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Abstract One-third of food produced for human

consumption is lost as waste along the food supply

chain. The food industry wastes contain carbohy-

drates, proteins, lipids, and lignocellulosic substances

such as cellulose, hemicellulose, and lignin. These

wastes are produced in large quantities worldwide and

cause serious environmental problems. Due to the high

concentration in organic and nutrient substances, food

industry wastes are used for bioethanol production by

microorganisms through various fermentation sys-

tems. The conversion of a lignocellulosic substance

into bioethanol includes three steps: pretreatment,

enzymatic hydrolysis, and fermentation. The problems

concerning bioethanol production from food industry

wastes are related to handling of biomass and appli-

cation of pretreatment methods in order to improve the

conversion of lignocellulosic materials into

fermentable sugars. This review provides detailed

overview and current knowledge on the pretreatment

methods of lignocellulosic substances such as chem-

ical (acid or alkaline, organic solvent), physical

(milling, pyrolysis, microwave oven irradiation),

physicochemical (steam explosion, hydrothermal pro-

cesses, ammonia fiber explosion, CO2 explosion), and

biological (fungi, bacteria). Pretreatment is followed

by enzymatic hydrolysis with a mixture of suitable en-

zymes (mainly cellulase, b-glucosidase, pectinase) at
50 �C for 48 or 72 h. The production of bioethanol

from food industry wastes is enhanced by enzymatic

hydrolysis of the total polysaccharides into metabo-

lizable sugars. The conversion of wastes from the food

industry to the second generation ethanol is discussed

in details.
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1 Introduction

Petroleum and natural gas are the most important and

primary energy sources. However, petroleum causes

the emissions of greenhouse gases (GHG) such as

CO2, CO, CH4, and NOx (Bayrakci Ozdingis and

Kocar 2018). The main global environmental problem

is how to reduce the emission of GHG for mitigation of

climate change and sustainable growth of economy.

This can be achieved by promoting new renewable

sources of energy such as geothermal energy, wind

energy, solar energy, and biomass based energy

(bioethanol, biodiesel, bio-hydrogen) (Singh et al.

2016; Panahi et al. 2020).

In the next years, the increased liquid fuels

consumption will lead to the decline of the world

fossil fuels reserves. Thus, the development of alter-

native energy sources is intensively investigated

(Roukas and Kotzekidou 2020a; Melikoglu and

Turkmen 2019). Bioethanol is the predominant alter-

native from all available biofuels and constitutes

around 74% of all produced biofuels (e Silva et al.

2018). It is an environmentally friendly fuel and

contributes to improved air quality, lower GHG

emissions and promotes domestic rural economies

(Barampouti et al. 2019; Guerrero et al. 2018; Chohan

et al. 2020; Parascanu et al. 2021). It has properties

similar to gasoline or diesel and could lead to a

reduction (70–90%) of GHG emissions. Due to high

octane number, bioethanol is a favourable fuel for

internal combustion engine to prevent engine knock-

ing and early ignition. The high oxygen content of

bioethanol makes the combustion cleaner and results

lower emission of toxic substances (Aditiya et al.

2016; Reis et al. 2017; Najafi et al. 2021). Bioethanol

can be used in mixtures up to 10% in gasoline without

modification of the engines or in higher proportion

such as up to 85% in the flexi-fuel vehicles and 100%

in special designed engines (Morales et al. 2015).

Taking into account the above advantages of

bioethanol, some countries integrated bioethanol into

the national fuel system, namely in low blends with

gasoline (Guerrero and Munoz 2018). The Interna-

tional Energy Agency recognizes that the promotion

of renewable energy will provide an environmentally

sustainable future (e Silva et al. 2018). Therefore, the

bioethanol production by fermentation has received

attention in the last years as it could become a popular

alternative for automotive fuel throughout the world

(Fang et al. 2019). In 2017, renewable energy supplied

about 18.2% of the worldwide energy demand, which

has been considered as the largest ever growth of this

sector (Solarte-Toro et al. 2019). The production of

bioethanol has increased from 13.1 billion gallons in

2007 to 25.7 billion gallons in 2015 (Rastogi and

Shrivastava 2017). The world ethanol production

should increase about to 158 billion Liter by 2023

(Toor et al. 2020).

Bioethanol is produced mainly from agricultural

crops such as corn, sugarcane, and sugar-beet which

require large cultivation areas (Roukas and Kotzeki-

dou 2020a). According to the Renewable Fuels

Association, worldwide bioethanol production is

dominated by the U.S. and Brazil which produce
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85% of the world’s bioethanol using corn and sugar-

cane feedstock, respectively. Europe is the third main

bioethanol producer using the sugar beet as feedstock

(Paixao et al. 2018). The above crops are also used for

human food supply. Thus, the production of bioetha-

nol using these crops could increase the food prices.

Therefore, cheap substrates could be utilized as

alternative to feedstock (Han et al. 2019; Demiray

et al. 2019; Sangkharak et al. 2020).

The potential of bioethanol production from bio-

logical conversion of waste is huge (Barampouti et al.

2019). Increased agricultural wastes are produced

annually by food processing industries causing serious

environmental problems (Nikolaou and Kourkoutas

2018). The conversion of food industry wastes to

bioethanol requires a multistep process. The main

approaches applied include: (a) separate hydrolysis

and fermentation (SHF); (b) separate hydrolysis and

co-fermentation (SHCF); (c) simultaneous saccharifi-

cation and fermentation (SSF); (d) simultaneous sac-

charification and co-fermentation (SSCF); (e) pre-

saccharification followed by simultaneous saccharifi-

cation and fermentation (PSSF) and (f) consolidated

bioprocessing (CBP) (Carrillo-Nieves et al. 2019; Tye

et al. 2016). The SSF method is more suitable for

bioethanol production compared to the conventional

SHF process (Chohan et al. 2020).

The fermentation is performed usually by yeasts

and some strains of bacteria. Saccharomyces cere-

visiae is the predominant microorganism used for

industrial production of bioethanol. It has some

advantages such as high fermentative capacity and

ethanol tolerance, low demand on nutrients, and less

amounts of byproducts (Roukas and Kotzekidou

2020a). However, this microorganism can only fer-

ment hexose sugars. Various strains of yeasts and

bacteria have the ability to ferment pentose sugars

(Van Dyk et al. 2013). Among bacteria species,

Zymomonas mobilis is used mainly for the production

of bioethanol; different strains ferment the sugars

glucose, fructose, and sucrose while genetically engi-

neered strains ferment arabinose and xylose (Van Dyk

et al. 2013; Akbas and Stark 2016). In addition, Z.

mobilis gives higher ethanol yield and the productivity

is about 2.5 times faster than S. cerevisiae (Mishra and

Ghosh 2019). After the fermentation, the bioethanol is

separated from the fermentation broth by distillation

or by using more efficient separation technologies

such as membrane filtration or molecular sieves

(Mojovic et al. 2012). This review will focus on an

important issue of food industry, which is the use of

the wastes for the production of second generation

ethanol.

2 Food industry wastes used for the production

of bioethanol

Over recent years, the idea of the converting food

processing wastes into high-valued compounds such

as bioethanol has increased (Hijosa-Valsero et al.

2019). Food industry wastes are produced in large

quantities worldwide and contain soluble sugars,

polysaccharides, proteins, lipids, and lignocellulosic

compounds such as cellulose, hemicellulose, and

lignin (Akbas and Stark 2016; Van Dyk et al. 2013;

Hijosa-Valsero et al. 2019). The food industry wastes,

which are used for the production of bioethanol are

presented in Fig. 1.

Conventional microorganisms are not able to

convert the lignocellulosic substances into simple

sugars and a pretreatment is necessary to remove the

sugars from lignocellulosic materials. In these pre-

treatments are applied chemical, physical, physico-

chemical, and biological treatments to modify the

structure of lignocellulosic feedstocks (Panahi et al.

2020; Hijosa-Valsero et al. 2019; Stamenkovic et al.

2020; Niphadkar et al. 2018; Di Donato et al. 2019).

The chemical pretreatments include acid or alkali at

high temperatures, organic solvent, and enzymatic

hydrolysis (Panahi et al. 2020; Hijosa-Valsero et al.

2019; Stamenkovic et al. 2020; Niphadkar et al. 2018;

Di Donato et al. 2019; Gil and Maupoey 2018;

Demiray et al. 2018; Farias and Filho 2019; Brar et al.

2019; Zhou et al. 2019; Pinheiro et al. 2019). In acid

process, the lignocellulosic substances are commonly

treated with HCl, H2SO4, HNO3, H3PO4, or peracetic

acid at 130–210 �C for different times. The alkaline

pretreatment causes the degradation of lignin (Panahi

et al. 2020).

The physical pretreatments involve mechanical

sized reduction (milling, grinding, chipping), pyroly-

sis, and microwave oven irradiation (Panahi et al.

2020; Hijosa-Valsero et al. 2019; Gil and Maupoey

2018). Pyrolysis is carried out at high temperatures

([ 300 �C). In this stage, cellulose is degraded mainly

into glucose, which is used for the production of

bioethanol by microorganisms (Panahi et al. 2020).
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The physicochemical pretreatment includes steam

explosion or autohydrolysis, hydrothermal processes,

ammonia fiber explosion (AFEX), and CO2 explosion

(Panahi et al. 2020; Hijosa-Valsero et al. 2019). Steam

explosion or autohydrolysis is carried out at high

temperature (160–290 �C) and high pressure steam

(2–5 MPa) for a few minutes. The scope of this

method is the recovery of xylose up to 65%. In

hydrothermal process, the lignocellulosic wastes are

treated at 170–230 �C and 5 MPa for 20 min. Using

this method, sugar oligomers are released from the

lignocellulosic materials of the agricultural wastes.

AFEX method uses liquid NH3 and steam explosion at

pressure[ 1.21 MPa for 5–30 min (Panahi et al.

2020). Biological pretreatments used mainly fungi,

bacteria or mixture of them for delignification of food

industry wastes through the action of enzymes which

are produced by microorganisms.

The food industry waste valorization for bioethanol

production has some advantages and disadvantages

concerning the pretreatment method, the chemical

compounds addition, and the application of fermen-

tation system. The chemical treatment is used for the

conversion of hemicellulose into soluble sugars and

increase the degree of hydrolysis of cellulose to

glucose during the enzymatic hydrolysis. The disad-

vantage of the above pretreatment is the formation of

some substances (usually 5-hydroxymethylfurfural)

which inhibit the growth of the microorganism applied

for the production of bioethanol. Therefore, some

detoxification methods such as extraction, evapora-

tion, adsorption, and neutralization are used to remove

the inhibitors before fermentation (Hijosa-Valsero

et al. 2019).

The mechanical pretreatment reduces the crys-

tallinity of cellulose of the solid wastes improving the

further processing such as enzymatic hydrolysis. The

microwave irradiation increases significantly the

internal heat within the inhomogeneous material. It

enhances the disruption of structure of the lignocel-

lulosic waste improving the hydrolysis of cellulose to

simple sugars (Panahi et al. 2020). This method

appears some advantages such as it is simple and does

not use high temperatures, high pressures, and chem-

ical additives. On the other hand, it appears slow

hydrolysis rate, low yield, and high cost. The above

disadvantages limit its commercial application

(Panahi et al. 2020). The advantages of the physico-

chemical pretreatment are the lignin transformation,

the hemicellulose solubilization, and the low forma-

tion of inhibitors; but, the method has some disadvan-

tages such as high energy consumption, generation of

toxic compounds, very high pressure requirements,

and is still not used at commercial scale. Whereas,

Corn 
industry

Rice 
industry

Starch 
industry

Bioethanol
production

Wheat 
industry

Vegetable 
industry

Coffee 
industry

Oil 
industry

Fruit 
industry
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industry

Brewery 
industry

Milk 
industry

Fig. 1 Food industry wastes used for the production of second generation ethanol
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applying the biological pretreatment the lignin and

hemicellulose degradation is achieved by low energy

consumption, low capital cost, and no need of

chemicals addition, but a low rate of substrate

hydrolysis is achieved (Carrillo-Nieves et al. 2019).

Overall, the pretreatment method of food wastes for

bioethanol production is still costly (making up more

than 40% of the production cost). Therefore, an

efficient conversion of total available sugars in

lignocellulosic raw material is required to improve

the economic feasibility of biomass to bioethanol

process (Panahi et al. 2020). The chemical compounds

which are used during the pretreatment of food wastes

improve the following step of enzymatic hydrolysis;

but, they increase the cost of the final product. The

fermentation system applied for bioethanol production

from food processing waste depends on the type of the

substrate. In case of a liquid substrate, the extraction of

the sugars is expensive. On the other hand, solid

substrate can be directly used by solid-state fermen-

tation without the previous extraction of sugars from

the substrate. Thus, low consumption of energy is

needed.

For the valorization of each food waste, the key

factors should be paid attention are the pretreatment

method, the microorganisms and the fermentation

system. The pretreatment of the substrate should be

easy in application, inexpensive, and a large amount of

lignocellulosic material are converted to simple sug-

ars. The microorganisms should have the ability to

produce high bioethanol concentration. In order to

achieve high bioethanol yield the fermentation condi-

tions such as initial sugar concentration, pH, temper-

ature, and agitation speed should be optimized. The

most important stages, which are used for the produc-

tion of bioethanol from food industry wastes are

presented in Fig. 2. The food processing wastes can be

utilized as animal feed, soil fertilizer, and the produc-

tion of pectin, dietary fibers, phenolic compounds,

lycopene, grape seed oil, vanillin, enzymes, and

xylitol (Van Dyk et al. 2013). In this section, we will

describe in details the food industry wastes, which can

be used for the production of bioethanol by

microorganisms.

2.1 Sugar industry wastes

2.1.1 Molasses

Cane and beet molasses are by-products of the sugar

industry and they are used for animal feed, baker’s

yeast production, and pharmaceuticals (Amid et al.

2021; Akbas and Stark 2016). Molasses is a low cost

substrate and it can be used for fermentation without

any treatment because the microorganisms convert

directly the sugar content (sucrose, glucose, fructose)

into bioethanol (Roukas and Kotzekidou 2020a;

Hijosa-Valsero et al 2019; Jayus et al. 2016; Khati-

wada et al. 2016; Rathnayake et al. 2018).

Jayus et al. (2016) and Muruaga et al. (2016) used

as substrates sugar cane molasses and sugar cane

molasses supplemented with 10% cane juice for

bioethanol production and found a maximum bioetha-

nol concentration of 121.0 and 120.0 g/L using the

commercial baker’s yeast and S. cerevisiae A2 strain

isolated from sugar cane molasses, respectively. In

another work, blackstrap molasses was used for

bioethanol production by immobilized cells of S.

cerevisiae on thin-shell silk cocoons and a high

bioethanol concentration of 98.6 g/L was obtained

(Rattanapan et al. 2011). In this study, the immobi-

lized yeast cells retained the ability to produce

bioethanol for 10 days. The above authors studied

the production of bioethanol in continuous culture in a

packed-bed reactor at a dilution rate of 0.36 h-1 and

found a maximum ethanol concentration of 52.8 g/L

and an ethanol productivity of 19.0 g/L/h.

Tang et al. (2010) reported the utilization of non-

sterilized molasses for bioethanol production by a

flocculating yeast strain KF-7 in continuous culture.

They found that the system produced bioethanol for

more than 30 days with a bioethanol concentration of

80.0 g/L and a high ethanol productivity of 6.6 g/L/h.

Sowatad and Todhanakasem (2020) used sterilized

molasses for bioethanol production and found that S.

cerevisiae cells immobilized on sugarcane bagasse

produced 97.0 g/L bioethanol for 10 days. Roukas and

Kotzekidou (2020a) developed a rotary biofilm reactor

(RBR) for long-term bioethanol production from non-

sterilized beet molasses by S. cerevisiae in repeated-

batch fermentation. In this study, the RBR was

operated continuously for 60 days with a

stable bioethanol concentration of 52.3 g/L.
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2.1.2 Sugarcane bagasse

Sugarcane bagasse is the main waste of the sugar

industry, which is obtained from sugarcane after juice

extraction at a ratio of 240–275 kg of bagasse with

50% humidity per ton of sugarcane (Eblaghi et al.

2016; Saha et al. 2019; da Siva Martins et al. 2021).

The annual production of sugarcane waste is about 279

million tons (Jugwanth et al. 2020). It is consisted of

cellulose (40–45%), hemicellulose (30–35%), lignin

Food industry wastes

Pretreatment

pH Culture inoculation

• Steam explosion
• Hydrothermal processes
• Ammonia fiber explosion 

(AFAX)
• CO2 explosion

PhysicochemicalChemical

Enzymatic hydrolysis

Bioethanol

Distillation

• Fungi
• Bacteria

Physical Biological

• Milling, grinding, chilling
• Pyrolysis
• Microwave irradiation

• Acid or alkaline
• Organic solvent

• Co-culturing of microorganisms
• Mixture of enzymes & microorganisms

Hydrolysate

Sterilized Non-sterilized

Fermentation by
• Batch culture
• Repeated-batch culture
• Fed-batch culture
• Continuous culture

Fig. 2 Pretreatment methods and enzymatic hydrolysis of food industry wastes used for bioethanol production
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(20–30%), protein (3%), silica (2%), ash (1.9–2.4%),

and other elements (1.7%) (Bhattacharyya et al. 2012;

Sarkar et al. 2012).

The main stages involved in sugarcane bagasse

bioethanol production are: bagasse pretreatment,

hydrolysis of pretreated lignocellulose biomass to

monosaccharides, and fermentation of these sugars to

bioethanol (Saha et al. 2019). There are several

methods used for the pretreatment of sugarcane

bagasse. These include microwave-alkali, organic

and inorganic acids, ionic liquids, steam explosion

with alkaline delignification, organosolv process with

dilute acid, sono-assisted acidic pretreatments, ultra-

sound-assisted treatment in cellulase aqueous-N-

methylmorpholine N-oxide, imidazole, and a highly

oxidative solution hypochlorite-hydrogen peroxide

(Ox-B) (Eblaghi et al. 2016; Saha et al. 2019;

Jugwanth et al. 2020; Santosh et al. 2017; Val-

ladares-Diestra et al. 2021; da Siva Martins et al.

2021). The hydrolysis is carried out enzymatically or

with the effect of acids at high temperature conditions.

The fermentation of the cellulose and hemicellulose

hydrolysates is carried out by specific microorganisms

in order to produce bioethanol.

Xie et al. (2014) used sugarcane bagasse for

bioethanol production. The substrate was treated with

mild alkali followed by enzymatic hydrolysis and

fermentation. In this case, a high bioethanol concen-

tration (39.8 g/L) was obtained after 96 h of incuba-

tion. Another substrate used for bioethanol production

was sugarcane bagasse hydrolysate blended with

molasses (Gutierrez-Rivera et al. 2015). The substrate

was inoculated with S. cerevisiae ITV-01 and Schef-

fersomyces stipitis NRRL Y-7124. The highest

bioethanol concentration was 53.8 g/L. In another

interesting work, sugarcane bagasse pretreated with

microwave alkali followed by enzymatic hydrolysis

with cellulase, endoglucanase, b-glucosidase, and

xylanase (Singh et al. 2013). The maximum bioetha-

nol concentration was 15.4, 11.8, and 9.4 g/L when S.

cerevisiae cells immobilized on sugarcane bagasse,

Ca-alginate, and agar beads, respectively.

Silva et al. (2016) evaluated the use of cell recycle

of S. cerevisiae to produce bioethanol from sugarcane

bagasse hydrolysate in repeated-batch fermentation.

The feedstock was treated with diluted phosphoric

acid followed by alkaline delignification and enzy-

matic hydrolysis. The free cells of the yeast retained

their activity to produce bioethanol (50.0 g/L) for 5

recycles. Saha et al. (2019) used sugarcane bagasse

hydrolysate for bioethanol production by S. cerevisiae

in continuous culture using a membrane integrated

hybrid reactor. A maximum bioethanol concentration

(43.2 g/L) was obtained after 19 h. Lin et al. (2013)

developed a rotary drum reactor to produce bioethanol

from sugarcane bagasse by a thermotolerant strain of

Kluyveromyces marxianus and commercial cellulase

using SSF process. They found a maximum bioethanol

concentration of 24.6 g/L with a theoretical ethanol

yield of 79%.

Hama et al. (2018) developed a technology of

recycling S. cerevisiae cells to produce bioethanol

from sugarcane bagasse supplemented with molasses.

The results showed that a maximum bioethanol

concentration of 63.5–67.7 g/L was obtained in six

repeated-batch fermentations. Valladares-Diestra

et al. (2021) produced bioethanol from sugarcane

bagasse after pretreatment with imidazole at 160 �C
for 1 h followed by enzymatic hydrolysis with cellu-

lase and xylanase. The results showed a maximum

bioethanol production of 218 L/ton of sugarcane

bagasse. Recently, da Siva Martins et al. (2021) used

sugarcane bagasse for bioethanol production after

pretreatment with Ox-B and enzymatic hydrolysis

with cellulase and b-glucosidase. They found a high

bioethanol yield of 70%. A schematic presentation of

bioethanol production from sugar industry wastes is

shown in Fig. 3.

2.2 Wheat industry wastes

2.2.1 Wheat bran wastes

Wheat bran is an abundant and low-cost material for

the production of bioethanol due to its low pretreat-

ment cost. It is consisted of (% of the dry matter) starch

11.0, cellulose 10.7, hemicellulose 39.0, lignin 5.0,

protein 18.0, and ash 0.05 (Cripwell et al. 2015). The

production of bioethanol from wheat bran waste has

been studied by Cripwell et al. (2015). They used two

recombinant S. cerevisiae strains or a recombinant

cellulase cocktail (RCC) with the above strains in a

SSF process at 30 �C for 60 h. The results showed that

the strains of the yeast produced similar amounts of

bioethanol (5.3–5.0 g/L). When the fermentation was

carried out in SSF process using the recombinant

yeasts with the RCC the bioethanol concentration

increased to 7.0 g/L. Generally, the study

123

Rev Environ Sci Biotechnol (2022) 21:299–329 305



demonstrates that the recombinant yeast strains can

efficiently convert the starch of the wheat bran to

bioethanol while the addition of RCC into the medium

improved the production of bioethanol.

Sugar industry wastes

Cane and beet  molasses Sugarcane bagasse

Solution
●  Sugar conc. 15% w/v
●  pH 5.0, 30 oC

Pretreatment
• Organic and inorganic acids
• Microwave – alkali
• Ionic liquids
• Steam explosion with alkaline 

delignification
• Imizadol at 160 oC for 1 h
• Ox-B

Hydrolysis
• Acid at high temperature
• Enzymatic with

Cellulase
Xylanase
Endoglucanase
β-Glucosidase

Inoculation by yeasts

Fermentation

Bioethanol

Fig. 3 Schematic presentation for bioethanol production from food industry wastes using different pretreatment methods and acid or

enzymatic hydrolysis
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2.2.2 Bakery waste

Wheat bread is the common food in many countries.

When it is not used for the primary purpose, it is

discharged from the bakery store as waste which

causes a serious environmental problem (Han et al.

2019; Mihajlovski et al. 2020). Bread waste contains

50–60% carbohydrate which is the major component

of the waste. It can be hydrolyzed into simple sugars

which can be utilized for bioethanol production by

microorganisms (Han et al. 2019; Adetya et al. 2017).

Han et al. (2019) used bakery waste to produce

bioethanol. The hydrolysis of bakery waste was

performed in a bioreactor with working volume of

0.5 L using a-amylase at 95 �C and agitation speed of

200 rpm. The obtained bread waste hydrolysate was

inoculated with the yeast S. cerevisiae and the

fermentation was carried out at 30 �C. The highest

bioethanol production (46.6 g/L) was achieved after

40 h. This value is higher than that using the glucose

as feedstock since the bread waste hydrolysate

provides both the carbon and nitrogen sources for

the production of bioethanol (Han et al. 2019).

Mihajlovski et al. (2020) studied the enzymatic

hydrolysis of bread waste by a newly isolated

Hymenobacter sp. CKS3 strain. The waste bread

hydrolysate containing 20 g/L reducing sugars was

fermented by S. cerevisiae at 30 �C for 24 h. The

maximum bioethanol concentration was 17.3 g/L.

2.3 Corn industry wastes

In the corn industry, the most significant waste is the

corncob residue (CCR). Corncob is the core of the corn

on which grows the kernel. CCR is the corncob after

removing the kernel during the processing of the corn.

It consists of high amount of hemicellulose which is

extracted by dilute-acid pretreatment for xylose and

xylitol production. The remaining residue is a poten-

tial feedstock for bioethanol production due to its high

cellulose content (Fan et al. 2013). Before fermenta-

tion, the CCR is treated with alkali or sulfite to remove

the lignin fraction. During this phase, some com-

pounds such as furfural, 5-hydroxymethyl furfural,

and acetic acid are formed which have inhibitory

effects on microorganisms used for the production of

bioethanol. For this reason, detoxification of the

substrate is necessary for optimal fermentation of

CCR hydrolysate.

Fan et al. (2013) used a yeast strain of Pichia

guilliermondii to produce bioethanol from CCR

hydrolysate in repeated batch and repeated fed-batch

fermentation. Enzymatic hydrolysis was performed

with cellulase at 50 �C for 72 h. The results showed an

average bioethanol concentration of 36.0 and 51.0 g/L

in five repeated-batch fermentations and three

repeated fed-batch fermentations, respectively. In

another study, corncob used for bioethanol production

by K. marxianus using SHF and SSF process (Zhang

et al. 2010). Acid hydrolysis was carried out with 0.5%

H2SO4 at 121 �C for 2 h. Enzymatic hydrolysis was

performed with commercial cellulase at 50 �C for

48 h. Hydrolysates obtained after acid and enzymatic

pretreatments were used for the production of

bioethanol by K. marxianus at 37 �C for 48 h in static

culture. Among the two fermentation systems, SSF

gave the highest bioethanol production (5.7 g/L).

Garcia-Torreiro et al. (2016) reported a bioethanol

concentration of 11.5 g/L when the yeast Pachysolen

tannophilus was grown in CCR hydrolysate using SSF

process. In this case, the CCR was pretreated with the

basidiomycete Irpex lacteus for the reduction in lignin

content. The hydrolysis was carried out with a cocktail

of enzymes consisted of cellulase, beta-glucosidase,

xylanase, and beta-xylosidase at 50 �C for 24 h.

2.4 Rice industry wastes

2.4.1 Rice waste biomass

Rice waste biomass (RWB) is a cheap lignocellulosic

material which can be used for the production of

bioethanol. Before fermentation, RWB was pretreated

with chemical methods for the conversion of lignicel-

lulosic materials to simple sugars (Saratale and Oh

2015). Alkaline pretreatment at high temperature

followed by enzymatic hydrolysis resulted in a yield

of 0.5 g reducing sugar/g of RWB with a hydrolysis

degree of 69.2%. Alkaline pretreatment of RWB

followed by treatment with sodium chloride and

sodium bicarbonate and a lower dose of enzyme gave

a yield of 0.7 g reducing sugars /g of RWB with a

hydrolysis yield of 90.6%. The maximum bioethanol

yield and sugar consumption from the above hydro-

lysate were 0.465 g/g and 95%, respectively. In

addition, the significant delignification of the RWB

with the above developed pretreatment and the
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production of bioethanol without detoxification of the

substrate demonstrate the feasibility of the process.

2.4.2 Deoiled rice bran

Deoiled rice bran (DORB) is a renewable and cheap

agro-industrial waste suitable for the production of

bioethanol. Agrawal et al. (2019) utilized DORB

hydrolysate for bioethanol production by S. cerevisiae

MTCC 4780 under optimized fermentation condi-

tions. The fermentation was carried out at 30 �C and

the highest bioethanol concentration was 9.68% (v/v)

after 48 h of incubation.

2.4.3 Rice hull

Rice hull or rice husk is the hard protecting covering of

rice grain which is separated from the grain during

milling process. Asia,is the largest rice producer in the

world producing about 90.6%of the annual global

production. In a milling process, 1000 kg of rice

paddy produces 200 kg of hull which contains a

mixture of pentose and hexose (Taghizadeh-Alisaraei

et al. 2019a, b). Rice hull produces approximately

0.45 g of sugars / g of dry hull. It consists of glucan

30%, xylan 13.5%, lignin 22.5%, ash 21%, and others

13% (Ebrahimi et al. 2017). The conversion of rice

hull to bioethanol includes three steps: pretreatment

for the removal of lignin and the decrease of cellulose

polymerization and crystallinity, hydrolysis for the

release of the sugars, and fermentation of sugars to

bioethanol by microorganisms such as yeasts, bacteria

or fungi (Ebrahimi et al. 2017).

Pretreatment is one of the most expensive steps in

bioethanol production. In order to overcome this

problem, Ebrahimi et al. (2017) investigated a new

pretreatment method of rice hull using acidified

aqueous glycerol and glycerol carbonate at 130 and

90 �C respectively, for 60 min. The hydrolysis was

performed with the enzyme cellulase for 72 h. The

SSF process was conducted anaerobically at 37 �C by

the yeast S. cerevisiae using 5% (w/v) glucan and

cellulase at a ratio of 10 FPU/g glucan. The maximum

bioethanol production was 8.8 and 11.6 g/L after

3 days of fermentation using pretreatment rice hull

with acidified aqueous glycerol and glycerol carbon-

ate, respectively. A mixture of rice hull and orange

peel wastes was utilized for bioethanol production by

Taghizadeh-Alisaraei et al. (2019a). The pretreatment

and the hydrolysis of the substrate was carried out with

sulfuric acid 3% at 120 �C for 60 min. Hydrolyzed

matter consists of glucose and arabinose. The substrate

was inoculated with the yeast S. cerevisiae at a ratio of

5 g yeast /kg of dry matter. The fermentation was

performed at 30 �C for 32 h and the highest bioethanol

concentration was 22.8 g/L.

2.5 Starch industry wastes

2.5.1 Potato wastes

Potatoes are mostly used for human consumption but

they can be also processed into a variety of products

such as starch, chips and crisps, fries, mashed pota-

toes, and dehydrated products (Khawla et al. 2014;

Atitallah et al. 2019). During processing, approxi-

mately 15–50% of the potatoes depending on the

procedure applied are generated as wastes such as

peels, potato pulp, waste potato mash, and potato

processing water. The above wastes cause environ-

mental problems due to spoilage by microorganisms

(Khawla et al. 2014; Atitallah et al. 2019; Hossain

et al. 2018; Izmirlioglu and Demirci 2017). Usually,

potatoes are peeled during processing. The potato peel

waste (PPW) is a ‘‘zero value’’ waste which contains

significant amount of starch, cellulose, hemicellulose,

and lignin (Sheikh et al. 2016; Galhano dos Santos

et al. 2016; Richelle et al. 2015). The production of

bioethanol from PPW includes three steps: liquefac-

tion, saccharification, and fermentation. Liquefaction

is carried out with a mixture of amylases which causes

hydrolysis of starch to maltodextrins and maltose at

95 �C while glucoamylase is used for saccharification

step to produce glucose at 60 �C (Atitallah et al. 2019;

Izmirlioglu and Demirci 2017).

Izmirlioglu and Demirci (2016, 2017) used potato

waste (PW) and potato waste hydrolysate (PWH) for

production of bioethanol in biofilm reactors by co-

culture of Aspergillus niger and S. cerevisiae and free

cells of S. cerevisiae, respectively. The hydrolysis of

PW was carried out with a-amylase at 95 �C for 3 h

and amyloglucosidase at 60 �C for 72 h. Under the

above conditions, PW and PWH gave a maximum

bioethanol concentration of 37.9 and 37.0 g/L, respec-

tively. Khawla et al. (2014) and Hossain et al. (2018)

used PPW as feedstock for bioethanol production

treated with commercial enzymes (amylase and amy-

loglucosidase) or by consolidated bioprocessing
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(liquification, saccharification, and fermentation in a

solo-step process) and found a maximum bioethanol

concentration of 21.0 and 21.7 g/L, respectively. In

another studies (Chintagunta et al. 2016; Subhash et al.

2016; Pinaki and Lhakpa 2016) reported the produc-

tion of bioethanol from PW by A. niger and S.

cerevisiae for saccharification and fermentation pro-

cess resulting in a maximum bioethanol concentration

of 48.7, 41.8 and 125.0 g/L, respectively. Maroufpour

et al. (2019) utilized PPW for bioethanol production

by Z. mobilis and found a maximum bioethanol

production of 5.2 g/L after conversion of starch to

glucose with acid hydrolysis.

Another substrate used for the production of

bioethanol is the sweet potato residues (SPRs) which

is the residue after the extraction of starch from sweet

potatoes (Wang et al. 2016). Sweet potato contains

starch, glucose, fructose, sucrose, and cellulose (Wang

et al. 2016; Dewan et al. 2013). SPRs used as substrate

for bioethanol production after hydrolysis by a mix-

ture of cellulase and pectinase (Wang et al. 2016). The

hydrolysate was fermented by the yeast S. cerevisiae

to produce 79.0 g/L bioethanol.

2.5.2 Cassava wastes

Cassava is one of the most consumed agricultural

products. It contains starch, cellulose, hemicellulose,

lignin, protein, fat, and other minor components

(Trakulvichean et al. 2019; Aruwajoye et al. 2020).

Cassava roots are mainly processed for the production

of starch, chips, pellets, and bioethanol (Trakul-

vichean et al. 2019). During the processing large

quantities of wastes such as cassava pulp, cassava

peels and cassava wastewater are generated which

cause significant environmental pollution (Bolade

et al. 2019). The bioethanol production from cassava

wastes is very complex and involves pretreatment,

hydrolysis, and fermentation. The pretreatment of

biomass improves enzymatic hydrolysis facilitating

the access of cellulase on the cellulose structure

(Nanssou et al. 2016).

Icalina et al. (2018) investigated the bioethanol

production from cassava waste pulp (CWP) and found

a maximum production of 4.7 g/kg of fresh CWP after

7 days of fermentation. A high bioethanol concentra-

tion of 28.2 g/L was obtained from cassava peel waste

(CPW) hydrolyzed with 0.5 M sulfuric acid at 100 �C
for 60 min after 4 days of incubation (Abidin et al.

2014). Aruwajoye et al. (2020) reported a maximum

bioethanol production of 0.58 g/g sugar consumed

when CPW was soaked in HCL solution at 69.68 �C
for 2.57 h and then was sterilized at 121 �C for 5 min.

Nanssou et al. (2016) used cassava stems and peelings

for bioethanol production after pretreatment by ther-

mohydrolysis at 210 �C for 45 min and the pretreat-

ment residue was hydrolyzed with cellulase. In this

case, the bioethanol concentration was 5.3 g/100 g

cassava stems and 2.6 g/100 g cassava peelings.

2.5.3 Sorghum wastes

Sorghum belongs to the grass family Poaceae and is

the fifth most important cereal worldwide (El-Imam

et al. 2019; Nasidi et al. 2016). During starch removal

from the sorghum, waste bran is produced which can

be used for bioethanol production. The traditional

processing method of sorghum involves steeping, wet-

milling and sieving (El-Imam et al. 2019). The bran

which is removed during this process is usually

discarded or fed to animals as a low-value feed.

Sorghum bran used for bioethanol production by

El-Imam et al. (2019) after acid and enzymatic

hydrolysis to produce fermentable sugars. The acid

hydrolysis of white bran or red bran was carried out

with sulfuric or nitric acid (1% or 3% w/w) at 121 �C
for 15 or 30 min, respectively while the enzymatic

hydrolysis was carried out using amylase and amy-

loglucosidase. The hydrolysate was fermented by the

yeast K. marxianus to produce 24.3 g/L bioethanol.

Pandebesie et al. (2019) used sorghum stalks waste to

produce bioethanol. It was pretreated with 0.25%

sulfuric acid at 121 �C for 10 min. The enzymatic

hydrolysis was performed using a mixture of the

strains Trichoderma viride and A. niger at a ratio of

2:1. After hydrolysis, the substrate utilized for

production of bioethanol using the consortium of S.

cerevisiae CC 3012 and Pichia stipitis. The bioethanol

concentration was 36.1 g/L after 24 h of fermentation.

2.5.4 Sago pitch wastes

The sago pitch waste (SPW) is the residue after the

extraction of starch from pitch of Metroxylon sagu

(sago palm) (Thangavelu et al. 2014, 2019). It contains

up to 58% starch, 23% cellulose, 9.2% hemicellulose,

and 4% lignin (w/w of dry weight) (Thangavelu et al.

2014). Thangavelu et al. (2014, 2019) investigated the
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bioethanol production from SPW using microwave

treatment. It is a potentially faster method for thermal

treatment of SPW with low pressure and temperature.

In addition, this method includes rapid and efficient

heating in a controlled environment, increasing pro-

cessing rates and substantially shortening reaction

times by up to 80%. The above authors reported a

maximum bioethanol yield of 15.6 and 31.0 g ethanol/

100 g dry SPW using microwave hydrothermal

hydrolysis accelerated by carbon dioxide and micro-

wave assisted acid hydrolysis, respectively.

2.5.5 Triticale bran

Triticale is a hybrid of rye and wheat. It has a number

of potential advantages for bioethanol production due

to its ability to adapt to stresses and thrive on marginal

soils with a lower nitrogen requirement during crop

growth. Triticale bran (TB) is the residue after

removal of starch from the grain. It can account up

to 19% of the grain. The bran contains residual starch,

cellulose, and hemicellulose (Garcia-Aparicio et al.

2011). TB is designated as starch-free triticale bran

(SFTB) using degrading enzymes of starch. The SFTB

is pretreated with 0.1% of sulfuric acid at 160 �C for

22.5 min and then it is hydrolyzed using a mixture of

the enzymes Spezyme CP and Novozyme 188 at 50 �C
and pH 4.8. Under these conditions, the SFTB used as

substrate for bioethanol production and obtained

193.4 g of ethanol/ton dry SFTB (Garcia-Aparicio

et al. 2011). The most important stages used for

bioethanol production from starch industry wastes are

shown in Fig. 4.

2.6 Fruit industry wastes

2.6.1 Citrus wastes

Citrus fruits (oranges, mandarins, lemons, sweet

limes, and grapefruits) are the most abundant crops

in the world (Choi et al. 2015a, b). The production of

citrus fruits generates large quantities of waste. This is

mainly due to rejects when packing fresh fruit and the

wastes generated by processing industries (Fito et al.

2015). The annual production of citrus fruits is more

than 115 million tons and about 30 million tons of the

fruits are used for juice production. The residual from

the juice industries is almost 50% of the wet fruit

biomass (Choi et al. 2015a, b; John et al. 2017).

Citrus peel waste (CPW) is the main residue of the

citrus processing industries contributing 10 million

tons of waste per year worldwide in 2016 (Zema et al.

2018; Jeong et al. 2021). It contains soluble sugars

such as glucose, fructose, and sucrose, pectin, cellu-

lose, hemicellulose, D-limonene, and essential oils

(Choi et al. 2015a, b; John et al. 2017; Zema et al.

2018). Some of these compounds (D-limonene,

essential oils) cause toxic effects on the microbial

community and the efficient removal of these com-

pounds from CPW requires a pretreatment step (Choi

et al. 2015a, b; Fazzino et al. 2021). In addition, a

pretreatment method is necessary to convert cellulose,

hemicellulose, and pectin to fermentable sugars. The

pretreatment methods include mechanical comminu-

tion, dilute acid hydrolysis, hydrothermal sterilization

or autohydrolysis, popping, and steam explosion. The

enzymatic hydrolysis is carried out using cocktails of

cellulase, b-glucosidase, and pectinase (John et al.

2017).

Sukamoto et al. (2013) and Kyriakou et al. (2019)

used orange processing waste (OPW) and orange peel

hydrolysate for production of bioethanol and reported

a maximum bioethanol concentration of 21.0 g/100 g

dry OPW and 72.0 g/L, respectively. Mandarin peel

waste (MPW) pretreated with drying, steam explosion,

and popping pretreatment used as feed stock for

bioethanol production and found a maximum bioetha-

nol production of 0.34 g/g waste, 43.4 kg/ton raw

MPW, and 0.47 g /g sugar consumed, respectively

(Kiran et al. 2014; Boluda-Aguilar et al. 2010; Choi

et al. 2013).

2.6.2 Apple and grape pomace

Apple pomace is a waste of the food industry consisted

of peel, seeds, and solid parts which are generated after

juice extraction (Evcan and Tari 2015; Pathania et al.

2017). It consists of 25–35% of the weight of the fruit

and causes important environmental problems. Mil-

lion metric tons of apple pomace are estimated to be

generated worldwide every year (Evcan and Tari

2015). It contains carbohydrates, cellulose, hemicel-

lulose, lignin, and minerals (Evcan and Tari 2015;

Pathania et al. 2017). Prior to ethanol fermentation, it

needs to be pretreated in order to release

fermentable sugars.

Evcan and Tari (2015) utilized apple pomace

hydrolysate to produce bioethanol by a co-culture of
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Trichoderma harzianum, Aspergillus sojae, and S.

cerevisiae. The hydrolysis of apple pomace was

carried out with 4% phosphoric acid at a ratio of

1:10 solid/liquid (w/v) at 110 �C for 40 min. The

hydrolysate was fermented at 30 �C under anaerobic

conditions and the highest bioethanol concentration

Starch industry wastes

• Potato wastes
• Cassava wastes
• Sorghum wastes
• Sago pitch wastes
• Triticale bran

Thermohydrolysis at 210 oC for 45 min
Sulfuric acid 0.1% at 160 oC for 22 min

Hydrolysis

Acid hydrolysis
• Sulfuric acid 0.25% at 121 oC 

for 10 min
• Sulfuric acid 0.5 M at 100 oC 

for 60 min
• Nitric acid 1% or 3% at 121 oC 

for 15 or 30 min, respectively
• Microwave hydrothermal 

hydrolysis accelerated by CO2

• Microwave assisted acid 
hydrolysis

Enzymatic hydrolysis
Liquefaction (amylases at 95
oC for 3 h) and saccharification 
(glucoamylase 60 oC for 72 h)
Cellulase
Cellulase and pectinase

Fermentation

Bioethanol

Fig. 4 A flow diagram for bioethanol production from starch industry wastes using physicochemical pretreatment and acid or

enzymatic hydrolysis
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(8.7 g/L) was obtained after 5 days. Pathania et al.

(2017) used apple pomace for bioethanol production

by pretreatment of biomass with microwave irradia-

tion which causes removal of a significant part of

lignin, degradation of cellulose and hemicellulose, and

improves the enzymatic hydrolysis. The pretreated

apple pomace was hydrolyzed using multiple carbo-

hydrases (cellulase, xylanase, amylase, and pectinase)

which were produced by the fungus Rhizopus delemar

F2. The hydrolysate was inoculated with S. cerevisiae

and S. stipitis cells immobilized in calcium alginate

beads and produced 44.5 g/L bioethanol. Demiray

et al. (2021) investigated that the utilization of soluble

soy protein improved the enzymatic hydrolysis of

apple pomace and the bioethanol production increased

to 53.1 g/L.

Kumar et al. (2020) used apple pomace as substrate

for bioethanol production by co-culture of S. cere-

visiae and Actinomyces APW-12 which produces

cellulase and xylanase and found maximum bioetha-

nol concentration of 49.6 g/L. Cherian et al. (2015)

reported a bioethanol concentration of 13.6 g/L from

apple waste through SSF process. When cashew apple

pulp used as substrate an ethanol yield of 0.5 g/g sugar

was achieved (Shenoy et al. 2011). In this case, the

pulp was treated with 2% sulfuric acid at 120 �C for

10 min followed by further 90 min at 90 �C to

solubilize the pulp. Seluy et al. (2018) utilized cider

waste to produce bioethanol. It is formed during cider

production through alcoholic fermentation of apple

juice by yeasts that naturally occur in the fruit. The

cider waste exhibits a high Chemical Oxygen Demand

(COD) greater than 170,000 mg O2/l and represents

about 10% of the volume of cider produced. The

results showed that when the cider waste was supple-

mented with corn steep water at a concentration of

2.5% (v/v) the bioethanol production was 70.0 g/L.

Grape pomace is the residue from musts and wine

elaboration. Rodriguez et al. (2010) used solid-state

fermentation to produce bioethanol from grape

pomace by S. cerevisiae. The fermentation was carried

out under anaerobic conditions at 28 �C. The maxi-

mum bioethanol yield was 0.42 g/g sugar consumed

after 48 h of incubation.

2.6.3 Banana wastes

Banana is a tropical crop from theMusaceae family. It

is the most important fruit crop in the world, in terms

of metric tons harvested. About 56% of global

production occurred in Asia and 26% in the Americas

(Guerrero et al. 2018; Guerrero and Munoz 2018).

Banana fruit and its associated residual biomass

consisted of starch and lignocellulosic materials. They

need to be converted into glucose, which is then

fermented into bioethanol. This is achieved using

enzymatic hydrolysis or acid hydrolysis with inor-

ganic acids (Velasquez-Arredondo et al. 2010).

Banana peel waste is consisted of cellulose 28.92%,

hemicellulose 25.23%, and lignin 10.56% (Prakash

et al. 2018). Saccharification of banana peel is the most

significant step for bioethanol production.

Prakash et al. (2018) utilized banana peel waste for

bioethanol production using a cocktail of thermo-

alkali-stable depolymerizing enzymes. In this case, a

maximum bioethanol concentration of 21.1 g/L was

obtained. In another work, banana peduncle waste was

used as substrate for bioethanol production by K.

marxianus after hydrolysis of the feedstock with

various concentrations of H2SO4 (1–3%) at 150 �C for

converting the lignocellulosic material to monomeric

sugars (Sathendra et al. 2019). The highest bioethanol

concentration (21.8 g/L) was achieved at 40 �C and

pH 4.5 in batch fermentation.

2.6.4 Pineapple wastes

Pineapple is the second-ranked tropical fruit in terms

of importance in world production (Casabar et al.

2019). It is used by several industrial companies due to

its useful compounds such as citric acid, bromelain,

antioxidants, and fermentable sugars (Gil and Mau-

poey 2018; Casabar et al. 2019). The utilization of

pineapple in the industry, generates significant

amounts of wastes consisted of peel, core, and crown.

They represent about 50% of the total processed fruit

(Conesa et al. 2016, 2018). The liquid phase of this

residue contains glucose, fructose, and sucrose while

the solid phase consists of lignin (16%), cellulose

(35%), and hemicellulose (19%) (Conesa et al.

2016, 2018). Pineapple peel waste (PPW) is a good

substrate for bioethanol production, since cellulose

and hemicellulose are hydrolyzed to simple sugars

(Conesa et al. 2018).

Conesa et al. (2016, 2018) investigated the produc-

tion of bioethanol from pineapple wastes using

microwave pretreatment of the feedstock or treated

at 121 �C for 20 min following enzymatic hydrolysis
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with a mixture of cellulase and hemicellulase from A.

niger or cellulase from A. niger and Trichoderma

reesei combined with A. niger hemicellulase. Several

researchers have studied the bioethanol production

from pineapple wastes and reported a bioethanol

production of 5.4% (v/v) and an ethanol yield of

0.47 g/g sugar consumed (Gil and Maupoey 2018;

Dominguez-Bocanegra et al. 2015). In another study,

PPW used as substrate for bioethanol production by

Casabar et al. (2019). A maximum bioethanol con-

centration of 5.98 g/L was achieved when Tricho-

derma harzianumwas used for hydrolysis of the

substrate and S. cerevisiae for the fermentation of

sugars to ethanol.

2.6.5 Pomegranate peel waste

Pomegranate (Punicagranatum L.) is consumed as an

edible fruit or juice. The global production of

pomegranate is reached around 2 million tons. The

extraction of juice from pomegranate in industrial

scale generates large amounts of peel wastes as the

juice yield is lower than half of the fruit weight

(Roukas and Kotzekidou 2020b). The pomegranate

peel waste (PPW) is used for the production of pectin,

phenolic compounds, carotenoids, flavonoids, vitamin

C, fertilizers, dietary fibers, tannins, reducing sugars,

and biochar (Roukas and Kotzekidou 2020b).

Talekar et al. (2018) reported that 500–550 kg PPW

are generated from 1 ton of fresh pomegranates after

extraction of juice. In this work, the authors studied the

bioethanol production from PPW using hydrothermal

treatment at 115 �C for 40 min and found a maximum

bioethanol concentration of 80 g /kg dry waste. PPW

used for bioethanol production by Demiray et al.

(2018) after hydrolysis with 1% (v/v) H2SO4 at 121 �C
for 15 min. The hydrolysate was supplemented with

nitrogen sources and metal salts and fermented by S.

cerevisiae which produced 5.6 g/L bioethanol after

12 h of the fermentation. In another work (Demiray

et al. 2019), the authors improved the bioethanol

production from PPW using acid hydrolysis with 1%

H2SO4 and enzymatic hydrolysis with cellulase at

50 �C for 72 h. In this case, the bioethanol concen-

tration increased to 14.3 g/L by the yeastK. marxianus

after 96 h of incubation.

2.6.6 Date, mango, and coconut wastes

Date wastes (which correspond to 10–50% of the

annual date production—depending on the country)

could be converted to biofuels. The amount of date

fruit wastes depends on the appropriate harvest time

and practices, as well as the efficient grading and

packaging (Taghizadeh-Alisaraei et al. 2019a, b). The

date wastes consist of glucose, fructose, sucrose,

fibers, minerals, amino acids, and vitamins. The date

wastes syrup is produced by heating the date wastes at

85 �C for 45 min with continuous stirring (Taghiza-

deh-Alisaraei et al. 2019a, b; Acourene and

Ammouche 2012). Acourene and Ammouche (2012)

studied the bioethanol production from date wastes

syrup (180.0 g/L initial sugars) supplemented with

1.0 g/L ammonium phosphate and inoculated by S.

cerevisiae at a ratio of 4% (w/v). The results showed a

maximum bioethanol concentration of 136.0 g/L after

72 h of the fermentation.

Mango waste is treated for use as dietary fibers,

substances with health-promoting phytochemicals,

and nutritional supplements with antioxidant, anti-

inflammatory, and immunomodulatory properties

(Carrillo-Nieves et al. 2017). In the mango processing

industry, mango bark residue is generated during the

production of nutritional supplements. Carrillo-

Nieves et al. (2017) investigated the bioethanol

production from mango stem bark residue pretreated

with 3% NaOH at 120 �C for 15 min followed by SSF

process using cellulase, b-glucosidase and a 4% (v/v)

inoculum of S. cerevisiae. The results showed a

maximum bioethanol yield of 81.6% of the theoretical.

Another popular fruit is the mangosteen, well known

for the excellent flavor. Mangosteen pericarp waste

(MPW) is a byproduct of mangosteen process.

According to FAO, about 30.8 million tons of MPW

are generated annually (Cho et al. 2020). Cho et al.

(2020) used MPW for production of bioethanol after

popping pretreatment and enzymatic hydrolysis with

cellulase and pectinase at 45 �C for 30 min. The

hydrolysate was fermented by S. cerevisiae at 32 �C in

shake flasks. A maximum ethanol yield of 75% of

theoretical was obtained after 48 h of incubation.

The main waste of the coconut processing is the

coconut meal which is generated after coconut milk

processing. It contains 10–20% oil which is used for

the production of biodiesel. After oil extraction, the

residue contains 16% cellulose and 34%
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hemicellulose (Sangkharak et al. 2020). It was used for

the production of bioethanol after pretreatment with

50% NaOH at 121 �C for 40 min. The pretreated

substrate was hydrolyzed with cellulase and the

hydrolysate was inoculated with S. cerevisiae cells at

a ratio of 10%. The maximum bioethanol concentra-

tion was 8.5 g/L after 60 h of the fermentation

(Sangkharak et al. 2020).

2.6.7 Soft drink wastewaters

Sugar-sweetened beverage wastewaters are produced

in large quantities in proportion to the high production

of these beverages, as some of them contain high sugar

concentration (6–18% w/v) (Isla et al. 2013; Comelli

et al. 2016a). The sugars consist of glucose, fructose,

and sucrose which can be used directly in fermenta-

tions without any pretreatment (Comelli et al. 2016b).

The soft drink industry produces approximately 75%

of all sugar-sweetened beverages. A portion of the

beverages produced is discarded due to quality control

practices or is returned from retail stores due to lack of

gas or expired product (Comelli et al. 2016b).

Isla et al. (2013) examined the bioethanol produc-

tion from different types of soft drink wastewaters

(SDWW) supplemented with 15.0 g/L yeast extract.

An ethanol yield of 0.39, 0.42, and 0.51 g/g sugar

consumed was achieved when S. cerevisiae var.

Windsor was grown on lemon-lime, orange, and cola

soft drink, respectively. In other similar works,

Comelli et al.(2016a,b) enriched SDWW with a

supplement consisted of inorganic salts (i.e. MgSO4-

7H2O, (NH4)2HPO4, and ZnSO4�7H2O) in order to

produce bioethanol. An ethanol yield of 0.42 and

0.44 g/g sugar consumed was obtained when S.

cerevisiae var. Windsor and Saccharomyces bayanus

were grown on the above substrate, respectively. A

schematic diagram of bioethanol production from fruit

industry wastes is shown in Fig. 5.

2.7 Oil industry wastes

2.7.1 Olive oil processing wastes

The traditional oil industry generates two byproducts

at the end of the process: the olive mill solid waste

(OMSW) and the olive mill wastewater (OMW) which

cause serious environmental pollution problems

(Nikolaou and Kourkoutas 2018; Abu Tayeh et al.

2014, 2016, 2020). OMSW is a mixture of skin, pulp,

and seeds. OMSW is consisted of (% w/w of dry

matter): lignin 37, cellulose and hemicellulose 49.5,

olive oil 7.5, and mineral substances 6.0 (Battista et al.

2016). The global annual production is about 4X108

kg of dry matter (Abu Tayeh et al. 2016). OMW is the

liquid which is formed during olive oil production.

OMW is consisted of (% w/w): water 90.0, organic

compounds 8.5, and mineral salts 0.4–2.5 (Battista

et al. 2016). The total annual production of OMW is

higher than 3X107 m3 (Nikolaou and Kourkoutas

2018). OMSW and OMW contain high concentrations

in phenolic compounds (Battista et al. 2016; Solo-

makou and Goula 2021).

Abu Tayeh et al. (2014, 2016, 2020) investigated

the production of bioethanol from OMSW pretreated

with 2% (v/v) sulfuric acid at 100 �C for 2 h,

hydrothermal pretreatment with water and 0.6 M

formic acid at 140–170 �C and pressure 10–13 atm

for 1 h, and microwave pretreatment with 0.6 M

formic acid at 140 �C for 10 min followed by

enzymatic hydrolysis with a mixture of cellulase and

b-glucosidase at 50 �C for 24 h. The maximum

bioethanol concentration (15.9 g/L) was obtained in

OMSW microwave pretreated. Battista et al. (2016)

reported a maximum bioethanol concentration of

9.0 g/L when a mixture of olive pomace (OP) and

OMW used as feedstock after pretreatment with 0.5%

(v/v) H2SO4 at 120 �C for 30 min and 3 M NaOH at

pH of 12.0 for 24 h. Ngoie et al. (2020) utilized

wastewater sludge from the edible oil industry as a

novel feedstock for bioethanol production after

extraction of remained oil in the sludge. The residue

was autoclaved at 121 �C for 15 min, dried at 80 �C
for 24 h and hydrolyzed using cellulase at 50 �C for

24 h. The hydrolysate used as substrate for bioethanol

production by S. cerevisiae. In this case, a maximum

bioethanol yield of 106% of theoretical was obtained.

Sarris et al. (2014) and Nikolaou and Kourkoutas

(2018) used a mixture of OMW and beet molasses for

bioethanol production by free and immobilized S.

cerevisiae cells and found a maximum bioethanol

concentration of 41.8 and 61.2 g/L, respectively.

2.7.2 Palm oil processing wastes

During palm oil production, palm oil mill effluent

(POME) is generated. It was reported that an average

of 52.6–55.4 million tons of POME is generated for
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each ton of crude palm oil produced. POME contains

organic compounds, carbohydrates, proteins, lipids,

nitrogenous compounds and minerals (Samsudin and

Mat Don 2015). Another residue is the oil palm trunk

(OPT) which contains fibrous vascular bundles and

powdery parenchyma and is consisted of lignin,

cellulose, hemicellulose, protein, fat, and minerals.

Fruit industry wastes

Date wastes • Citrus wastes
• Apple and grape pomace
• Banana wastes
• Pineapple wastes
• Pomegranate peel waste
• Mango and coconut wastes

Soft drink wastewaters

Heating 85 oC for 45 min

Pretreatment

Physical/Physicochemical
• Mechanical comminution
• Autohydrolysis
• Popping
• Steam explosion
• Microwave irradiation
• Heating at 121 oC for 20 min
• 3% NaOH at 120 oC for 15 min
• 50% NaOH at 121 oC for 40 min

Acid hydrolysis
4% phosphoric acid at 110 oC for 40 min
1% sulfuric acid at 121 oC for 15 min
2% sulfuric acid at 120 oC for 10 min
followed by further 90 min at 90 oC 

Enzymatic hydrolysis
• Cellulase at 50 oC for 72 h
• Cellulase and β-glucosidase
• Cellulase and hemicellulose
• Cellulase and pectinase
• Cellulase, β-glucosidase and pectinase
• Cellulase, xylanase, amylase and pectinase

Fermentation

Bioethanol

Fig. 5 Bioethanol production from fruit industry wastes using different pretreatment methods and enzymatic hydrolysis
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Samsudin and Mat Don (2015) investigated the

bioethanol production from a mixture of OPT sap and

POME by the yeast S. cerevisiae and found a

maximum bioethanol yield of 0.464 g/g glucose

utilized. In another interesting study two pretreatment

techniques (using H2SO4 or NaOH) were compared

for producing bioethanol from empty fruit bunches

(EFBs) from oil pulm tree (Chiesa and Gnansounou

2014). EFBs contain high concentration of polysac-

charides, mainly cellulose, that must be broken down

to fermentable sugars after pretreatment and enzy-

matic hydrolysis. Better results were obtained when

the EFBs was treated with 1.51% (v/v) H2SO4 at

161.5 �C for 9.44 min followed by enzymatic hydrol-

ysis with cellulase and b-glucosidase. In this case, a

high glucose yield of 85.5% was observed which can

be used for the production of high bioethanol concen-

tration (Chiesa and Gnansounou 2014). The bioetha-

nol production from oil industry wastes is presented in

Fig. 6.

2.8 Coffee industry wastes

Coffee is one of the most consumed beverages in the

world with an amount of million bags of 60 kg

produced every year (Yadira et al. 2014; Tehrani et al.

2015; Choi et al. 2012; Kim et al. 2017). During the

coffee processing steps, large amounts of different

wastes are generated such as coffee residue (CR)

(Tehrani et al. 2015; Choi et al. 2012; Kim et al. 2017),

pulp (Akbas and Stark 2016; Menezes et al. 2014),

husk (Akbas and Stark 2016; Dadi et al. 2018), spent

coffee ground (SCG) (Dadi et al. 2018; Ravindran

et al. 2017; Mussatto et al. 2012), silver skin (SS)

(Dadi et al. 2018; Mussatto et al. 2012), mucilage

(Yadira et al. 2014), and wastewater (Akbas and Stark

2016). CR waste is generated after coffee extraction

for coffee powder and instant coffee preparation (Choi

et al. 2012). It contains cellulose, hemicellulose,

lignin, carbohydrates (glucose, galactose, mannose),

and lipids (Tehrani et al. 2015; Kim et al. 2017). CR

examined as feedstock for bioethanol production by

Choi et al. (2012) and Kim et al. (2017) after popping

pretreatment at 1.47 MPa for 10 min or acid-chlorite

pretreatment at 80 �C for 1 h followed by enzymatic

hydrolysis. An ethanol yield of 87.2% and 73.8% of

theoretical was obtained when the substrate was

treated at high pressure and acid-chlorite pretreatment,

respectively.

During the coffee production, pulp and coffee husk

wastes are generated applying the wet and dry process

to produce green grains, respectively (Menezes et al.

2014). Coffee pulp hydrolysate contains a variety of

fermentable sugars such as glucose, fructose, sucrose,

maltose, xylose, and arabinose (Akbas and Stark

2016). Menezes et al. (2014) investigated the bioetha-

nol production from coffee pulp pretreated with 4%

(w/v) NaOH at 121 �C for 25 min followed by

enzymatic hydrolysis with Celluclast 1.5L (Novo-

zymes) at 50 �C for 72 h. The results indicated a

maximum bioethanol concentration of 13.6 g/L with a

yield of 0.4 g/g glucose utilized. Coffee SS and SCG

are generated during the beans roasting and instant

coffee preparation, respectively (Mussatto et al. 2012).

SCG and husk used for bioethanol production by Dadi

et al. (2018) after acid hydrolysis with 3% (v/v) H2SO4

at 121 �C for 20 min followed by enzymatic hydrol-

ysis with cellulases and b-glucosidases at 50 �C for

48 h. The hydrolysate was fermented by the lignocel-

lulosic yeast GSE16-T18 followed by purification

using pervaporation membrane resulted in a bioetha-

nol yield of 51.7 and 132.2 g/L for SCG and husk,

respectively. Ravindran et al. (2017) found a novel

pretreatment for spent coffee waste (SCW) to produce

high bioethanol concentration. SCW was pretreated

with 4% KMnO4 followed by treatment to ultrasound

radiation for 20 min. This treatment resulted in 98%

cellulose recovery, a maximum lignin removal of

46%, and an increase in reducing sugars yield after

enzymatic hydrolysis. The results indicate that SCW

could be utilized for bioethanol production.

2.9 Brewery, vegetable, and milk indusry wastes

In the brewery industry, two mainly byproducts are

generated during beer production. The brewer’s spent

grain waste (BSGW) (Pinheiro et al. 2019) and the

beer fermentation broth waste (BFBW) (Ha et al.

2012; Khattak et al. 2013). BSGW is a solid generated

during the mashing process and represents about 85%

of brewing industry wastes (20 kg of BSGW are

generated per 100 L of beer produced) (Pinheiro et al.

2019). In Europe are produced approximately 3.5

million tons of BSGW per year. It consists of cellulose

(12–25%), hemicellulose (19–42%), lignin (15–27%),

and protein (14–31%) (Pinheiro et al. 2019). An

interesting study on bioethanol production from

BSGW reported by Pinheiro et al. (2019). In this
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work, BSGW whole slurry at 25% solid loading

pretreated at 150–170 �C for 5 min followed by

enzymatic hydrolysis with a commercial cellulase

mixture (Cellic CTec2 from Trichoderma reesei) at

50 �C for 120 h. The hydrolysate was fermented by

the yeast S. cerevisiae BLGII 1762 at 30 �C in shake

flasks at 150 rpm. The highest bioethanol concentra-

tion (42.3 g/L) was achieved after 48 h of incubation.

BFBW is the wet solid sediment obtained after beer

production and represents about 5% of the fermenta-

tion broth. It contains 75% liquid and the residual

yeast cells (Ha et al. 2012; Khattak et al. 2013). The

supernatant from BFBW contains high amounts of

carbon, nitrogen, and other substances such as

enzymes and yeast cells. The enzymes are derived

from malted barley during beer fermentation and are

suitable for the saccharification process (Ha et al.

2012). Khattak et al. (2013) reported the production of

bioethanol via simultaneous saccharification and fer-

mentation from BFBW supernatant in two phases. In

the first phase by gradual increase in temperature from

25 to 67 �C the production of bioethanol was up to

Oil industry wastes

• Olive oil processing wastes
• Palm oil processing wastes

Pretreatment
1.5% sulfuric acid at 161.5 oC for 9.4 min
2% sulfuric acid at 100 oC for 2 h
Hydrothermal with 0.6 M formic acid at 140-170 oC for 1 h
Microwave with 0.6 M formic acid at 140 oC for 10 min
0.5% sulfuric acid at 120 oC for 30 min and 3 M NaOH for 24 h

Enzymatic hydrolysis
Mixture of cellulase and β-glucosidase

Fermentation

Bioethanol

Fig. 6 Bioethanol production from olive and palm oil processing wastes treated with chemical/physicochemical methods and

enzymatic hydrolysis
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102.5 g/L while in the second phase at 67 �C when an

additional 3% BFBW was added into the substrate the

concentration reached to 219.0 g/l.

2.9.1 Vegetable industry wastes

In the vegetable processing industry, the main byprod-

ucts which are generated and used for bioethanol

production are the tomato pomace (TP), carrot pomace

(CP), and cruciferous vegetable residue (CVR). In the

tomato industry, tomato pomace is the residue which

is generated during the processing of tomatoes to

produce juice, paste, sauce, puree, and ketchup

(Hijosa-Valsero et al. 2019; Lenucci et al. 2013). It

is composed of skins, seeds, and vascular tissues and

represents about 4% of the whole fruit weight

(Lenucci et al. 2013). TP contains starch, cellulose,

hemicellulose, lignin, pectin, protein, fat, and inor-

ganic elements such as Ca, K, Mg, Na, P, Fe, Mn, and

Cu (Hijosa-Valsero et al. 2019). Hijosa-Valsero et al.

(2019) investigated the bioethanol production from TP

pretreated with hydrothermal process at 121 �C for

20 min followed by enzymatic hydrolysis at 50 �C for

120 h using a mixture of cellulase and endo-b-1,4-
glucanase. The hydrolysate was fermented by differ-

ent strains of yeasts and bacteria and a maximum

bioethanol concentration of 20.1–21.7 g/L was

obtained.

Carrot pomace (CP) is a residue which is generated

during the extraction of juice from the carrot. It

consists of 28% cellulose, 6.7% hemicellulose, 17.5%

lignin, and 2.1% pectin (Yu et al. 2013). Yu et al.

(2013) used CP as substrate for bioethanol production

after enzymatic hydrolysis with a mixture of enzymes

AccelleraseTM 1000 and pectinase at 50 �C for 84 h.

The fermentation was performed at 42 �C with the

thermotolerant yeast K. marxianus. The highest

bioethanol concentration was 37 g/L. In another work,

Demiray et al. (2016) reported a maximum bioethanol

concentration of 6.91 g/L after 72 h of incubation

when S. cerevisiae was grown on 12% CP supple-

mented with 0.1% (NH4)2SO4.

Cruciferous vegetables (cabbage, broccoli, and

turnip) are among the agricultural crops which are

produced in the largest amounts (Song et al. 2017). A

large quantity of cruciferous vegetables residue (CVR)

is generated during harvest and downstream produc-

tion process of these crops. CVR can be converted into

biofuels and other valuable products in order to reduce

pollution and reinvigorate the agricultural economy

(Song et al. 2017). CVR used as substrate for

bioethanol production after enzymatic hydrolysis with

cellulase and pectinase at 37 �C for 48 h followed by

fermentation with the yeast S. cerevisiae at 32 �C for

48 h. The results showed a maximum bioethanol yield

of 85.7% of the theoretical (Song et al. 2017).

2.9.2 Milk industry wastes

An important byproduct of cheese production is the

cheese whey. It is produced in large amounts and is a

significant source of environmental pollution (Akbas

and Stark 2016; Zhou et al. 2019). It has a very high

Biochemical Oxygen Demand (BOD) and Chemical

Oxygen Demand (COD) which are varied between

40,000–60,000 and 50,000–80,000 mg/L, respec-

tively (Ryan and Walsh 2016). The total worldwide

production of cheese whey is about 185 million tons

per year. It contains 4.5–5.0% lactose, 0.6–1.0%

soluble proteins, 0.4–0.5% lipids, and 6–10% mineral

salts (Zhou et al. 2019). Cheese whey powder (CWP)

is a concentrated form of cheese whey and it contains

70% lactose, 11% proteins, 7.2% moisture, and 4%

ash (Zhou et al. 2019).

Zhou et al. (2019) studied the production of

bioethanol from CWP after enzymatic hydrolysis with

b-galactosidase at 55 �C for 72 h in order to hydrolyze

lactose to glucose and galactose. The hydrolysate was

fermented by S. cerevisiae and an ethanol yield of

110 g/kg CWP was produced. Wagner et al. (2014)

reported the conversion of the remaining lactose in the

delactosed cheese whey (DCW) after electrodialysis

to bioethanol by the yeast K. marxianus. The results

showed a maximum bioethanol concentration of 11%

(v/v) after 52 h of the fermentation. Ryan and Walsh

(2016) reported the production of bioethanol from

whey permeate containing 8% lactose (after concen-

tration by reverse osmosis) by reuse the yeast K.

marxianus in repeated batch fermentation. In this case,

the bioethanol levels range from 2.5 to 4.2% (v/v).

Another byproduct of the milk industry is the

soybean waste (okara). It is a byproduct which is

generated during the processing of soymilk, tofu, and

their derivatives (Choi et al. 2015a, b). It contains

cellulose, hemicellulose, and pectin. About 14 million

tons of okara are generated annually worldwide. Choi

et al. (2015a, b) used okara as substrate for bioethanol

production after pretreatment at 121 �C for 20 min
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and enzymatic hydrolysis at 37 �C for 72 h. The

hydrolysate was fermented by S. cerevisiae and the

maximum bioethanol yield was 96.2% of the theoret-

ical. The bioethanol production from milk industry

wastes is presented in Fig. 7.

In Table 1 is presented the worldwide production

per year of some important food industry wastes used

for the production of bioethanol. The feedstocks

producing the highest bioethanol concentration as

well as the pretreatment method, microorganism,

fermentation mode, and bioethanol concentration are

summarized in Tables 2 and 3. As shown in Table 2,

the food industry wastes produce large amounts of

bioethanol in batch fermentation (21.0–219.0 g/L).

Milk industry wastes

Cheese whey Soybean waste (okara)

Enzymatic hydrolysis of lactose 
with β-galactosidase

Pretreatment at
121 oC for 20 min

Glucose and galactose Enzymatic hydrolysis
• Cellulase
• Pectinase
• Xylanase
• Polygalacturonase
• Endoglucanase
• Exoglucanase

Fermentation by
Saccharomyces cerevisiae

Fermentation by
Kluyveromyces fragilis
Kluyveromyces marxianus

Bioethanol

Fig. 7 Bioethanol production from cheese whey and soybean waste (okara) by different strains of S. cerevisiae, K. fragilis, and K.
marxianus
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The utilization of some feedstocks such as beer

fermentation broth waste, date waste syrup, potato

waste, and cane molasses results to enhanced bioetha-

nol concentration (121.0–219.0 g/L). In repeated-

batch fermentation, high yields of bioethanol

(15.1–98.6 g/L) were obtained by valorization of cane

and beet molasses, sugarcane bagasse, and corncob

residue (Table 3). In fermentations carried out by S.

cerevisiae cells immobilized on different matrices

high bioethanol yield retained for a long time

(11–60 days). In case of the rotary biofilm reactor,

the biofilm of baker’s yeast formed on the discs of the

reactor retained the ability to produce bioethanol for

60 days (Table 3). The results presented in Tables 2

and 3 show that the food industry wastes could be

evaluated as useful substrates for bioethanol produc-

tion in batch and repeated-batch fermentation.

3 Conclusion and future prospects

Food industry wastes are produced in large quantities

worldwide and cause serious environmental problems.

The conversion of a lignocellulosic substance into

bioethanol includes three steps: pretreatment, enzy-

matic hydrolysis, and fermentation. This review

provides a detailed overview of the current knowledge

on the above treatments. The problems shown during

bioethanol production from food industry wastes

should be overcome in order to decrease the produc-

tion cost. Further research is needed to identify most

efficient processes to achieve economically feasible

bioethanol production. Some alternative treatments

have been proposed in order to overcome the

problems, which appear during bioethanol production

from food industry wastes. But, the high economic

costs of these technologies and the complex substrates

used make difficult the applications of these treat-

ments in industrial scale.

The most important challenges of the current

pretreatment technologies concern: (1) the detection

of a capable microorganism or co-culture of microor-

ganisms producing the appropriate enzymes to break

down the lignocellulosic materials into sugar mono-

mers in order to obtain high bioethanol concentration

in one step, and (2) the selection of genetically

modified microorganisms to ferment directly the

lignocellulosic materials of the food industry wastes

to high bioethanol yield in order to reduce the cost of

the process. There are promising technologies for the

fully commercialization of bioethanol production

from food industry wastes. The future promising

technology for bioethanol production is the SSF

process using co-culture of microorganisms to hydro-

lyze the lignocellulosic material and convert the

simple sugars into bioethanol. This process is greener,

safer, and decreases the total production cost. More-

over, it is sustainable as the production of bioethanol is

Table 1 Global annual production of some important food industry wastes used for bioethanol production

Food industry wastes Global annual production (million tons) References

Sugarcane bagasse 279.0 Jugwanth et al. (2020)

Cheese whey 185.0 Zhou et al. (2019)

Potato wastes 108.0 Akbas and Stark (2016)

Coconut meal 44.0 Sangkharak et al. (2020)

Olive oil mill wastewater 31.5 Nikolaou and Kourkoutas (2018)

Palm wastes (oil palm and date palm) 30.0 Taghizadeh-Alisaraei et al. (2019a, b)

Cassava peel waste 14.0 Aruwajoye et al. (2020)

Soybean waste (okara) 14.0 Choi et al. (2015a, b)

Citrus peel waste 10.0 Jeong et al. (2021)

Olive mill solid waste 9.6 Abu Tayeh et al. (2020)

Apple pomace 8.0 Evcan and Tari (2015)

Tomato pomace 7.3 Hijosa-Valsero et al. (2019)

Pineapple wastes 0.6 Casabar et al. (2019)
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Table 2 Pretreatment methods, microorganisms, fermentation mode, and fermentation conditions used for the production of high

bioethanol concentration from food industry wastes in batch fermentation

Substrate Pretreatment of

substrate

Microorganism Fermentation mode Bioethanol

(g/L)

References

Sugarcane

bagasse

Alkali treatment K. marxianus 100 L rotary drum reactor (SSF

process, pH 5.0, 42 �C, 5 rpm)

24.6 Lin et al. (2013)

Soybean waste

(okara)

Hydrothermal process

and enzymatic

hydrolysis

S. cerevisiae 5 L fermenter (pH 5.0, 30 �C,
300 rpm)

59.0 Choi et al.

(2015a, b)

Date waste

syrup

Non-treated S. cerevisiae 3 L fermenter (pH 4.5, 30 �C,
static fermentation)

136.0 Acourene and

Ammouche

(2012)

Cane molasses Non-treated Baker’s yeast 2 L fermenter (pH 4.3, 30 �C,
100 rpm, aeration rate 0.3

vvm)

121.0 Jayus et al.

(2016)

Carrot pomace Non-treated K. marxianus 1 L jar fermenter (SSF process,

pH 5.0, 42 �C, 680 rpm)

37.0 Yu et al. (2013)

Beer

fermentation

broth waste

Non-treated S. cerevisiae 0.8 L jar fermenter (pH 5.2,

25–67 �C, 50 rpm)

219.0 Khattak et al.

(2013)

Bakery wastes Enzymatic hydrolysis S. cerevisiae 0.5 L fermenter (pH 5.5, 30 �C,
400 rpm)

46.6 Han et al. (2019)

Coffee waste

(husk)

Acid and enzymatic

hydrolysis

S. cerevisiae Shaker incubator (pH 5.0,

30 �C, 100 rpm)

132.2 Dadi et al.

(2018)

Potato waste Non-treated Co-culture A.
niger and S.
cerevisiae

Shaker incubator (pH 6.0,

30 �C, 150 rpm)

125.0 Pinaki and

Lhakpa (2016)

Delactosed

whey

permeate

Electrodialysis K. marxianus Shaker incubator (pH 5.5,

30 �C, 100 rpm)

86.8 Wagner et al.

(2014)

Orange peel

waste

hydrolysate

Non-treated S. cerevisiae Shaker incubator (pH 4.8,

37 �C, 100 rpm)

72.0 Kyriakou et al.

(2019)

Brewer’s spent

grain waste

Autohydrolysis and

enzymatic hydrolysis

S. cerevisiae Shaker incubator (pH 4.8,

30 �C, 150 rpm)

42.3 Pinheiro et al.

(2019)

Cheese whey

powder

Enzymatic hydrolysis S. cerevisiae Shaker incubator (pH 5.5,

30 �C, 150 rpm)

22.0 Zhou et al.

(2019)

Tomato

pomace

Hydrothermal process

and enzymatic

hydrolysis

S. cerevisiae Shaker incubator (pH 5.0,

30 �C, 150 rpm)

21.0 Hijosa-Valsero

et al. (2019)

Sweet potato

residues

Enzymatic hydrolysis S. cerevisiae Erlenmeyer flask (static

fermentation, pH 4.8, 30 �C)
79.0 Wang et al.

(2016)

Deoiled rice

bran

Non-treated S. cerevisiae Erlenmeyer flask (static

fermentation, pH 6.0, 30 �C)
76.4 Agrawal et al.

(2019)

Cassava peel

waste

Acid hydrolysis S. cerevisiae Erlenmeyer flask (static

fermentation, pH 4.0–6.0,

20 �C)

28.2 Abidin et al.

(2014)

Apple pomace Non-treated S. cerevisiae and

A. APW-12

Erlenmeyer flask (SSF process,

pH 6.0, 30 �C)
49.6 Kumar et al.

(2020)

Pineapple

waste

Non-treated S. bayanus Erlenmeyer flask (SSF process,

pH 5.0, 28 �C)
42.6 Gil and

Maupoey

(2018)
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based on the use of renewable and biological

resources.

The promising food industry wastes for bioethanol

production in large scale are the following: cane and

beet molasses, date waste, and beer fermentation

broth. The above feedstocks contain sugars which can

be directly fermented to high bioethanol yield using

different strains of S. cerevisiae without pretreatment

of the substrate which is an expensive method and

increases the final cost of the product. In addition, the

cheese whey could be used as a promising food

industry waste for the production of bioethanol for the

reasons below: (1) it is produced in large amounts, (2)

it is easily hydrolysed by the commercial enzyme b-
galactosidase into simple sugars in order to be utilized

by the yeast S. cerevisiae to produce high bioethanol

concentration and (3) it can be utilized directly

(without enzymatic hydrolysis) for bioethanol pro-

duction by the yeasts K. fragilis or K. marxianus. In

this case, the disadvantage is the low concentration of

the product. This can be overcome after suitable se-

lection of a genetically modified strain of the above

yeasts. Also, the sugarcane bagasse, potato wastes, and

fruit industry wastes which are produced in large

amounts could be used for bioethanol production in

industrial scale using co-culture of microorganisms for

efficient bioethanol production with low cost.
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