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Abstract Polyhydroxyalkanoates (PHA) are a group

of biopolymers produced naturally by microorganisms

with properties similar to various petroleum-based

plastics. However, to date their commercial produc-

tion has remained uncompetitive due to substrate,

sterilization, aeration and processing costs. Purple

non-sulfur bacteria (PNSB) are a group of anoxygenic

photoheterotrophic bacteria that have the ability to

accumulate PHA under unbalanced conditions in

anaerobic environments and constant feeding with

high conversion ratios. Such characteristics could

potentially overcome some of the bottlenecks of

conventional chemoheterotrophic PHA production.

Yet these organisms have received relatively limited

attention. This review explores the factors involved in

the PHA accumulation process from PNSB, highlight-

ing the differences to conventional PHA production

and the areas yet to be optimized. The roles of

fermentation systems, carbon substrate, feeding con-

ditions, nutrients, pH and various aspects of light are

reviewed to understand their role in PHA accumula-

tion in PNSB.

Keywords Anoxygenic phototrophs �
Polyhydroxyalkanoates � Bioplastic � Biodegradable
polymers � Polyhydroxybutrate (PHB)

1 Introduction

Single-use plastics have revolutionized modern life

since their commercialization. However, their dis-

posal is challenging as the majority of plastics are non-

biodegradable and can remain in the environment

more than 100 years before decomposing. While other

sources of biodegradable bioplastics are available,

polyhydroxyalkanoates (PHA) are one of the most

promising bioplastic options due to their similar

properties to polyethylene (Sathya et al. 2018) and

ability to produce them through microbial conversion

from a wide range of organic waste streams. Despite

these benefits, PHA produced commercially via single

culture aerobic fermentation processes are currently

uncompetitive in the market due to their high produc-

tion costs. Significant costs are associated with high

purity feedstocks, sterilization, aeration, and down-

stream processing. Microbial mixed culture (MMC)

systems dominated by purple non-sulfur bacteria

(PNSB) could potentially reduce the production costs

of PHA, as PNSB are phototrophic and grow under

anaerobic conditions, allowing easy enrichment with-

out aeration. Moreover, their phototrophic metabolism
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allows high carbon to PHA conversion ratios and they

are capable of using a wide range of carbon sources to

grow. Recent research revealed that PHA accumula-

tion occurs in parallel with cell growth in PNSB,

unlike many chemoheterotrophs where PHA accumu-

lation is a means of storing carbon that cannot be

directed towards cell growth under concurrent condi-

tions (Higuchi-Takeuchi and Numata 2019). Further-

more, it was established that mixed phototrophic

bacteria can grow under continuous substrate avail-

ability, avoiding unproductive time associated with

famine periods during the common feast-famine

feeding approach used to drive PHA storage in aerobic

PHA fermentation (Fradinho et al. 2016). Previous

reviews examined PHA production in various

microorganisms (Verlinden et al. 2007; Serafim et al.

2008; Urtuvia et al. 2014; Dietrich et al. 2017; Sali and

Mackey 2021) and explored the various types of PNSB

microorganisms (Imhoff et al. 2005; Kompantseva

et al. 2010; Imhoff 2017a). However, while biohydro-

gen production using PNSB has received significant

attention (Ismail et al. 2008; Carlozzi and Lambardi

2009; Laurinavichene et al. 2018), this review focuses

specifically on PNSB application for PHA production.

Given the recent and rapidly growing research in this

area (Tanskul et al. 2016; Padovani et al. 2018;

Fradinho et al. 2019; Higuchi-Takeuchi and Numata

2019), this manuscript explores the potential and

bottlenecks for PHA production using PNSB within

the fermentation process. Aspects related to biomass

harvesting and PHA extraction, which are less specific

to PNSB and well-covered elsewhere (Molina Grima

et al. 2003; Christenson and Sims 2011; Anis et al.

2013; Villano et al. 2014; Samorı̀ et al. 2015) are

beyond the scope of this review.

2 Polyhydroxyalkanoates

PHA are polyesters produced naturally by various

microorganisms. They are stored intracellularly as

spherical polymers as a source of energy, carbon or

reducing equivalents under unbalanced conditions as a

survival strategy (Sathya et al. 2018; Tamang et al.

2019). PHA are both bio-based and biodegradable

plastics with a short decomposition time once dis-

posed into various types of environments, including

marine environments. The decomposition duration

varies from 3 to 18 months depending on the

environment conditions, monomer type and bacteria

present (Brandl et al. 1990; Verlinden et al. 2007;

Voinova et al. 2008; Chee et al. 2010). For these

reasons, PHA production has received significant

attention in recent years to overcome the negative

environmental impacts associated with petroleum-

based plastics. Currently, there are more than 300

genera of bacteria with the ability to store PHA

naturally (Choi and Lee 1999) with some prokaryote

strains reported to accumulate up to 90% of their cell

dry weight (CDW) as PHA under specific conditions

(Mo _zejko-Ciesielska and Kiewisz 2016). The best

PHA storage conditions in traditionally applied aero-

bic cultures reported are under nutrient limitation,

excess of carbon and intermittent feeding (Marang

et al. 2018).

2.1 PHA properties

More than 150 hydroxyalkanoic acids can constitute

PHA. The most widespread monomer is poly(3-

hydroxyburtyrate) (PHB), but other common PHA

monomers include poly(3-hydroxyvalerate) (PHV)

and poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

(PHBV). Other types of monomers can be composed

of polyhydroxyvalerate (PHV), 3-hydroxyhexanoate

(3HHx) and 3-hydroxyheptanoate (3HHp) (Chee et al.

2010). These PHA monomers qualify as short chain

length (SCL), which consist of three to five carbons in

a chain (Sharma et al. 2017). Medium chain length

(MCL) PHA are composed of six to 14 carbons in a

chain. They typically include monomers such as

3-hydroxyoctanoate (3HO), 3-hydroxydecanoate

(3HD) and 3-hydroxydodecanoate (3HDD) (Rigouin

et al. 2019).

PHA are biodegradable amorphous polymers with

versatile properties and wide functionality (Koller and

Braunegg 2018), which makes them a suitable candi-

date for bioplastic production. They have thermoplas-

tic and elastomeric properties comparable to

petroleum-based plastics such as polypropylene (PP)

and polyethylene (PE) plastics (Bugnicourt et al.

2014). In particular, they have high resistance to

ultraviolet light, oxygen permeability and are moisture

resistant (Verlinden et al. 2007).

Their mechanical properties vary significantly

depending on factors such as the monomer type(s),

bacterial strains involved and their environmental

conditions (Dietrich et al. 2017), as well as resulting
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molecular weight of the extracted PHA. SCL-PHA

have high crystallinity, are brittle and demonstrate

high melting temperatures (Castilho et al. 2009), while

MCL-PHA are slightly flexible with a high elongation

to break ratio, low melting temperatures and enhanced

mechanical properties (Mo _zejko-Ciesielska and Kie-

wisz 2016). PHB are the most commonly found

polymer, but SCL-PHA have displayed 70 to 80%

crystallinity causing their low resistance to brittle

fractures (Bugnicourt et al. 2014). From a commercial

perspective, PHV and MCL-PHA have a higher

potential than the more commonly produced PHB.

2.2 Production process

Commercial PHA production is currently estimated to

be 66,000 t y-1 (Vandi et al. 2018). The current

commercial production processes rely on pure bacte-

rial species like Cupriavidus necator and pure sources

of carbon (Vandi et al. 2018; Tamang et al. 2019).

While these approaches achieve high PHA storage and

productivity, they do not enable PHA to compete

against petroleum-based plastics due to high costs of

substrate, sterilization and energy associated with

aeration (Fradinho et al. 2013a). MMC, on the other

hand, could eliminate the need for sterilization and

allow use of diverse sources of substrate, which

reduces overall production costs (Serafim et al. 2008).

Although the economic and environmental benefits of

such system are advantageous, MMC have not reached

industrialization level yet due to challenges in polymer

consistency and lower culture densities. Because the

biopolymers are intracellularly stored and undergo

extraction processes that destroy the cell, risks of

unknown organisms frequently associated with MMC

processes are not a significant issue for PHA

production.

PHA production is a complex process that requires

the optimization of various factors. Strain selection,

adequate carbon source, suitable environmental con-

ditions and bioreactor design are key to achieving an

enhanced PHA production system. The selection of

pure or mixed cultures as well as the purity and

composition of carbon substrate can affect the storage

abilities of the microorganisms. Predicting the mono-

mer composition can be challenging due to the

different metabolic pathways of carbon to PHA

conversion. The same bacteria can produce PHA with

different composition and properties due to the carbon

present in the environment. Three metabolic pathways

are identified for PHA production and can result in

either SCL-PHA when the precursors are simple

sugars via TCA (tricarboxylic acid) cycle or MCL-

PHA when the precursors are fatty acids via b-
oxidation and/or simple carbons via the de novo fatty

acids pathway (Kniewel et al. 2019).

Various substrates have been effectively utilized

for PHA production via the microbial route (Jiang

et al. 2016). Carbohydrates such as simple sugars are

quickly digested by bacteria for PHA production. For

instance, whey, a precursor of lactose, has been used as

the primary carbon source by both Povolo et al. (2013)

and Ahn et al. (2000), and resulted in a mixture of 3HV

and 4HB monomers by Hydrogenophaga pseudoflava

in the former case and only 3HB monomers by E. coli

in the latter. While carbohydrates have shown some

promising results, they also represent a major food

source for human beings and therefore are considered

as competition and non-sustainable carbon sources.

Animal fats and plant oils are composed of triacyl-

glycerols, which have demonstrated good SCL-PHA

accumulation in the case of plants oils (Akiyama et al.

1992) and MCL-PHA in the case of esters from the

long-chain fatty acids present in animal fats (Muhr

et al. 2013). Nonetheless, these long-chain fatty acids

have major drawbacks such as high melting temper-

atures required for their fermentation, their immiscible

properties and their inhibitory nature at high concen-

trations (Akiyama et al. 1992; Zhu et al. 2010). On the

other hand, short-chain fatty acids such as acetate and

propionate were preferred by various PHA-producing

bacteria (Montano-Herrera et al. 2017). However, the

ratio of even-chain (i.e. acetate) to odd-chain (i.e.

propionate) can play a significant role in the monomer

composition since acetate and propionate are known

precursors to HB and HV monomers, respectively

(Akiyama et al. 1992). Studies about hydrocarbons to

PHA conversion are still limited, but the published

data reports that hydrocarbons’ productivity is low

(Brandl et al. 1988; Chayabutra and Ju 2001; Ni et al.

2010; Tufail et al. 2017). Nevertheless, their capability

to produce MCL-PHA is better due to their longer

carbon chain monomers (Ward et al. 2006) and,

therefore, are promising substrates for PHA produc-

tion with enhanced properties. Additionally, environ-

mental conditions such as feeding regimen, pH and

nutrients availability, mixing and light availability (for

phototrophs) all play a role in the biomass growth and
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PHA production. For phototrophic systems in partic-

ular, bioreactor dimensions and lighting layout are

essential design considerations to maintain suit-

able light availability.

3 Purple non-sulfur bacteria

PNSB are a subset of anoxygenic phototrophic

bacteria that grow by feeding photoheterotrophically

on carbon substrates under anoxygenic conditions and

have the ability to accumulate PHA, polyphosphate

and polysaccharides among many others (Imhoff et al.

2005; Higuchi-Takeuchi et al. 2016a; Lai et al. 2017).

Table 1 summarizes some of the main findings for

PHA accumulation by PNSB. They are mainly found

in aquatic and marine environments that experience

some degree of light exposure such as soil and

wastewater (Madigan and Jung 2009). PNSB have

diverse metabolic capabilities including the ability to

conduct three important biological reactions; the

conversion of light into chemical energy and the

fixation of both CO2 and N2 (Higuchi-Takeuchi and

Numata 2019). These reactions make using PNSB an

environmentally friendly option for various applica-

tions. PNSB can switch between various metabolic

modes for growth, with photoheterotrophic growth

being the preferred. Most types of PNSB were

reported to grow rapidly in environments with high

content of organic compounds and show good toler-

ance to compounds typically considered toxic (Garcı́a

et al. 2019). PNSB have the photochemical reaction

center photosystem II (Hanada 2016). This has a

maximum absorption in the infrared (IR) region of the

spectrum, which provides an advantage for the tissue

penetration (Wu and Butt 2017), and has a minimum

adsorption in the blue light range (Zhou et al. 2015a).

PNSB contain carotenoids, BChls, high protein con-

tent, biopolymers and pantothenic acids, all of which

have been explored for further applications (Merugu

et al. 2012).

PNSB belong to the Proteobacteria phylum. Cur-

rently, more than 20 genera and 95 species of PNSB

are recognized and classified as either Alpha-pro-

teobacteria or Beta-proteobacteria (Imhoff 2017b).

They come in different shapes such as rods, spirilla,

vibrios and cocci as well as various colors including

purple, red, orange, pink and brown, which are results

of blends of various photo-pigments (Madigan and

Jung 2009). These photopigments in PNSB are a

mixture of carotenoids and BChls. Their main role is

light harvesting and conversion to chemical energy.

The presence of oxygen can halt their photo-

heterotrophic metabolism but varies significantly

depending on species (Madigan and Jung 2009).

While there exists a group of anoxygenic phototrophic

bacteria (APB) that can grow in the presence of

oxygen, commonly known as aerobic APB, they are

beyond the scope of this review.

PNSB absorbance spectrum covers all of the visible

range as well as the IR and UV ranges (Adessi and De

Philippis 2014). Carotenoids absorb light in the range

of 400-595 nm, while BChl a absorb light ranging

from 805 to 930 nm and BChl b absorb lights beyond

1000 nm (Hülsen et al. 2014; Zhou et al. 2015a). PNSB

can therefore utilize various wavelengths of light to

produce chemical energy, with the primary advantage

being their ability to utilize IR light, even with very

narrow bandwidth such as with laser diodes (Bertling

et al. 2006).

3.1 Metabolism

PNSB have a versatile metabolism and switch

between various metabolic growth modes according

to the environment’s conditions and demands. Higher

growth is often observed under photoheterotrophic

and photoautotrophic conditions (Pfennig et al. 1997),

but PNSB can also grow under chemoheterotrophic

mode (Kantachote et al. 2005). However, their activ-

ities reduce under such conditions as they do not

utilize light, but rather rely on organic and inorganic

carbon sources as electron donors and acceptors,

respectively (Lai et al. 2017; Garcı́a et al. 2019).

PNSB cannot utilize water as an electron donor and

rather rely on organic compounds and sulfide (Imhoff

et al. 2005; Hanada 2016). Under a photoautotrophic

mode, PNSB use light as an energy source and sulfide

or hydrogen as electron donor and CO2 as an electron

acceptor. Under a photoheterotrophic mode, PNSB

utilize organic compounds like organic acids as

electron donors, as well as light as energy source

(Hülsen et al. 2014). This is their preferred mode of

growth. Photoheterotrophic production of PHA is the

predominant route in PNSB, but photoelectroau-

totroph and photoferroautotrophic routes have been

reported with Rhodopseudomonas palustris TIE-1.

123

962 Rev Environ Sci Biotechnol (2021) 20:959–983



T
a
b
le

1
S
u
m
m
ar
y
o
f
st
u
d
ie
s
o
n
P
H
A

ac
cu
m
u
la
ti
o
n
in

P
N
S
B

m
ic
ro
rg
an
is
m
s

C
u
lt
u
re
/G
en
er
a

S
u
b
st
ra
te

L
ig
h
t
co
n
d
it
io
n

F
ee
d
in
g

m
o
d
e

B
io
m
as
s

y
ie
ld

P
H
A

C
D
W

P
H
A

y
ie
ld

(C
m
o
l
C
m
o
l-

1
)

P
H
A

co
m
p
o
si
ti
o
n

H
B
:H
V

R
ef
s.

R
h
o
d
o
b
a
ct
er

sp
h
a
er
o
id
es

A
ce
ta
te

1
0
0
0
lx

B
at
ch

–
6
9
.9
%

–
9
2
.7
:7
.3

L
ie
b
er
g
es
el
l
et

al
.
(1
9
9
1
)

A
ce
ta
te

In
ca
n
d
es
ce
n
t
li
g
h
t

1
5
0
0
lx

B
at
ch

–
7
0
%

–
–

H
u
st
ed
e
et

al
.
(1
9
9
3
)

A
ce
ta
te

In
ca
n
d
es
ce
n
t
li
g
h
t

5
5
0
0
lx

B
at
ch

–
4
0
%

–
1
0
0
:0

K
h
at
ip
o
v
et

al
.
(1
9
9
8
b
)

L
ac
ta
te

In
ca
n
d
es
ce
n
t
li
g
h
t

5
5
0
0
lx

B
at
ch

–
1
5
%

–
1
0
0
:0

K
h
at
ip
o
v
et

al
.
(
1
9
9
8
b
)

P
y
ru
v
at
e

In
ca
n
d
es
ce
n
t
li
g
h
t

5
5
0
0
lx

B
at
ch

–
2
0
%

–
1
0
0
:0

K
h
at
ip
o
v
et

al
.
(
1
9
9
8
b
)

A
ce
ta
te

an
d

m
al
at
e

(1
2
2
:7
.5

m
o
la
r

ra
ti
o
)

–
B
at
ch

*
0
.1

g
g
-
1

*
0
.4

g
g
-
1
o
n
H
A
c

al
o
n
e

5
3
.4
%

–
9
8
:2

B
ra
n
d
l
et

al
.
(
1
9
9
1
)

D
ar
k

fe
rm

en
ta
ti
o
n

ef
fl
u
en
t

F
lu
o
re
sc
en
t
la
m
p
s

4
0
0
0
lx

B
at
ch

0
.4
5
g
-T
S
S
.g
-C
O
D
-
1

3
2
.5
%

(3
9
.2
%

m
ax
)

0
.2
7
3
g
-P
H
B
.g
-

C
O
D
-
1

–
G
h
im

ir
e
et

al
.
(2
0
1
6
)

M
u
n
ic
ip
al

so
li
d

w
as
te

F
lu
o
re
sc
en
t
la
m
p
s

4
0
0
0
lx

B
at
ch

0
.2
7
7
g
-T
S
S
.g
-
1

–
0
.1
5
5
g
-P
H
B
.g
-

C
O
D
-
1

–
L
u
o
n
g
o
et

al
.
(2
0
1
7
)

R
h
o
d
o
b
a
ct
er

ca
p
su
la
tu
s

D
ar
k

fe
rm

en
ta
ti
o
n

ef
fl
u
en
t

L
E
D

an
d
h
al
o
g
en

la
m
p
s

3
0
0
0
lx

B
at
ch

–
2
4
%

–
–

M
o
n
ti
el

C
o
ro
n
a
et

al
.
(2
0
1
7
)

D
ar
k

fe
rm

en
ta
ti
o
n

ef
fl
u
en
t

L
E
D

an
d
h
al
o
g
en

la
m
p
s

3
0
0
0
lx

B
at
ch

–
5
%

–
–

M
o
n
ti
el
-C
o
ro
n
a
et

al
.
(2
0
1
5
)

R
h
o
d
o
p
se
u
d
o
m
o
n
a
s

p
a
lu
st
ri
s

A
ce
ta
te

S
u
n
li
g
h
t

S
em

i-

co
n
ti
n
u
o
u
s

0
.7

g
g
H
A
c-

1
4
%

–
–

C
ar
lo
zz
i
an
d
S
ac
ch
i
(2
0
0
1
)

B
u
ty
ra
te

8
,1
0
0
lx

B
at
ch

–
7
%

–
1
0
0
:0

P
ad
o
v
an
i
et

al
.
(2
0
1
6
)

1
0
,0
0
0
lx

B
at
ch

–
3
4
%

–
6
2
:3
8

M
u
k
h
o
p
ad
h
y
ay

et
al
.
(2
0
0
5
)

A
ce
ta
te

In
ca
n
d
es
ce
n
t
la
m
p

1
0
,8
0
0
lx

B
at
ch

0
.4
4
g
g
H
A
c-

1
1
.1
%

–
–

D
e
P
h
il
ip
p
is

et
al
.
(1
9
9
2
)

M
al
at
e

In
ca
n
d
es
ce
n
t
la
m
p

9
2
0
0
lx

S
em

i-

co
n
ti
n
u
o
u
s

0
.5
1
g
g
m
al
at
e-

1
1
8
%

–
–

V
in
ce
n
zi
n
i
et

al
.
(1
9
9
7
)

123

Rev Environ Sci Biotechnol (2021) 20:959–983 963



T
a
b
le

1
co
n
ti
n
u
ed

C
u
lt
u
re
/G
en
er
a

S
u
b
st
ra
te

L
ig
h
t
co
n
d
it
io
n

F
ee
d
in
g

m
o
d
e

B
io
m
as
s

y
ie
ld

P
H
A

C
D
W

P
H
A

y
ie
ld

(C
m
o
l
C
m
o
l-

1
)

P
H
A

co
m
p
o
si
ti
o
n

H
B
:H
V

R
ef
s.

R
h
o
d
o
p
se
u
d
o
m
o
n
a
s

p
en
to
th
en
a
te
xi
g
en
s

G
ly
ce
ro
l

9
3
0
0
lx

B
at
ch

–
1
8
%

–
1
0
0
:0

P
ad
o
v
an
i
et

al
.
(2
0
1
8
)

R
h
o
d
o
p
se
u
d
o
m
o
n
a
s

a
ci
d
o
p
h
il
a

V
al
er
at
e

1
0
0
0
lx

B
at
ch

–
5
1
.8
%

–
8
.9
:9
1
.1

L
ie
b
er
g
es
el
l
et

al
.
(1
9
9
1
)

R
h
o
d
o
p
se
u
d
o
m
o
n
a
s
sp
.

S
1
6
-V

O
G
S
3

L
ac
ta
te

S
u
n
li
g
h
t

B
at
ch

–
1
9
.6
%

–
–

C
ar
lo
zz
i
et

al
.
(2
0
1
8
)

A
ce
ta
te

H
al
o
g
en

la
m
p

9
3
0
0
lx

B
at
ch

–
2
4
.6
%

–
–

C
ar
lo
zz
i
et

al
.
(2
0
1
9
a)

B
u
ty
ra
te

H
al
o
g
en

la
m
p

9
3
0
0
lx

B
at
ch

–
2
7
.6
%

–
–

C
ar
lo
zz
i
et

al
.
(2
0
1
9
a)

R
h
o
d
o
sp
ir
il
lu
m

ru
b
ru
m

A
ce
ta
te

In
ca
n
d
es
ce
n
t
li
g
h
t

1
5
0
0
lx

B
at
ch

–
5
3
%

–
–

H
u
st
ed
e
et

al
.
(1
9
9
3
)

B
u
ty
ra
te

–
B
at
ch

–
4
6
.8
%

–
–

B
ra
n
d
l
et

al
.
(1
9
8
9
)

R
h
o
d
o
vu
lu
m

su
lfi
d
o
p
h
il
u
m

P
y
ru
v
at
e

F
ar
-r
ed

L
E
D

li
g
h
t

1
0
0
0
lx

B
at
ch

–
2
5
%

–
1
0
0
:0

H
ig
u
ch
i-
T
ak
eu
ch
i
et

al
.
(2
0
1
6
b
)

A
ce
ta
te

F
ar
-r
ed

L
E
D

li
g
h
ts

1
0
0
0
lx

B
at
ch

–
5
5
%

–
–

H
ig
u
ch
i-
T
ak
eu
ch
i
an
d
N
u
m
at
a

(2
0
1
9
)

R
u
b
ri
vi
va
x

b
en
zo
a
ti
ly
ti
cu
s

P
y
ru
v
at
e

2
4
0
0
lx

–
–

8
5
%

–
–

R
am

an
a
et

al
.
(2
0
0
6
)

123

964 Rev Environ Sci Biotechnol (2021) 20:959–983



T
a
b
le

1
co
n
ti
n
u
ed

C
u
lt
u
re
/G
en
er
a

S
u
b
st
ra
te

L
ig
h
t
co
n
d
it
io
n

F
ee
d
in
g

m
o
d
e

B
io
m
as
s

y
ie
ld

P
H
A

C
D
W

P
H
A

y
ie
ld

(C
m
o
l
C
m
o
l-

1
)

P
H
A

co
m
p
o
si
ti
o
n

H
B
:H
V

R
ef
s.

R
o
se
o
sp
ir
a
m
a
ri
n
a

P
y
ru
v
at
e

F
ar
-r
ed

L
E
D

li
g
h
t

1
0
0
0
lx

B
at
ch

–
4
%

–
9
.8
:9
0
.2

H
ig
u
ch
i-
T
ak
eu
ch
i
et

al
.
(2
0
1
6
b
)

M
ix
ed

p
h
o
to
sy
n
th
et
ic

cu
lt
u
re

A
ce
ta
te

H
al
o
g
en

la
m
p
s

1
6
,0
0
0
lx

B
at
ch

0
.6
4
(C
m
o
l
C
m
o
l-

1
)

6
0
%

0
.6
7
(P
H
B
)

–
F
ra
d
in
h
o
et

al
.
(2
0
1
6
)

A
ce
ta
te

L
ig
h
t/
D
ar
k

co
n
d
it
io
n
s

1
6
,0
0
0
lx

B
at
ch

–
3
0
%

0
.7
1
(P
H
A
)

–
F
ra
d
in
h
o
et

al
.
(2
0
1
3
b
)

A
ce
ta
te

H
al
o
g
en

la
m
p
s

1
9
,0
0
0
lx

B
at
ch

–
2
0
%

0
.7
0
(P
H
A
)

–
F
ra
d
in
h
o
et

al
.
(2
0
1
3
a)

P
ro
p
io
n
at
e

H
al
o
g
en

la
m
p
s

1
9
,0
0
0
lx

B
at
ch

–
–

0
.6
7
(P
H
B
)

5
1
:4
9

F
ra
d
in
h
o
et

al
.
(2
0
1
4
)

A
ce
ta
te

an
d

b
u
ty
ra
te

L
E
D

li
g
h
t

6
7
l
m
o
l.
m

-
2
.s
-
1

B
at
ch

0
.3
1
g
g
-
1

0
.3
8
g
g
-H

A
c-

1

0
.1
7
g
g
-B
u
ty
ra
te
-
1

4
4
%

–
–

G
u
er
ra
-B
la
n
co

et
al
.
(2
0
1
8
)

W
in
er
y

w
as
te
w
at
er

L
E
D

li
g
h
t

4
0
0
0
lx

B
at
ch

0
.0
0
7
g
-T
S
S
.g
-C
O
D
-
1

–
0
.0
0
1
g
-P
H
B
.g
-

C
O
D
-
1

–
P
o
li
ca
st
ro

et
al
.
(2
0
2
0
)

M
u
n
ic
ip
al

so
li
d

w
as
te

F
lu
o
re
sc
en
t
la
m
p
s

4
0
0
0
lx

B
at
ch

0
.2
2
1
g
-T
S
S
.g
-
1

–
0
.5
5
g
-P
H
B
.g
-

C
O
D
-
1

–
L
u
o
n
g
o
et

al
.
(2
0
1
7
)

D
ar
k

fe
rm

en
ta
ti
o
n

ef
fl
u
en
t

F
lu
o
re
sc
en
t
la
m
p
s

4
0
0
0
lx

B
at
ch

0
.4
2
g
-T
S
S
.g
-C
O
D
-
1

2
4
%

0
.2
1
2
g
-P
H
B
.g
-

C
O
D
-
1

–
G
h
im

ir
e
et

al
.
(
2
0
1
6
)

C
h
ee
se

w
h
ey

H
al
o
g
en

la
m
p
s

1
9
,0
0
0
lx

B
at
ch

–
2
0
%

0
.5
5
-0
.6
0
(P
H
A
)

8
8
:1
2

F
ra
d
in
h
o
et

al
.
(
2
0
1
9
)

F
o
o
d
w
as
te

In
fr
ar
ed

la
m
p
s

4
5
W
.m

-
2

B
at
ch

0
.7
4
g
-V

S
S
.g
-S
C
O
D
-
1

1
9
%

–
–

A
ll
eg
u
e
et

al
.(
2
0
2
0
)

D
o
m
es
ti
c

w
as
te
w
at
er

H
al
o
g
en

la
m
p

3
1
5
.6

W
.m

-
2

B
at
ch

0
.2
4
C
m
m
o
l-
X
.C
m
m
o
l-

S
-
1

3
0
.8

%
0
.7
5
(P
H
A
)

8
5
:1
5

A
lm

ei
d
a
et

al
.
(2
0
2
1
)

C
m
o
l
ca
rb
o
n
m
o
le
s,
H
B
h
y
d
ro
x
y
b
u
ty
ra
te
,
H
V
h
y
d
ro
x
y
v
al
er
at
e,

C
D
W

ce
ll
d
ry

w
ei
g
h
t,
H
A
c
ac
et
ic

ac
id

123

Rev Environ Sci Biotechnol (2021) 20:959–983 965



Under these two growth modes, PHA production was

more efficient using photoelectroautotrophy but had

higher rates with photoferroautotrophy (Ranaivoar-

isoa et al. 2019).

PHA accumulation routes via PNSB are complex

and vary based on various parameters including strain

of bacteria, carbon substrate and metabolic pathway.

Three biosynthetic enzymes are involved in the

accumulation of 3HB, the most commonly synthe-

sized and extensively studied monomers. Two acetyl-

CoA molecules are merged by 3-ketothiolase (PhaA)

enzyme to produce acetoacetyl-CoA. The acetoacetyl-

CoA reductase (PhaB) enzyme reduces acetoacetyl-

CoA to 3-hydroxybutyryl-CoA. Ultimately, 3-hydrox-

ybutyryl-CoA is polymerized into PHB via PHB

synthase (PhaC) enzyme (Verlinden et al. 2007). Yet,

the conversion of organic substrates to acetyl-CoA, an

important precursor to PHB accumulation, can follow

different biochemical pathways. Pure PNSB strains

can produce PHA through different pathways under

the same carbon substrate. For instance, acetate

assimilation for PHA production in Rhodobacter

sphaeroides has been reported via the ethylmalonyl-

CoA pathway, Rhodobacter capsulatis via the TCA

cycle and Rhodopseudomonas palustris via the gly-

oxylate cycle (Kars and Gündüz 2010). While acetate

typically results in the production of 3HB monomers

(Özsoy Demiriz et al. 2019), their ratio can be

impacted by the acetate assimilation pathways

explained in Fig. 1 (Montiel-Corona et al. 2015).

The PNSB preference for acetate as a substrate for the

production of PHA has been reported repeatedly. A

study by Higuchi-Takeuchi et al. (2019) revealed that

anaerobic conditions were essential for the high

production of PHA in marine PNSB as these condi-

tions enhanced the expression levels of IDH (isocitrate

dehydrogenase), which is a key enzyme in the

catalyzation of isocitrate to b-ketoglutarate in the

TCA cycle. Other PNSB such as Rhodobacter

sphaeroides and Rhodospirillum rubrum are incapable

of isocitrate lyase, but they still assimilate acetate via

anaplerotic pathways (Petushkova et al. 2019). The

ethylmalonyl-CoA assimilation pathway is triggered

by the presence of malate synthase in bacteria that do

not contain isocitrate lyase to produce C5-acids (Erb

et al. 2007). Substrates such as lactate and malate can

easily be oxidized to pyruvate, which is then trans-

formed to acetyl-CoA. Other substrates need to go

through one of the anaplerotic pathways to enter the

TCA cycle (Montiel-Corona and Buitrón 2021).

3.2 Ecology

Most PNSB thrive in environments with mesophilic

temperatures and neutral pH. However, a number of

PNSB genera have the ability to withstand environ-

ments with extreme temperatures, varying pH and

elevated salinity, provided that the environment is

anoxygenic or microaerobic (Tanskul et al. 2016). For

instance, PNSB have been isolated from thermal

springs and alkaline lakes at temperatures beyond

50 �C (Favinger et al. 1989; Imhoff et al. 2005; Kumar

et al. 2013). Rhodopseudomonas palustris, Rhodomi-

crobium vannielii and Rubrivivax gelatinosus were all

recovered from a Russian hot spring with temperatures

of 72–74 �C and pH beyond 9 (Namsaraev et al.

2003), although further testing revealed that these

conditions were not optimal for growth.

PNSB can inhabit a wide range of salinity envi-

ronments. Microorganisms such as Roseospira,

Rhodovibrio, and Rhodovulum are classified as

slightly halophilic PNSB (Imhoff 2017b). Rhodovib-

rio sodomensis, recovered from the Dead Sea, has

shown optimal growth at 12% salinity, but adapted to

environments with 6–21% salinity (Mack et al. 1993).

Similarly, Rhodothalassium salexigens, reached an

optimal growth in an environment with 7% salinity,

but withstands environments with 20% salinity

(Kanekar et al. 2012; Imhoff 2017b). The photosyn-

thesis ability of PNSB tends to be limited in environ-

ments with salinity beyond 32% (Garcı́a et al. 2019)

but the ability to withstand saline conditions provides

a promising additional selective pressure for these

organisms in mixed culture heterotrophic conditions.

Although it is reported that PNSB thrive in a neutral

or slightly acidic environments, some types of PNSB

have the ability to grow in strongly alkaline or acidic

environments. The Yellowstone National Park

encloses warm springs with pH ranging from 3.5 to

4.9, where Rhodopila globiformisi was recovered

(Pfennig 1974). Rhodomicrobium vannielii and

Rhodoblastus acidophilus were recovered from vari-

ous hot acidic lakes in the United States and Germany

with pH varying between 4.8 and 7.2 (Pfennig 1969).

Alkaline soda lakes are also extreme environments

with pH ranging from 8.1 to 10.6, where growth of
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Rhodovulum and Rhodobaca strains was reported

(Kompantseva et al. 2010).

4 Influencing Factors of PNSB PHA Storage

4.1 Carbon substrate

PNSB feed on various types of organic acids, fatty

acids and sugars (Madigan and Jung 2009). They also

consume short-chain alcohols and inorganic carbon

sources (Madigan and Jung 2009; Talaiekhozani and

Rezania 2017). The consumption of carbon substrate

varies according to the PNSB species. For instance,

although belonging to same genus, the strain

Rhodospirillum rubrum is known for not taking up

glycerol and mannitol, yet Rhodospirillum photomet-

ricum consumes these substrates (Imhoff et al. 2005).

Regardless, it is agreed upon that excess of carbon

substrate is a key enabler for PHA accumulation.

Various experiments explored PNSB strains and

their preference towards specific carbon compounds

for final by-products generation. For instance, the

strain Rhodopseudomonas palustris WP3-5 was pro-

ven to take up lactate for biohydrogen production

rather than for PHA storage (Wu et al. 2012). Further

investigations revealed that PNSB consume substrates

such as malate, pyruvate and succinate for biohydro-

gen production, while butyrate and propionate are

converted to PHA (Cardeña et al. 2017). Additionally,

Fig. 1 Acetate assimilation pathways from various PNSB
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most PNSB strains were reported to prefer pure acetate

as substrate for PHA accumulation due to its easy

assimilation into the metabolic pathway for Acetyl-

CoA synthesis, which is a precursor to PHA (Brandl

et al. 1991; Liebergesell et al. 1991; Khatipov et al.

1998b; Fradinho et al. 2014). Other studies have

revealed that PHA accumulation under a pure butyrate

substrate was higher than acetate under the same tested

conditions (Brandl et al. 1989; Chen et al. 2012;

Carlozzi et al. 2019a). The work of Khatipov et al.

(1998a) revealed that Rhodobacter sphaeroides accu-

mulated higher PHA under the presence of acetate, yet

when subjected to a lactate or pyruvate medium, the

strain showed a higher cell growth but slowed its PHA

production. This may provide opportunities for dual

treatment of different wastewaters in separate growth

and accumulation reactors. In the work conducted by

Demiriz et al. (2019), 65 mM of acetate was found to

give the highest biomass content and PHB storage, but

beyond this reduced PHB content was observed, due

light limitations caused by higher biomass concentra-

tions. Additionally, when n-alkanoic acids were

present in the medium, PHB accumulation was

doubled compared to an acetate only medium

(Mukhopadhyay et al. 2005). Fradinho et al.

(2014, 2019) explored the substrate preference of a

mixed APB system and their impact on PHA accu-

mulation. The presence of acetate in propionate and

butyrate environments accelerated the assimilation of

VFA and the culture showed a preference towards

acetate. While acetate, butyrate and propionate were

successful in enabling PHA accumulation, environ-

ments with malate, citrate and lactate showed no

improvement in PHA content (Fradinho et al. 2014).

This may be because some of these substrates are

shown to be preferential for biohydrogen production,

which competes with PHA production for reducing

equivalents from photosynthesis (Ghosh et al. 2017).

Similar trends were reported by Brandl et al. (1991)

where PNSB growth was higher under the presence of

acetate compared to malate and crotonate. Yet, mixed

VFAs that contained acetate resulted in comparable

PHA accumulations to pure acetate tests (Brandl et al.

1991; Fradinho et al. 2014). Finally, organic concen-

trations play a crucial role in PHA accumulation.

Fradinho et al. (2019) observed that APB grown under

high acetate content exhibited inhibition compared to

APB grown with low initial acetate content. Similarly,

Ali Hassan et al. (1996) demonstrated the presence of

formic acid (FAc) may cause a reduction in PHA yield

and accumulation from 0.5 g g-1 and 67%CDW (0 g-

FAc L-1) to 0.21 g g-1 and 18% CDW (3.3 g-

FAc L-1) with Rhodobacter sphaeroides (IFO

12203) using synthetic fermented palm oil mill

effluent at pH 7.

In general, PNSB utilize various types of carbon

substrate for their growth and excess of carbon

substrates is a trigger for PHA accumulation. How-

ever, the final by-product varies depending on the

substrate available. It was observed that VFA are

consumed first from the environment by PNSB

compared to other carbon substrates. A preference

for acetate is recorded across most PNSB strains and is

directed towards PHA storage. Similarly, butyrate and

propionate are also assimilated for PHA production.

However, while organic acids such as lactate and

succinate consumed by PNSB, their contribution

towards PHA production is low and does not exceed

12% CDW and 8.5% CDW for lactate and succinate,

respectively (Khatipov et al. 1998a; Kim et al. 2012).

Finally, the presence of precursors such as butyrate

and valerate increases the production of diverse PHA

(Mukhopadhyay et al. 2005).

While employing pure carbon substrates such as

acetate or glucose is a costly approach, wastewater

tends to contain a mixture of various organic acids,

sugars and occasionally alcohols that PNSB can

utilize. It also constitutes a cheap and readily available

substrate source. Wastewaters from dairy and cheese

production industries (Alloul et al. 2019; Fradinho

et al. 2019; Carlozzi et al. 2019b), winery industry

(Policastro et al. 2020), food waste (Montiel-Corona

et al. 2015; Ghimire et al. 2016; Montiel Corona et al.

2017), and municipal wastewater (Luongo et al. 2017)

were all explored for the successful culturing and

growth of PNSB for PHA accumulation with values

varying between 12 and 83% CDW. A majority of

these studies had to go through a dark-fermentation

process in order to increase VFA present in the

effluent, which increases the costs further, but is also

common to non-PNSB fermentations for PHA pro-

duction. Additional studies are warranted to find

sustainable and suitable carbon substrates for PHA

production by PNSB without impacting the overall

production costs.

123

968 Rev Environ Sci Biotechnol (2021) 20:959–983



4.2 Nutrients

In chemoheterotrophic systems, limiting nutrient

availability has frequently been used to halt protein

production and cell growth forcing bacteria to store

carbon as PHA for later use. Similar limitation of

nutrients such as nitrogen or phosphorus is recom-

mended to achieve high PHA accumulation for PNSB.

Photoheterotrophic systems require higher N and P

ratios than chemoheterotrophic systems as their

catabolic energy source is emerging from light, which

directs a higher proportion of carbon to anabolism. N

and P assimilation is proportionate to the amount of

COD, more specifically the amount of VFA consumed

(Hülsen et al. 2014), thus ratios of COD:N and COD:P

are crucial for PNSB growth and their main activities.

However, there is little study on the optimum ratio of

COD:N and COD:P among researchers for PNSB

growth and PHA accumulation.

Nitrogen limitation and depletion are often linked

to increased 3HB accumulation in the system. (Mel-

nicki et al. 2009; Montiel Corona et al. 2017; Luongo

et al. 2017; Carlozzi et al. 2019a). Carlozzi et al.

(2018) reported an increase in 3HB storage by

Rhodopseudomonas to 377 mg-PHA L-1 after 144 h

of cultivation under ammonia limitation which

amounts to a 32% increase from nitrogen sufficient

conditions. Under different settings, the same group

identified that ammonia availability was linked to

biomass growth due to nitrogenase inhibition, while

the presence of sufficient glutamate as nitrogen source

enabled PHA accumulation in the environment (Car-

lozzi et al. 2019a). Ali Hassan et al. (1996) also

showed PHA yield on a mixed acetate and propionate

source was more than three times higher under

ammonia limited conditions. Khatipov et al. (1998a)

confirmed the link between increased PHA accumu-

lation and nitrogen deprived conditions with lactate,

pyruvate, glucose and succinate. However, both

nitrogen availability and depletion did not have any

impact on PHA accumulation with acetate as the sole

carbon source in their tests, based on similarly high

PHA content (Khatipov et al. 1998b). In contrast to the

above studies, Vincenzini et al. (1997) investigated the

COD:N limits to achieve a simultaneous PNSB growth

and PHA accumulation in a system. The experiment

revealed that Rhodopseudomonas palustris cultured in

a malate environment with an initial COD:N of 100:6

accumulated 25 mg-PHB L-1 d-1, while a slightly

lower COD:N of 100:12 resulted in higher PHB

accumulation rates overall in the system at 40 mg-

PHB L-1 d-1. While nitrogen limitation did enhance

PHB accumulation, the overall biomass productivity

of PHB decreased only slightly from 0.0657 g-PHA.g-

X-1 to 0.0558 g-PHA.g-X-1 under nitrogen limita-

tion. Such apparent discrepancies may well be due to

the competition between PHA production and biohy-

drogen production, which is also promoted under

nitrogen limited conditions which initiate biohydro-

gen production via nitrogenase (Melnicki et al. 2009;

Ghimire et al. 2016; Ghosh et al. 2017; Montiel

Corona et al. 2017; Luongo et al. 2017; Carlozzi et al.

2019a). It is therefore critical to apply other conditions

that will prevent biohydrogen production if nitrogen

limitation will be used to enhance PHA production

such as increasing pH (Kim et al. 2012) or foregoing

pH control (Kim et al. 2011), using acetate as the sole

substrate source (Hustede et al. 1993; Khatipov et al.

1998a), and increasing the frequency of light-dark

cycling (Montiel Corona et al. 2017).

Limitation of other nutrients such as phosphorous

and sulfur could also lead to PHA accumulation in

PNSB (Vincenzini et al. 1997; Melnicki et al. 2009;

Mukhopadhyay et al. 2013). Since biohydrogen and

PHA production from PNSB are competitive pro-

cesses, the work conducted by Carlozzi et al. (2019a)

and Vincenzini et al. (1997) provides an indication

about the role of P and S nutrient limitations on the

production of biohydrogen. Vincenzini et al. (1997)

observed that phosphate depletion conditions resulted

in an increase of PHA accumulation in Rhodopseu-

domonas palustris and halted the production of

biohydrogen. In a study with Rhodospirillum rubrum,

sulfur deprivation not only halted biohydrogen pro-

duction but resulted in rapid storage of PHB to more

than 50% CDW (Melnicki et al. 2009). Many have

labeled sulfur as the switch between PHA accumula-

tion and biohydrogen production in PNSB (Melnicki

et al. 2009; Chen et al. 2017). However, there are

contradicting reports about the role of P limitation on

PHA storage. While Fradinho et al. (2016) concluded

that P availability and limitation had very little to no

effect on PHA production on a mixed PNSB system,

Carlozzi et al. (2019a) observed high PHA storage

under P and S limitations with Rhodopseudomonas in

a period of 96 h. Various research groups also

confirmed that P limitations resulted in high PHA

content in pure PNSB strains (Brandl et al. 1989;
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Mukhopadhyay et al. 2005). Thus, the difference in the

reported results is likely due to the pure and mixed

cultures utilized. Finally, Higuchi-Takeuchi et al.

(2019) revealed that nutrient limitation does not

improve PHA accumulation in marine PNSB, possibly

due to their natural propensity for growth in low-

nutrient conditions.

The literature body therefore confirms the involve-

ment of nutrients such as ammonia, phosphorous and

sulfur, in driving PHA accumulation. For nitrogen, the

source and concentration are important as well as the

carbon sources linked with it to achieve a high PHA

storage (Khatipov et al. 1998a). Sulfur-free environ-

ments were also linked to high PHA content

(Mukhopadhyay et al. 2005). However, further

research may be required to confirm the role of

phosphorous limitation on PHA, where differences in

literature may be associated with different PNSB

strains used.

4.3 pH

The environment’s pH value influences the cells’

physiological activities and PHA accumulation (Hust-

ede et al. 1993). An environment with controlled pH

results in higher PHA production with reports reveal-

ing that optimal microbial growth and PHA synthesis

is observed in neutral to slightly alkaline conditions

(Amulya et al. 2016; Cheah et al. 2019). It was

reported that a controlled pH ranging from 5 to 8 does

not affect the long-term PNSB growth, but an initial

pH of 4 is not suitable for growth (Wang et al. 2016). A

pH optimization study of Rhodocyclus gelatinous

revealed that the optimal growth conditions were at pH

7 (Prasertsan et al. 1993). Other types of PNSB were

also reported to grow optimally at pH 7 (Kapdan et al.

2009; Pattanamanee et al. 2012; Kars and Ceylan

2013; Zagrodnik and Laniecki 2015; Ghosh et al.

2017; Laurinavichene et al. 2018). Certain strains of

Rhodobaca genus, on the other hand, have shown

optimal growth at pH 9 (Imhoff et al. 2005).

There are reports that slightly alkaline environ-

ments enhance PHA production due to inhibited

biohydrogen production (Cardeña et al. 2017). Kha-

tipov et al. (1998b) observed that Rhodobacter

sphaeroides were able to reach a PHA content of

40% CDW at a pH of 10 with pyruvate, shifting from

biohydrogen production at more neutral pH to PHA

production at more alkali pH. Similar observations

were made by Hustede et al. (1993) who noticed

decreased biohydrogen production and increased PHA

production in poorly buffered solutions. Suzuki et al.

(1995) also found that a pH of 8.0-8.5 results in higher

PHA accumulation in the same strain. Brandl et al.

(1989) did not directly assess pH, but the highest PHA

accumulation observed in their study was consistent

with a high final pH during the experiments. Montiel-

Corona et al. (2015) found complimentary findings

when investigating headspace flushing, where PHB

production was highest for argon gas flushing,

followed by a low vacuum treatment and lastly carbon

dioxide flushing. The pH resulting from these condi-

tions followed a similar trend of high to low. While

these results might suggest that a neutral pH is more

suitable for PNSB growth and a slightly alkaline pH is

beneficial for PHA growth, a detailed study under

controlled pH conditions and an optimal pH range is

yet to be determined.

4.4 Light

4.4.1 Light intensity and penetration

Light is the energy driving force for cellular reactions

in PNSB, but can also be inhibitory if at too greater

intensity. Zhou et al. (2014) found a light intensity of

2000 lx (16 W m-2) to be optimal for organic

removal and PNSB growth while lighting intensity

beyond 5000 lx (40 W m-2) resulted in decreased

COD removal and biomass growth rates. The group

also reported that the lower (optimal) light intensity

resulted in the lowest production of BChl and

carotenoid pigments. Fradinho et al. confirmed the

link between high light intensity and PHA accumula-

tion in APB, where specific light intensity per unit

biomass was the critical parameter. At values of less

than 2 W g-1, very low PHA accumulation was

observed (around 3–5% CDW). During a period of

biomass washout, light intensity increased to

11.4 W g-1 and coincided with an increase in PHA

to 70% CDW. In a follow up set of tests, a light

intensity of 1.5–3.5 W g-1 gave a final PHA content

of around 30%, while a light intensity of

5.6–6.7 W g-1 gave a PHA content of 60%. However,

light intensity did not seem to impact the specific

carbon removal rate (Fradinho et al. 2016). Similar

results were found by Montiel-Corona et al. (2015),

who observed a production of 0.19 g g-1 in outdoor

123

970 Rev Environ Sci Biotechnol (2021) 20:959–983



cultures (natural light-dark cycle) with intensity of

approximately 60 kLux, compared with 0.07 g g-1

under indoor continuous light at 3 kLux.

Light penetration controls the amount of light

reaching the biomass. Higher cell growth reduces the

light intensity reaching the cells and the overall

productivity (Carlozzi et al. 2018). Fradinho et al.

(2016) demonstrated that as cell growth increases, the

light penetration decreases, which results in lower

PHA accumulation, and is an important consideration

for bioreactor design in an accumulation phase, given

that in contrast, high cell densities are desired for

subsequent cell processing. In fact, the group reported

the highest biomass yield of 0.11 Cmol X Cmol-1

acetate when moderate illumination of 127 W m-2

was provided as well as 35% CDW. However, the cell

yield decreased significantly to 0.11 Cmol X Cmol-1

acetate under higher light presence of 227 W m-2, but

resulted in enhanced PHA accumulation reaching 60%

CDWPHA, one of the highest accumulations reported

so far. Under very high light presence or insufficient

light presence, however, the photosynthesis is inter-

rupted, halting the activities of PNSB (Serôdio et al.

2008). The optimal light intensity value that results in

high PHA accumulation as well as biomass yield is yet

to be identified.

4.4.2 Light cycling and frequency

Sunlight availability and intensity vary widely from

laboratory conditions, which represents a challenge

for scale up. Some light conditions can lead to photo-

inhibition, while others promote other cellular activ-

ities than PHA accumulation. In one experiment using

a Rhodopseudomonas enriched inoculum at Renmin

University of China the highest APB biomass growth

was achieved under a 24 h/24 h dark/light cycle

compared to shorter dark/light tested cycles of equal

length, while the highest cell protein content was

achieved at short 3 h/3 h cycles (Zhi et al. 2019). In an

earlier study by the same group, varying light dark

ratios of 2.5 h/0.5 h through to 1 h/2 h, and a constant

light control were assessed (Zhou et al. 2015b). It was

observed that the highest biomass growth and COD

removal were achieved at a light/dark cycle of 2 h/1 h

for a Rhodopseudomonas strain. The results of these

studies are in contrast and may be due to a different

dominant strain. In accordance with the previous

study, Montiel Corona et al. (2017) found shorter

dark/light cycles of 30 min/30min were more benefi-

cial for PHA production, although the shortest

photoperiod of 15 min/15min provided slightly lower

production for Rhodobacter capsulatis. Biomass

growth was not greatly influenced by photoperiod in

this study, with the unknown Rhodopseduomonas

strain growing slightly more with constant illumina-

tion and Rhodobacter capsulitis at 15 min/15 min.

Fradinho et al. observed that under a 4 h/4 h light/dark

cycle, APB doubled their net PHA accumulation rate

and increased their overall PHA accumulation to 30%

PHA/VSS compared to continuous light availability

Fradinho et al. 2013a, b). However, in this study the

higher PHA accumulation was due to the selection of

APB over microalgae under the light cycling, as later

studies with continuous feed and lighting achieved

higher accumulation and net production rates (Frad-

inho et al. 2016).

4.4.3 Light wavelength

While natural light is the main target to reduce overall

PNSB production costs, it is important to understand

PNSB’s reactions to the varied synthetic wavelengths

that could be used to assist production, especially

since light source and wavelength are known to affect

the uptake of carbon substrate from the environment

(Zhou et al. 2015a). Uyar et al. (2007) observed a

slower PNSB growth when a wider range of wave-

lengths was available. However, an enhanced growth

was detected when only IR wavelengths were sup-

plied. The study of Zhou et al. (2015a) is an outlier,

indicating that red LED light (650 nm) resulted in the

highest biomass growth and COD removal compared

to blue, yellow and white LED lights under the same

conditions. However, the group did not test infrared

lights due to the high associated costs. While pigment

production was higher with a yellow light source, the

highest carotenoid to BChl ratio was observed under

red light. Qi et al. (2017) confirmed that changes in

light wavelength affected COD and nutrients removal

on Rhodopseudomonas sphaeroides using monochro-

matic LEDs of 750, 850 and 940 nm wavelengths at

various intensities in a Box-Behnken experimental

design that also included intensity and photoperiod.

The concluded 850 nm was optimal for COD and

ammonia removal, as well as biomass growth, while

changes in light intensity and light exposure duration

had the least impact on removal of COD and nutrients.
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While the light intensity was different for each of

these studies, varying between 500 and 4000 lx, the

outcome was similar. The 850 nm wavelength and/or

presence of IR was more beneficial for the growth of

PNSB. Additionally, the main concern lays in the

maximum absorption capacity of BChl a, which was

previously reported between 771 and 801 nm (Ohashi

et al. 2010; Olson 2013), Further investigations have

proven that it is still possible to obtain good BChl a

absorption results at 850 nm wavelength alone for

PNSB (Qi et al. 2017). In fact, it was reported that the

presence of IR along with the absence of UV

wavelengths results in the selective growth of PNSB

even under non-sterile conditions (Capson-Tojo et al.

2020). Therefore, the use of monochromatic IR also

provides a suitable low-energy method to reduce

microalgae competition.

4.5 Fermentation system and feeding strategy

Various fermentation systems are used for PNSB

culturing. The one stage process is a single fermenter

where PNSB culturing and PHA production take place

simultaneously. Frequently, a combination of carbon

excess, for biomass growth, and nutrient limitation, for

PHA accumulation, is employed in a single stage

system (Hustede et al. 1993; Chen et al. 2012; Özsoy

Demiriz et al. 2019). Recently, high substrate avail-

ability was coupled with high light intensity in a single

system and resulted in the accumulation of 60% PHA

(Fradinho et al. 2016). The two-stage fermentation

consists of two consecutive stages operating under

different conditions. The most popular two-stage setup

is an initial growth stage with nutrient availability for

PHA-producing cells selection, followed by a second

stage that consists of excess of carbon and nutrient

limitation where PHA accumulation takes place

(Pagliano et al. 2017). Two-stage systems were

successfully employed at lab-scale for PHA produc-

tion either with a first stage that consists of sufficient

nutrients to increase biomass followed by a second

stage with nutrient limitation to trigger PHA accumu-

lation (Mukhopadhyay et al. 2005; Corneli et al. 2016)

as described above; a biphasic growth with a different

medium at each stage (Mukhopadhyay et al.

2005, 2013); or a fermentation first stage and a

simultaneous growth and accumulation second stage

(Ali Hassan et al. 1997). In the latter system dark

fermentation using acidogenic fermentative bacteria is

often used in the initial stage rather than PNSB

(Ghimire et al. 2015, 2016; Carlozzi et al. 2019b).

Three-stage fermentation is a common process for

mixed cultures, where the first stage targets the

production of organic acids and volatile fatty acids

(VFA) via fermentative bacteria, followed by a second

stage of PNSB enrichment where PHA-producing

biomass is promoted, and a final stage that consists of

PHA accumulation under high organic substances

(Ghimire et al. 2015, 2016). Recently, research is

shifting towards the development of a three-stage

fermentation process operated with PNSB in all

stages. Carlozzi et al. (2019a) developed a three-stage

system where the first stage consisted of nutrient

sufficient conditions, a second stage of nitrogen

limitation and final stage of sulfur limitation. While

the N-sufficient stage followed by a double nutrient N

and S deficient stage did result in a moderate PHA

accumulation of 25.9% CDW, the final PHA accumu-

lation of the three-stage process reached 34.4% CDW.

This is explained by the effect of S-depletion on the

system, which hindered the nitrogenase activities

leading to a halt in production of biohydrogen and

stopped biomass growth due to the inactivity of de

novo synthesis of amino acids. The main purpose of

employing a three-stage system was the separation of

the competing processes of biohydrogen production

and PHA accumulation. Fradinho et al. (2019)

explored a three-stage process with an initial stage of

low substrate concentration to avoid growth inhibi-

tion, a second stage of moderately high light intensity

in the range of 10.6 W L-1, and a final stage of N

residual removal from the media to halt biomass

growth. The first and second stages have consistently

increased PHB production in the system, with the third

stage having a negative effect on PHB accumulation

that caused a decreased from 30 to 20% CDW.

However, this research indicates the first two stages

could be used as a second and third stage for growth

and accumulation and be preceded by a dark fermen-

tation stage to prepare the optimum substrate. In this

process high light intensity is the primary driver for

PHA accumulation in the final stage. It is therefore

evident that three-stage systems can provide opti-

mized systems but that their full potential and various

configuration possibilities remain relatively unex-

plored. Figure 2 summarizes the fermentation setups

that are used for PHA accumulation.
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Each fermentation system provides benefits and

disadvantages, with simpler systems providing lower

capital costs and less complexity, but reduced overall

productivity and process control. However, given

PNSB’s desirable ability to both grow and accumulate

PHA simultaneously, they provide the opportunity to

rely on single or two-stage systems, where in both

cases one reactor is a combined growth-accumulation

reactor. Nonetheless, a separate growth and accumu-

lation phase may still be warranted due to the high

light requirements to maximize accumulation (Frad-

inho et al. 2019). So far, outdoor PHA production

systems are still rare and need to be investigated

further. However, a successful one-stage outdoor

prototype has been investigated using high initial

substrate and no nutrient limitation (Carlozzi et al.

2018). Nonetheless, the highest PHB accumulation of

377 mg-PHB L-1 was achieved under N-depleted

conditions, confirming once again the involvement of

nutrient limitation in PHA production.

Fig. 2 Fermentation systems for PHA accumulation
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While the two-stage system is preferred in lab-scale

setups, the bioreactor operation also plays a role in the

selection of PHA-producing biomass and their ability

to accumulate PHA. Continuous, sequencing-batch

reactor (SBR) and fed-batch reactor systems have all

been employed for PNSB enrichment as they control

the feeding strategy of the system. Continuous

processes allow an exponential growth of bacteria

through continuous addition of substrate and nutrients

without interrupting the fermentation process and

providing a continuous supply of carbon substrate.

While this process is the most desirable in an industrial

setup, most lab-scale research employs a semi-con-

tinuous bioprocess by replenishing the substrate and

nutrients before they are depleted to simulate a

continuous system. In a two-stage system, the SBR

is often employed for the culture selection and

enrichment step, while a fed-batch process is more

suitable for PHA accumulation (Albuquerque et al.

2010a).

Carlozzi et al. (2018) compared the semi-continu-

ous and fed-batch processes with Rhodopseudomonas

species. The experiment revealed that the fed-batch

process was more effective at accumulating higher

PHB content of 377 mg-PHB L-1 under a shorter

period of time of 144 h as opposed to the semi-

continuous process that accumulated 255 mg-

PHB L-1 in 336 h. For PHA accumulation in chemo-

heterotrophic (non-PNSB) systems, transient feeding

is typically used to provide unbalanced conditions that

promote VFA assimilation (Basak et al. 2011; Basset

et al. 2016). Fradinho et al. (2013a) explored various

feeding strategies coupled with various light condi-

tions and their impacts on APB. Under a feast-famine

regime and continuous light, PHA accumulation

reached 20% CDW in MMC containing both APB

and algae. The group, however, observed that coupling

feeding with the beginning of the dark phase resulted

in the out-competition of algae and, surprisingly,

increased the assimilation of acetate as well as PHA

accumulation, which reached 30% CDW (Fradinho

et al. 2013b). Later experiments investigated the

impacts of a semi-continuous feeding regime and

continuous light, achieving an increase in PHA

accumulation in APB, reaching a value of 60%

CDW (Fradinho et al. 2016). Under this process, it

was hypothesized that high PHA accumulation was

due the combined enrichment of the APB over algae

and their ability to store PHA concomitantly with

growth under the continuous feeding. These results

contrast Carlozzi and may be due to additional effects

from lighting or due to a possible difference in species

present in the MMC system.

Bioreactor designs could also affect the final output

of PHA as light distribution and penetration can be key

factors for the cultivation system. A large surface area

or surface-to-volume ratio is often preferred in the

case of PNSB as it allows higher light distribution into

the media. One method to control this factor is by

changing the geometry of the bioreactor. The most

studied shapes include stirred tank, flat-panel and

tubular bioreactors (Adessi and De Philippis 2014).

Low surface-to-volume ratio is obtained by a stirred

tank bioreactor, which can affect the light exposure.

However, it provides easy scale-up and better biomass

mixing to ensure cells receive uniform exposure to

light (Cerruti et al. 2020). On the other hand, a flat-

sheet reactor offers a high surface-to-volume ratio and

light exposure as it has a small thickness (Akkerman

et al. 2002). This provides a challenge for scaling-up

due to capital cost and potential mixing challenges or

energy requirements. Tubular systems are tubes that

be arranged under different orientations such as

vertical, horizontal, or serpentine. They provide high

light penetration and avoid short-circuiting risks of

flat-panel reactors, but have high energy requirements

for pumping. They are frequently reported at pilot-

scale in outdoor environments (Gebicki et al. 2009;

Boran et al. 2010; Carlozzi et al. 2018). Available

information on photobioreactor design for pho-

totrophic microorganisms mainly focuses on microal-

gae, while those reported for PNSB are mainly for

biohydrogen production. Reports on PNSB photo-

bioreactors designed specifically for PHA production

are scant and require further research to select the best

bioreactor design for high yield and productivity.

Nevertheless, due to a large similarity between the

competing PHA and biohydrogen production pro-

cesses by PNSB, bioreactor designs for biohydrogen

provide key information about the best conditions for

biomass growth and can be found in the in-depth

review prepared by Adessi and De Philippis (2014).

4.6 PHA monomer

Strain purity and substrate consistency are considered

the major causes for the consistency of PHA
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monomer. It is well established that carbon substrates

influence the type of monomers produced (Bugnicourt

et al. 2014). Many experiments showed that when

using acetate as the sole carbon source, it results in a

majority of 3HB monomers (Fradinho et al. 2013a).

Pure butyrate or a mixture of butyrate and acetate were

reported to produce a large proportion of 3HB

regardless of the culture (Carlozzi et al. 2019a).

Lactate is also a precursor to PHB polymer production,

but it tends to result in lower accumulation than values

reported with acetate and butyrate (Carlozzi et al.

2019a). On the other hand, valerate promotes the

production of PHV in the environment. The addition

of valerate in any environment increases the accumu-

lation of PHV and lowers that of PHB (Sheu et al.

2009). While there are various reports on the effects of

different alkyl groups on the production of MCL-PHA

in non-phototrophic cultures (Tan et al. 2014), there is

only one report on the ability of genetically-modified

Rhodospirillum rubrum to produce MCL-PHA (Hein-

rich et al. 2016).

Higuchi-Takeuchi et al. (2016b) investigated the

impact of acetate and/or sodium bicarbonate medium

on the production of 3HB and 3HV monomers in

various pure strains of PNSB. While the medium

concentration and growth conditions were identical, it

was revealed that the strain is also responsible for the

production of different PHA monomers. Strains such

as Rhodovulum sulfidophilum and Rhodovulum imhof-

fii resulted in higher concentration of 3HB monomers,

94.9:5.1 and 100:0 HB:HV, respectively. Yet under

the same conditions, other strains such as Rhodovulum

tesquicola and Roseospira marina, resulted in higher

3HV content accumulating 63.3:36.7 and 49.9:50.1

HB:HV, respectively.

A pure bacterial strain is more likely to produce

PHA with stable monomers, whereas MMCs are

known to produce various types of PHA monomers

and chain lengths (Sharma et al. 2017). In an

experiment where various types of PHA producing

(non-APB) bacteria were tested under the same

conditions, it was revealed that both strain of bacteria

and carbon substrate played a significant role in the

production of SCL-PHA andMCL-PHA. For instance,

Pseudomonas putida fed with different substrates

always resulted in MCL-PHA with the exception of

pentanoic acid that resulted in about 35% SCL-PHA.

On the other hand, Bacillus megaterium resulted in far

more SCL-PHA monomers when fed with the same

substrates with the exception of octanoic acid that

resulted in only MCL-PHA (Shahid et al. 2013).

While the bacterial strain purity and carbon

substrate are important in the PHA monomer produc-

tion, other factors are also involved in the process.

Chen et al. (2015) observed that pH is involved in the

monomer PHA composition, while Albuquerque et al.

(2010b) confirmed that feeding regimes manipulate

types of monomer accumulated. Hence, controlling

PHA monomer stability is a complex process that

involves various factors. Nevertheless, monomer

stability in PNSB systems is yet to be investigated

and most studies reporting PHA in PNSB are related

with biohydrogen production, where frequently only

PHB is quantified which could also give misleading

results on PHA accumulation.

4.7 Productivity rates

PHA productivity rates of PNSB are fairly low

compared to the reported values of aerobic bacteria.

For instance, the highest reported microbial PHA

productivity is with Alcaligenes latus which achieved

5.13 g-PHA L-1 h-1 (Wang and Lee 1997). How-

ever, the majority of aerobic prokaryotes were

reported to synthesize between 1 and 2 g-PHA L-1 -

h-1 (Blunt et al. 2018). Meanwhile, the average

reported values in PNSB are in the range of

0.005–0.059 g-PHA L-1 h-1 for pure strains (Ali

Hassan et al. 1997; Cardeña et al. 2017; Carlozzi

et al. 2019a; Fradinho et al. 2019) which is 2–3 orders

of magnitude lower compared to aerobic bacteria

productivity. Rhodobacter sphaeroides was reported

to have the highest single culture productivity of

PNSB at 0.056–0.059 g-PHA L-1 h-1 (Ali Hassan

et al. 1997; Khatipov et al. 1998a, b) though reported

productivities were only found for this species and

Rhodopseudomonas. While pure strains are generally

known to produce PHA at higher rates, recently a

phototrophic MMC has achieved a PHA production

rate at 0.111 g-PHA L-1 h-1 in the accumulation

phase (Almeida et al. 2021), which is just over 1 order

of magnitude lower than chemoheterotrophic systems

by comparison. The same group achieved 0.091 g-

PHA L-1 h-1 in an earlier study with mixed PNSB

(Fradinho et al. 2019). These differences in produc-

tivity are a significant challenge for PNSB based PHA

production but should not be seen as a critical hurdle,

given the extensive investment and research in
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chemoheterotrophic systems compared to PNSB sys-

tems. Moreover, PNSB provide opportunities for

recovery of various other biomolecules that can add

significant value to the overall process.

5 Summary and Future challenges

Producing PHA from pure strains has been widely

studied and has reached industrial scale, yet its

commercial growth has been limited due to high

production costs. PNSB have been proposed as an

alternative as they provide potential environmental

and energy-saving advantages. Their growth does not

require aeration as it necessitates an anaerobic envi-

ronment. PNSB feed on a wide range of organic

compounds and can accumulate PHA under both

nutrient sufficient and deficient conditions. Further-

more, PNSB extract their catabolic energy from light

sources such as sunlight resulting in high carbon to

PHA yields and can be easily enriched in a mixed

culture, which eliminates the frequent sterilization

requirement and the costs associated with keeping a

pure culture.

For PNSB to compete economically, the design of

an optimized system is crucial that will select for

optimal strains and promote high growth and accu-

mulation. However, research to date has been limited,

focusing primarily on a few organisms, primarily

belonging to the genera Rhodopseudomonas and

Rhodobacter, and often as a by-product of hydrogen

production. Further investigation of other PNSB

genera, as well as mixed culture behavior, for PHA

production under various environmental controls is

warranted. Light is one of the key design parameters in

a photoheterotrophic PHA production system. Light/-

dark cycling and sunlight intensity vary significantly

based on the location, season and time of the day,

which affect growth rates, pigment expression and

PHA accumulation. Their further investigation, par-

ticularly with respect to culture densities and light

transmittance will be critical for efficient commercial

scale systems. Additionally, continuous or external

light sources provide an opportunity to increase

overall PHA accumulation in PNSB, but require

additional energy and cost. Variations exist currently

in results from light spectra and cycling studies on

PNSB growth and are currently absent for PHA

production. This information is necessary to

adequately assess the economics of providing auxil-

iary lighting, since Capson-Tojo et al. (2020) have

shown it may cost as much as 1.9 $ kg-biomass-1 if

LED lighting is used. Other incandescent light options

such as tungsten lamps are cheaper, but less efficient in

terms of both PNSB biomass yield and electrical

efficiency.

Other major costs for PHA production include

substrate, biomass harvesting and PHA extraction

costs. Evaluation of various industrial wastes and

wastewater sources with suitable clarity and high

organic load are areas of potential research, as well as

the appropriate pre-treatment fermentation steps to

maximize productivity. The harvesting of low cell

densities associated with phototrophic systems is still

a challenge, as evident from the algal biofuel industry,

which raises the question whether new separation

techniques need to be developed or whether there

should be an increased focus on biofilm-based systems

(Podola et al. 2017). The subsequent PHA extraction

process is a costly step that needs to be optimized to

reach high recovery values at low costs, particularly

for MMC where substrate and disinfection are no

longer significant costs. It is unclear whether PHA

extraction conditions optimal for chemoheterotrophic

organisms will also result in the best extraction from

PNSB, given the different cellular composition and

potentially different PHA polymers produced. Finally,

there is lack of published data on outdoor bioreactors

systems for PHA production from PNSB. Therefore,

there is a need to design an optimal bioreactor for large

scale PHA production from MMC PNSB with opti-

mized substrate and nutrients, pH, temperature, and

light factors.

Despite these challenges PNSB’s straightforward

enrichment, avoidance of aeration, large pool of

carbon substrates and concomitant growth and PHA

accumulation make PNSB a viable alternative worthy

of further research to develop bioprocesses suitable for

sustainable PHA bioplastics production. The findings

presented here are a practical reference point to

develop a PHA production system coupled with

wastewater treatment that could potentially put PNSB

at a competitive advantage and help develop a large-

scale production system.
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