides this, enzymes of acetate metabo-
lism can convert acetyl CoA to acetate, and this can 
directly affect the overall carbon flux towards the 
butanol pathway. A study with ΔglgC strain of Syn‑
echocystis sp. PCC 6803, having no ADP-glucose 
pyrophosphorylase (AGPase), showed reduced pho-
tochemical efficiency and NADPH pool, late initia-
tion of Calvin-Benson-Bassham (CBB) cycle, prob-
lems with cyclic and non-cyclic electron transport, 
less PQ pool, and inability to manage excess energy 
(Holland et al. 2016; Cano et al. 2018). The addition 
of a new sink in another strain, JU547, for ethylene 
synthesis showed stable photosynthetic metabo-
lism with an increase in inorganic carbon demand 
indicated by the expression of more bicarbonate 
transporters, sbtA (Holland et al. 2016). Therefore, 
adverse changes in photosynthetic metabolism upon 
deletion of a native carbon sink actually make it dif-
ficult to predict the consequences on the cellular 
phenotype and product synthesis in such genetically 
engineered strains. For isobutanol production from 
Synechococcus elongatus PCC 7942, a glycogen 
mutant strain was developed to enhance the titer. 
Cell growth deficiency was observed in the ΔglgC 
strain as it lacked a major carbon sink. The glyco-
gen mutant stains with the introduced isobutanol 
pathway showed increased isobutanol production Ta

bl
e 

3 
 (c

on
tin

ue
d)

M
ic

ro
or

ga
ni

sm
C

ar
bo

n 
So

ur
ce

Pa
th

w
ay

G
en

es
 o

ve
re

x-
pr

es
se

d/
de

le
te

d
Pr

om
ot

er
s u

se
d

B
io

bu
ta

no
l s

yn
th

e-
si

ze
d

Pr
od

uc
tio

n 
ve

ss
el

Ti
tre

  (g
L−

1 )
Re

fe
re

nc
es

Sy
ne

ch
oc

oc
cu

s s
p.

 
PC

C
 7

94
2

CO
2

C
itr

am
al

at
e 

an
d 

K
et

oa
ci

d 
Pa

th
-

w
ay

ki
vd

, y
qh

D
, 

ci
m

A2
Δ,

 le
uB

, 
le

uC
, l

eu
D

trc
2-

M
et

hy
l-1

-b
u-

ta
no

l
Sc

re
w

ca
p 

fla
sk

s
0.

2
Sh

en
 a

nd
 L

ia
o 

(2
01

2)



499Rev Environ Sci Biotechnol (2022) 21:483–516 

1 3
Vol.: (0123456789)

from 22 to 52% due to the availability of surplus 
energy and carbon, while the new sink prevented 
the growth inhibition as the ΔglgC strain (Li et  al. 
2014).

In cyanobacteria, PHB synthase (PhaE and PhaC) 
catalyzes polyhydroxybutyrate (PHB) synthesis 
as a storage compound. Acetyl-CoA is required in 
both PHB and 1-butanol pathways, so disruption of 
PhaEC can increase the carbon flux towards the con-
structed butanol pathway. For 1-butanol production 
from Synechocystis sp. PCC 6803, PhaEC has to be 
disrupted and used successfully as genomic integra-
tion loci for heterologous gene expression (Liu et al. 
2019). The acetyl-CoA can be converted to acetate, 
and the acetate metabolism requires Pta (phospho-
transacetylase), AckA (acetate kinase), Ach (acetyl-
CoA hydrolase), and Acs (acetyl-coenzymeA 
synthetase). For 1-butanol production from cyano-
bacteria, the strain with deleted ach site proved best 
compared to acs and pta sites, and retaining the 
native AckA-Acs pathway of acetate metabolism led 
to improvement in the titer due to increased acetyl-
CoA from the conversion of acetate and acetyl-P 
(Liu et  al. 2019). Disruption and utilization of the 
genes of acetate metabolism and PHB biosynthetic 
pathway as integration sites proved beneficial for 
strain modification and butanol synthesis.

For improvement of the carbon flow towards the 
synthetic pathway in the case of metabolic engi-
neering, finding of rate-limiting step of the pathway 
is essential. Metabolomics strategy has been used 
widely for the identification of the rate-limiting 
steps. The aforesaid approach showed the reduction 
of butanoyl-CoA to butanal by the enzyme, CoA-
acylating propionaldehyde dehydrogenase (PduP) 
of Salmonella enterica in the 1-butanol synthetic 
pathway of Synechococcus elongatus BUOHSE 
is a rate-limiting step (Noguchi et  al. 2016). In an 
attempt to improve PduP activity in Synechococ‑
cus elongatus, replacement of original RBS with 
modified RBS proved more effective, and the 
enzyme activity increased to 1.4-fold in the new 
strain, DC7, thereby regenerating free CoA pro-
ducing acetyl-CoA at elevated levels. Introduction 
of Acetyl-CoA carboxylase (ACCase) of Yarrowia 
lipolytica in DC7 increased butanol titer by utilizing 
the generated acetyl-CoA (Fathima et al. 2018a, b). 
Following the identification of rate-limiting steps, 
enzyme as well cofactor engineering strategies can 

definitely help increase the biobutanol in genetically 
modified cyanobacteria.

4  Present challenges and solutions 
for fourth‑generation biobutanol production

4.1  Large-scale cell cultivation

The important factors for cyanobacterial growth are 
light, nutrients, and ambient temperature. For com-
mercial-scale microalgal cultivation, open outdoor 
systems are mostly preferred, but this system is not 
suitable for volatile biochemical production. Closed 
systems are therefore required for cyanobacterial 
biobutanol/biofuel production. Low biomass den-
sity is the major problem faced with cyanobacterial 
cultivation, and self-shading is one of the main fac-
tors influencing cell growth as well as productivity 
(Myers et al. 1951; Qiang and Richmond 1994). One 
possible solution to this problem can be the dilution 
of cyanobacterial culture with simultaneous recovery 
of cells and biochemicals from the point of density/
product-based inhibition. In a closed system, mixing 
is another factor that affects both nutrient and light 
availability. However, mixing is dependent on the 
cell type as some filamentous cyanobacteria are more 
prone to shear stress and cell disruption. This problem 
demands the designing of a specific photobioreactor 
depending on the cell morphology and desired prod-
uct. Solubility of nutrients and gases is dependent on 
the temperature, and as microalgal growth requires 
adequate dissolved  CO2 while demands efficient oxy-
gen removal, the maintenance of optimal temperature 
becomes crucial (Borowitzka and Vonshak 2017). 
Photorespiration also causes problems during micro-
algal cultivation under low/high irradiance, elevated 
 O2 levels, and reduced  CO2 levels where the fixed 
carbon is converted to  CO2, leading to low growth 
and productivity (Richmond 2004). Therefore, for 
mass cultivation, proper mixing becomes essential to 
reduce photorespiration and maximizing production.

4.2  Photobioreactor for Cultivation of cyanobacteria

The closed systems used for microalgal/cyanobacte-
rial cultivation, photobioreactors (PBRs), are con-
structed from plates, tubes, or bags of glass or plas-
tic (Javanmardian and Palsson 1991; Pulz 2001; 
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Hsieh and Wu 2009a, b; Xu et al. 2009). This system 
takes care of water loss and contaminants as well as 
can prevent the escape of products such as bioetha-
nol and biobutanol during the production process. 
PBRs of varying sizes, shapes, and types such as 
tubular, bubble column, stirred tank, bag-based, and 
flat-panel PBRs have been constructed for cyano-
bacterial cultivation (Liao et al. 2014; Mahesh et al. 
2019). Considerable research has been done develop-
ment and scaling-up of new PBRs based on the fac-
tors like light availability, culture mixing,  CO2, and 
 O2 mass transfer for economic production. Optimal 
light intensity is the foremost need for cyanobacterial 
cell growth, and for large-scale production, diurnal 
sun light is mostly used, but for providing constant 
light, LED would be required, which will increase the 
cost. Maintenance of optimum culture temperature in 
a PBR is also essential as the rise in culture tempera-
ture will not only affect the growth and productivity 
but may also cause product evaporation (Pembroke 
and Ryan 2020). In a PBR, proper aeration is required 
for mixing and mass transfer for maintaining nutri-
ent availability and preventing sedimentation, clump-
ing, and fouling (Huang et al. 2017). For large-scale 
photosynthetic biofuel production, designing an ideal 
PBR becomes essential for reducing the operational 
cost due to the above-mentioned factors. Although a 
good number of PBRs have been developed for grow-
ing microalgae/cyanobacteria having the intercellu-
lar product. To prevent cell growth inhibition of the 
biobutanol secreting cyanobacterial cells, product 
recovery is also needed once the optimal levels are 
reached. Therefore, there is a requirement for the 
addition of a butanol collection system to the PBR or 
by the use of membrane separation (pervaporation) 
(Wee et al. 2008). Presently only small-scale studies 
in flasks/bottles have been carried out for cyanobac-
terial biobutanol production (Table  3), and a lot of 
research is still required in this area for the construc-
tion of an ideal system for economic cultivation and 
recovery of biobutanol.

4.3  Genetic instability

A major obstacle with metabolic engineering of the 
cyanobacterial strains is related to changes in the het-
erologous genes or their regulation, leading to less 
or no product formation even after successful clon-
ing and transformation. Such changes can be due to 

deleterious mutations, which result in no gene expres-
sion or affects its RNA/protein functionality inside 
the cell. Due to genetic instability, as suggested, pro-
ductivity might be affected where it must be a gen-
eral problem but is not frequently reported as failed 
outcomes are not investigated (Jones 2014). A study 
with Synechococcus elongatus PCC 7942, having a 
gene for ethylene forming enzyme (efe) and capable 
of ethylene formation, appeared unhealthy yellow-
green. The healthy green colonies appeared from the 
original culture, which lost the capability of ethylene 
production and had a truncated efe gene (Takahama 
et al. 2003). In Synechocystis sp. PCC 6803, the efe 
gene-containing plasmid expression system, showed 
no genetic instability (Guerrero et al. 2012). Similar 
examples of genetic instability were observed with 
mannitol and lactic-acid-producing cyanobacterial 
strains. The former showed the inability of complete 
segregation and losing productivity, whereas the latter 
reverted to the growing rate of wild-type strain from 
slow-growing lactic-acid producing strain (Anger-
mayr et  al. 2012; Jacobsen and Frigaard 2014). In 
the isopropanol-producing strain of S. elongatus PCC 
7942, a single mutation reduced atoB functionality 
and enzyme activity, affecting isopropanol produc-
tion (Kusakabe et  al. 2013). The reason for genetic 
instability in cyanobacteria is not yet understood, but 
an expression of the heterologous pathway involved 
in metabolite production might be posing stress caus-
ing the cells to mutate or lose the foreign genes and 
revert to wild-type for having normal metabolism. 
Polyploidy can be a major factor in genetic instability. 
Genetic engineering of cyanobacteria to synthesize 
suitable products is mostly carried out by integrat-
ing the heterologous genes into the chromosome via 
recombination (Dexter and Fu 2009; da Silva et  al. 
2018; Pembroke et  al. 2019). Due to the polyploid 
genome, extensive selection is required to ensure the 
complete segregation of the desired construct to get 
the stable product synthesizing recombinant. Reduc-
tion of chromosome copy number during the later 
stages of growth can also lead to selection of non-bio-
fuel producers and thus making the complete process 
of strain modification futile.

However, in the case of polyploid genomes in 
cyanobacteria, the chromosomal integration of 
expression cassette can provide an additional advan-
tage of a gene dosage effect. More copies of the 
heterologous genes can result in elevated enzyme 
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expression with a suitable promoter and increased 
biofuel synthesis (Pembroke and Ryan 2020). Integra-
tion of two copies of ethanol synthesis cassette in the 
Synechocystis sp. PCC 6803 yielded 5.50  gL−1 (Gao 
et  al. 2012), which is higher than ethanol-producing 
cyanobacterial strain having only a single cassette 
(Woods et al. 2004). Considering bioethanol produc-
tion from cyanobacteria, chromosomal integration 
and high dosage of cassette systems significantly 
increased the productivity. For biobutanol production 
in cyanobacteria, integration of the cassettes is gen-
erally done in the one or more neutral sites present 
in the chromosome (Lan and Liao 2011). Integra-
tion of the cassettes directly into the functional gene 
sites also aided gene disruption for blocking competi-
tive pathways and increasing yield (Liu et al. 2019). 
Although there are no reports of genetic instability for 
cyanobacterial biobutanol production, further inves-
tigation is required in this direction, considering low 
butanol titers compared to heterotrophs despite hav-
ing a complete synthetic pathway.

4.4  Cofactor discrepancy

Cofactor imbalance in the cells can cause low pro-
ductivity as it causes metabolic pressure on the cells. 
The cofactor availability depends on the need for 
host cell metabolism, and overexpression of heter-
ologous genes can cause a shortage of these cofac-
tors. Therefore, cofactor engineering strategies have 
been developed for balancing the cofactor require-
ments for improving the growth and product yield 
of the host organisms (Chen et  al. 2014a, b). ATP, 
FAD, CoA, NADPH/NADP, and various metals are 
essential cofactors of the enzymes of the biologi-
cal pathway, which significantly affect the function-
ing of the enzymes and pathways (Wang et al. 2013; 
Akhtar and Jones 2014). NADPH and NADH are 
the mainly targeted cofactors in cyanobacteria for 
engineering as these photosynthetic microorganisms 
have more NADPH than NADH (Cooley and Ver-
maas 2001; Tamoi et al. 2005). As reducing equiva-
lents, availability and balance of NADPH/NADH 
are needed for the functioning of the dependent het-
erologous enzymes of the synthetic pathway. There-
fore, the genes of NADH-dependent enzymes from 
heterotrophic organisms show reduced activities in 
cyanobacteria, thereby affecting the yield. For biobu-
tanol production, the approach taken for solving the 

issue of NADPH/NADH imbalance is the utilization 
of NADPH-dependent enzymes in the synthetic path-
way (Atsumi et  al. 2009; Lan and Liao 2012). Two 
other approaches such as increasing NADH inside 
the cell and enzyme modification for changing the 
co-factor preferences from NADH to NADPH, can 
also be considered for biobutanol production. For 
D-lactate and L-lactate production from cyanobac-
teria, the co-expression of soluble transhydrogenase 
(sth) from Pseudomonas aeruginosa for NADH pro-
duction along with the NADH-dependent pathway 
enzymes improved product yield (Angermayr et  al. 
2012; Varman et  al. 2013a, b). Enzyme modifica-
tion in the case of lactate production by site-directed 
mutations led to a change of cofactor preferences 
from NADH to NADPH (Richter et al. 2011; Li et al. 
2015). The mutated codon-optimized lactate dehydro-
genase overexpression in cyanobacteria showed better 
NADPH utilization and increased lactate production 
(Angermayr et al. 2014; Li et al. 2015). Although for 
cyanobacterial butanol production, NADH-depended 
enzymes were replaced by NADPH-dependent ones 
due to the availability of the copious NADPH pool. 
But approaches of co-expression of transhydroge-
nases and enzyme engineering can also be explored 
to overcome the co-factor imbalance and increase 
butanol titer in cyanobacteria.

4.5  Butanol toxicity

Butanol is toxic to both native and non-native butanol 
producers, which becomes a limiting factor during 
the production process. The tolerance limit of non-
native hosts is even lower than the native producers, 
such as Clostridium (Jin et al. 2014), and the devel-
opment of a solvent tolerant strain is a challenging 
task (Behera et  al. 2018). In the native butanol pro-
ducer, Clostridium acetobutylicum, overexpression 
of the spo0A gene increased the tolerance to butanol 
(Alsaker et al. 2004). Expression of a global regula-
tor, IrrE, with a random mutation in E. coli increased 
biofuel tolerance. In E. coli, an increased growth rate 
in the presence of 1.2% butanol was obtained with 
random mutagenesis of transcription factor cyclic 
AMP receptor protein (CRP) (Zhang et  al. 2012). 
The low titer in cyanobacterial biobutanol production 
may be due to several factors related to gene expres-
sion, functioning and stability of pathway enzymes, 
and product recovery. However, butanol toxicity is a 
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crucial barrier to overcome for increasing the butanol 
titer (Jin et  al. 2014) (Nicolaou et  al. 2010). Com-
pared to other microbial strains used for biobutanol 
production, the level of tolerance observed in Syne‑
chocystis sp. PCC 6803 is 10 times lower (Nicolaou 
et al. 2010). Solvents are known to adverse effects on 
the microbial cell membrane and also alter membrane 
fluidity (Huffer et al. 2011), causing cellular metabo-
lite loss and reactive oxygen species (ROS) genera-
tion during respiration to compensate for ATP loss 
(Trinh et al. 2010). In cyanobacteria, besides impair-
ing membrane and the related processes, the electron 
transport chain of photosynthesis is also affected 
(Horváth et al. 2012). For understanding the mecha-
nism of butanol stress on cyanobacteria, studies con-
ducted at transcriptomic, proteomic, and metabolomic 
levels revealed that in Synechocystis, a combination 
of numerous cellular metabolic changes occur for 
preventing solvent toxicity (Anfelt et  al. 2013; Tian 
et al. 2013; Zhu et al. 2013). Identification of butanol-
responsive targets through transcriptomics followed 
by genetic engineering and overexpression of heat-
shock protein and ROS-scavenging enzymes has been 
carried out for increasing the tolerance in cyanobacte-
ria, Synechocystis sp. PCC 6803 (Anfelt et al. 2013). 
Another strategy for improving butanol tolerance tar-
geted the overexpression and deletion of several regu-
latory genes in Synechocystis. Butanol tolerance was 
improved in the strains having overexpressed RNA 
polymerase sigma factor SigB compared to the wild-
type strains. A reduction in ROS accumulation with 
the increase in temperature and butanol tolerance also 
improved cyanobacterial cell viability and growth in 
the presence of butanol (Kaczmarzyk et  al. 2014). 
Another regulatory protein, Slr1037 of Synechocystis 
found to be related to the butanol tolerance mecha-
nism. This slr1037 gene was found to be associated 
with multiple cellular functions, while in cyanobac-
teria, such regulatory protein can serve as crucial 
targets for solvent tolerance and titer improvement 
(Chen et  al. 2014a, b). In Synechocystis, an attempt 
made for increasing butanol tolerance through experi-
mental evolution under butanol selection pressure was 
successful. In the process of 395 days (94 passages), 
the tolerance to butanol increased to 150% compared 
to wild-type (Wang et al. 2014). Therefore, develop-
ing solvent tolerant high butanol yielding cyanobacte-
rial strains demands more research as solvent stress 
brings about various critical cellular changes.

4.6  Product recovery

Distillation is mainly preferred in the industrial-
scale recovery process due to its ease of scale-up, 
high efficiency, and high concentration factors. How-
ever, a low concentration of butanol during produc-
tion and its high boiling point, along with the pres-
ence of other products of fermentation, make the 
recovery process an energy-intensive one (Hartma-
nis and Gatenbeck 1984; Kim et  al. 1984; Seedorf 
et al. 2008). Compared to heterotrophs, butanol titers 
from cyanobacteria are very low to date, and fur-
ther butanol concentrations of 0.75  gL−1 and above 
have also shown cell inhibition (Anfelt et  al. 2013; 
Lan et  al. 2013). Although efforts have been made 
to increase the butanol tolerance and discussed in 
previous section, product recovery at concentrations 
below the toxicity level can also be an alternative. 
The butanol recovery from cyanobacterial cultiva-
tion becomes an energy-requiring process mainly 
due to the low butanol titer in the medium, making 
recovery costlier than the production process (Wag-
ner et al. 2019). Many relatively economical and fea-
sible separation techniques have been developed over 
time for in‑situ butanol removal, namely, gas strip-
ping, vacuum stripping, pervaporation, liquid–liquid 
extraction, perstraction, and adsorption (Huang et al. 
2015; Outram et  al. 2017; Xue et  al. 2017). In‑situ 
product recovery can eliminate toxicity and aid pro-
ductivity, glucose conversion, and product concentra-
tion (Sharif Rohani et al. 2015; Sarchami et al. 2016). 
Most of the comparison studies for product recovery 
techniques are done for heterotrophic ABE fermen-
tation. But cyanobacterial biobutanol production is 
different from ABE fermentation as only butanol is 
produced by genetically engineered cyanobacteria 
instead of the solvent mixture as in ABE fermenta-
tion. The two major problems with cyanobacterial 
butanol production are the low yield along with high 
toxicity even at considerably lower concentrations. 
As a solution to these problems, continuous butanol 
separation is required during the cultivation process 
to prevent the accumulation of butanol in the cul-
ture broth. However, the high energy requirement for 
continuous butanol separation can easily exceed the 
energy content of the synthesized fuel and making the 
production process industrially unfeasible. A recent 
study where butanol recovery was modelled consid-
ering cyanobacterial biobutanol production using 
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technologies such as gas-stripping, distillation, per-
vaporation and ionic liquid extraction calculated the 
culture butanol concentration for making the process 
economical. Ionic liquid extraction method was found 
to be the most effective at 3.7  gL−1 butanol which 
was followed by distillation (9.3  gL−1) (Wagner et al. 
2019). More research is therefore needed in this area 
for selecting the most efficient recovery technique and 
utilization of a combined cultivation and recovery 
technology for economic butanol production.

5  The future of cyanobacteria‑based butanol 
production

Butanol is considered one of the finest biofuels hav-
ing extraordinary properties similar to gasoline. With 
the increasing demand for butanol in industries as a 
chemical substituent, more research is being carried 
out for economic biobutanol production from renew-
able and sustainable biomass. Some companies have 
developed butanol fermentation processes at a com-
mercial scale (Mariano et  al. 2009). The major hur-
dle for commercial biobutanol production is the low 
productivity due to solvent toxicity, thereby requir-
ing distillation for recovery from dilute streams mak-
ing the process uneconomical compared to synthesis 
through petrochemical routes. The cost of feedstock 
and its price fluctuation in the case of first-genera-
tion butanol production also affects the product cost 
(Green 2011). The utilization of lignocellulosic bio-
mass as feedstock will be cheaper, but the inhibitor 
removal process also adds to the cost (Qureshi et al. 
2007; Taylor 2008). However, in the case of third/
fourth generation biofuel production, the abundantly 
available solar energy and greenhouse gas,  CO2 can 
be directly converted to biofuel, which seems to be 
economical but is still in its infancy. The present stud-
ies on biobutanol production from cyanobacteria/
microalgae have shown that titers are even lower than 
the heterotrophic butanol producers. Although the 
production cost will be lowered due to the require-
ment of cheap raw material for growth, the major 
obstacle with biobutanol synthesis using photoauto-
trophic microorganisms is related to their slow growth 
rate, low biomass and product yield, and higher prod-
uct toxicity. Recent development in synthetic biol-
ogy tools has helped in the domestication of potential 
cyanobacterial strains as well as development of the 

model strains for improved butanol synthesis. The 
problem of poor product yield has to be solved by 
the utilization of fast-growing, high biomass yielding 
strains which are to be followed by the optimization 
of process parameters for economic photosynthetic 
butanol production (Fig.  3). Further, cyanobacterial 
cultivation coupled with wastewater treatment will 
reduce the production cost together with the removal 
of organic/inorganic pollutants from water. Recently, 
studies have been carried out to utilize industrial 
flue gas for economically feasible cyanobacteria-
based chemical synthesis (Choi et  al. 2020; Chou 
et  al. 2021). Photosynthetic butanol production by 
sequestration of  CO2 from flue gas can also help to 
reduce production costs. Conversion of cyanobacte-
rial biomass into useful products such as propylene 
and bio-oil through hydrothermal liquefaction (HTL) 
as byproduct or ethanol/butanol through fermentation 
using heterotrophs followed by enzymatic/acid pre-
treatment has also been done (Efremenko et al. 2012; 
Möllers et al. 2014; Wagner et al. 2016) after getting 
extracellular butanol. Utilization of co-culture in the 
production process can provide a scope for direct 
conversion of renewable sources into biobutanol. In 
a recent study with a synthetic photoautotrophic co-
culture system showed that a mutant acetate secret-
ing Synechococcus sp. PCC 7002 could support the 
growth and lipid accumulation in Chlamydomonas 
reinhardtii (Therien et al. 2014). Although research-
ers developed different butanol-producing cyanobac-
terial strains, but the yield is still very low compared 
to heterotrophs. Researchers can target cyanobacterial 
metabolic pathways for secretion of carbon sources 
into the cultivation media. Genetically modified 
cyanobacteria capable of secreting carbon sources 
autotrophically in large amounts can be co-cultured 
with high yielding heterotrophic butanol producers 
for an economic production process. On the contrary, 
co-cultivation of photoautotrophs and heterotrophs 
for large-scale butanol production will demand ade-
quate sophisticated control algorithm and process 
optimization. However, this technology of mixed 
culture-based biofuel synthesis is still in its infancy, 
and more research is required for use in large-scale 
butanol production. From the present studies, it is 
clear that the production of biobutanol from cyano-
bacteria is not feasible at an industrial scale based on 
current available knowledge, but improvement in pro-
cess parameters with the aforementioned strategies 
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and integration with biorefinery can definitely help to 
make the whole process economical.

6  Conclusion

Biobutanol production using cyanobacterial cells is 
an advanced approach toward sustainability. In this 
article, various aspects of photosynthetic butanol syn-
thesis from cyanobacteria have been reviewed.

The summary of the key findings of the review are:

• Butanol has applications in chemical manufactur-
ing industries and can be used directly as fuel, but 

for this, large-scale and cost-effective butanol pro-
duction is of the utmost need

• Cyanobacteria can serve as an alternative attrac-
tive non-native host for biofuel production

• Advances in synthetic biology of cyanobacteria 
with the development of toolkits and genetic mod-
ification approaches will provide new and more 
straightforward strategies for strain improvement

• Fourth-generation biobutanol production is a 
one-stage process which is advantageous over the 
third-generation two-stage production process

• Improvement of product yield demands further 
genetic modulations together with the incorpora-
tion of butanol biosynthetic pathway

Fig. 3  Schematic diagram representing butanol production 
process from cyanobacteria. The steps required for large-scale 
production of butanol are strain development/improvement, 
cultivation in closed systems (PBRs) with simultaneous recov-

ery of butanol. Here, ‘OR’ signifies the choice of any of the 
routes for the butanol recovery during the downstream process-
ing
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• As mentioned previously, additional factors such 
as product toxicity, PBR design, etc., influence 
the product synthesis from genetically modified 
strains and should be dealt with to maximize the 
biobutanol yield.

There are still many technical and biologi-
cal challenges to be overcome before scaling up 
cyanobacterial biobutanol production. The amount 
of butanol obtained from genetically engineered 
cyanobacteria under photoautotrophic conditions is, 
however, very low compared to the traditional ABE 
fermentation process. Further research and develop-
ments in the tools and methodologies of synthetic 
biology in cyanobacteria can help the utilization of 
thermophilic, fast-growing strains and butanol tol-
erant cyanobacteria for constructing more robust 
strains needed for industrial-scale butanol produc-
tion. Genome scale metabolic model can be used 
as tool for assisting cyanobacterial engineering by 
identifying the rate-limiting steps of the biosyn-
thetic pathway responsible for the low yield. This 
knowledge can help for improving butanol yield by 
enzyme overexpression or protein and cofactor engi-
neering. Minimization of the loss of photosyntheti-
cally fixed carbon can also help increase the yield. 
The native pathway genes which are involved in car-
bon loss can be suppressed or deleted for increasing 
the flow of carbon in biosynthetic pathway. In  situ 
product recovery coupled with autotrophic produc-
tion process can also improve the yield by reducing 
the product toxicity. Besides these, more research 
for optimization of process parameters and devel-
opment of mass cultivations systems and recovery 
strategies is still required for industrial-scale cyano-
bacterial biobutanol production.
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