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Abstract The possibility of obtaining commercially

valuable products from microalgae stimulates scien-

tific research in this direction. The ability of microal-

gae to accumulate lipids is very promising from the

point of view of practical application. The diversity of

the composition of microalgae lipids makes it possible

to study a wide range of their applications: biofuel

production, food products, feed for farm animals and

birds, for aquaculture, food additives, etc. Fatty acids

(FAs) are involved in the metabolic pathways of

formation and conversion of most lipid classes, and

their composition largely determines their properties

and practical use. As a result, much attention is paid to

the study of the composition of fatty acids in

microalgae (including cyanobacteria). This review

summarizes information on the diversity of the fatty

acid composition of microalgae and cyanobacteria,

taking into account their rare and unusual categories.

The total variety of FA profile of microalgae from

different habitats is formed by 135 FAs. Taking into

account the length of the hydrocarbon chain, its

structure and the presence of substituents, they are

distributed into several groups: with an even number

of carbon atoms in the chain—81 (short-chain FAs—

2, medium-chain FAs—14, long-chain FAs—28,

very-long-chain FAs—37), with an odd number of

carbon atoms—33, with a branched hydrocarbon

chain and additional functional groups—21. Among

FAs of microalgae there are both saturated and

unsaturated FAs with different numbers of double

bonds: saturated FAs—19, monounsaturated FAs—

26, polyunsaturated FAs—68. The FA profile of

microalgae is rich in omega-3 and omega-6 fatty

acids. The review also considers the use of fatty acids

as an industrial resource, as well as a biomarker.
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1 Introduction

Natural resources are an integral part of economic

production and meeting the needs of humanity. With

the increase in the world population, the need for them

is constantly growing. This makes the introduction of

resource-saving technologies urgent, as well as the

search for new sources of raw materials. This task is

most acute in the direction of overcoming the shortage

of energy and food resources.

According to researchers, algae can be used to

replace traditional sources of biofuel, feed and a

number of food products (see reviews: González-

Fernández et al. 2012; Barkia et al. 2019; Figueroa-

Torres et al. 2019; Sathasivam et al. 2019; Lever et al.

2020). Algae are a large group of photosynthetic

organisms that live in a wide range of environmental

conditions. They inhabit various aquatic and terrestrial

ecosystems from the polar regions to the hot deserts of

the tropics and account for more than half of the

primary productivity of food chains (Guschina and

Harwood 2009). Algae are represented by both

macroscopic organisms, reaching a length of tens of

meters, and microscopic, measured by several

micrometers. Microscopic algae, along with eukary-

otic representatives, include a diverse group of

prokaryotes—cyanobacteria, which are one of the

most ancient groups of photosynthetic organisms.

Microalgae are able to accumulate protein, carbo-

hydrates, lipids and other biologically active com-

pounds in significant amounts. In this regard, there is

an increasing interest in microalgae (Milledge 2011;

Chu 2012; Borowitzka 2013; Khan et al. 2018; Barkia

et al. 2019; Sathasivam et al. 2019; Fabris et al. 2020).

It has been established that the protein content in the

biomass of some microalgae can reach 71% (Becker

2007; Plaza et al. 2009; Milovanovic et al. 2012), total

lipids—75%, which exceeds many indicators among

higher plants (for example, in soybeans—15–25% of

lipids, 30–50% of protein) (Moraes et al. 2006; Chisti

2007; Mata et al. 2010). Polyunsaturated fatty acids

(PUFAs): arachidonic acid (ARA), c-linolenic acid

(GLA), eicosapentaenoic acid (EPA), docosahex-

aenoic acid (DHA) and other compounds (Carote-

noids, Peptides, Phenolics, Phycocyanin, etc.)
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accumulated by microalgae are also highly valuable

for various activities (Pulz and Gross 2004; Spolaore

et al. 2006; Borowitzka 2013; Barkia et al. 2019;

Sathasivam et al. 2019; Chalima et al. 2019, 2020;

Peltomaa and Taipale 2020; Levasseur et al. 2020).

Currently, primarily species from the genera Aphani-

zomenon, Botryococcus, Chaetoceros, Chlorella,

Cylindrotheca, Crypthecodinium, Isochrysis, Haema-

tococcus, Dunaliella, Neochloris, Nostoc, Nan-

nochloropsis, Pavlova, Phaeodactina, Porphyridium,

Arthrospira, Schizochytrium, Thalassiosira are used

for the production of commercial products (Pulz and

Gross 2004; Safafar et al. 2016; Sathasivam et al.

2019; Xu et al. 2020). However, the entire potential of

microalgae is not confined to this, and the search for

highly productive species or strains that can be used to

obtain valuable biological products continues.

The biotechnological value of microalgae is due to

the wide range of compounds they synthesize, the

rapidity of growth, the ability to increase the synthesis

of target bioproducts changing the cultivation condi-

tions (Sun et al. 2018; Li-Beissona et al. 2019;

Levasseur et al. 2020). An important aspect is also

the ability to grow them industrially in bioreactors,

photobioreactors or in open tanks and stalls, which can

be placed in desert, technogenic, saline and other

territories not suitable for growing basic industrial and

food crops. In addition, the amount of production from

one unit of area that can be obtained by growing

microalgae is significantly higher in comparison with

higher plants (Hu et al. 2008). For example, microal-

gae containing 20–50% lipids in dry biomass can yield

up to 14 thousand liters of oil per year from one

hectare, while corn—172 L, soy—636 L, canola

(rapeseed)—974 L, sunflower—1070 L (Wigmosta

et al. 2011).

Now in the world there is a stable dynamics of

increasing demand for biomass of microalgae. This is

due to both the increase in the scale of traditional

industries and the expansion of their range, the

development of new products and applications from

microalgae. According to various estimates, the

annual production of Arthrospira and Chlorella alone

is 6700–12,000 tons and 2000–5000 tons, respectively

(Barkia et al. 2019; MU et al. 2019; Wang et al. 2020).

Already in 2017, the global market of microalgae-

based products was estimated at US $ 3.26 9 1010 and

is projected to reach approximately US $

5.343 9 1010 by 2026 (Rahman 2020).

Today, the deterrent of mass industrial cultivation

of microalgae biomass is the higher costs of its

production in comparison with raw materials of other

origin. Reducing the cost and increasing the economic

attractiveness of using microalgae biomass can be

achieved in different ways. On the one hand, this is an

increase in the efficiency of bioreactors (Guedes and

Malcata 2011; Béchet et al. 2014; Huang et al. 2017),

the use of cheap sources of nutrients, which can be

represented by domestic and industrial wastewater

(Pittman et al. 2011; Kamyab et al. 2016; Sharma et al.

2020), the most complete extraction of all valuable

bioproducts (Bai et al. 2011; Santoro et al. 2019),

including cascade bioprocessing of microalgal bio-

mass (Bleakley and Hayes 2017). The use of environ-

mentally friendly methods for extracting compounds

from microalgal biomass is also of great importance.

Ultrasound-assisted extraction, enzymatic, micro-

wave, liquid extraction under pressure, supercritical

fluid extraction, etc. are being studied (Abbas et al.

2008; Tuhy et al. 2012; Li et al. 2014; Michalak and

Chojnacka 2014; Saravana et al. 2015; Mondal et al.

2017; Michalak et al. 2017; Santoro et al. 2019).

Another direction is the increase in productivity of

already known strains of microalgae or isolation of

new highly productive strains of microalgae, which

will be characterized by better rates of biomass

accumulation, a higher content of valuable bioprod-

ucts and their optimal proportions in comparison with

those already known (Ng et al. 2020; Poole et al.

2020).When working with strains, the use of genetic

engineering methods to increase the content of

proteins, lipids and other valuable compounds in

microalgal cells, the use of various stress factors

during the cultivation of microalgae are considered

quite promising.

The ability of microalgae to store lipids is

extremely valuable in meeting the growing demand

for food and raw materials for biofuel production.

According to the analysis of publications by Michalak

with co-authors (2017), lipids are the most frequently

extracted compounds from microalgae and have the

greatest potential for commercialization. A wide

variety of the composition of microalgal lipids, taking

into account the species diversity of the microalgae

themselves, is a natural resource that is unique in the

composition of the lipid and fatty acid (FA) profile.

Microalgae synthesizing lipids in large quantities are

considered a promising natural raw material for the
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production of third generation biofuels (Chisti 2007;

Hu et al. 2008; Piligaev et al. 2013; Ruffing and

Trahan 2014; Newby et al. 2016; Maltsev et al. 2017;

Unkefer et al. 2017; Qadariyah et al. 2018; Shaikh

et al. 2019; Tanushree et al. 2020), production of food

and feed additives, baby food, feed for aquaculture,

pharmaceuticals and cosmetics (Pulz and Gross 2004;

Boeckaert et al. 2008; Christaki et al. 2012; Borow-

itzka 2013; Michalak et al. 2017; Barkia et al. 2019;

Sathasivam et al. 2019; Chalima et al. 2020; Levasseur

et al. 2020; Peltomaa and Taipale 2020). In many

respects, the targeted using of lipids synthesized by

microalgae is determined by the composition of the

FAs that form them. Different groups of FAs have

different properties. In the commercial using of FAs,

particular importance is attached to the length of the

hydrocarbon chain, the presence, number and position

of double bonds, the ratio of various FAs in lipids, etc.

The growing interest in this area of research is

accompanied by the rapid growth of new information.

According to Jónasdóttir (2019), studies on microalgal

FA contain thousands of FA profiles. Analytical

processing of the results obtained becomes the basis

for a fairly wide range of review works that touch on

various issues of studying FAs of microalgae (Gal-

loway and Winder 2015; Strandberg et al. 2015;

Cañavate 2018; Jónasdóttir 2019). These works are

important stages of generalization and formation of

new strategies for mastering the resource potential of

this group of organisms.

In this work, we set the goal: (1) to collect data on

the composition of FAs of microalgae and cyanobac-

teria, taking into account rare and unusual FAs, (2) to

analyze the general variety of FAs, (3) to discuss the

use of FAs for obtaining commercial products, 4) and

as a biomarker.

2 Data collection on fatty acids in microalgae

To establish the general diversity of FAs in microalgae

and cyanobacteria, a search and subsequent analysis of

publications containing information on the FA com-

position was performed. When selecting publications,

priority was given to works covering a wide range of

FAs of a complete lipid profile, unusual FAs or FAs of

certain lipid classes. The analysis involved data on

microalgae from different habitats (marine, freshwa-

ter, soil, snow) grown in different conditions and in

different environments. In total, 55 articles were

selected (Online Resource) and 2234 FA profiles for

microalgae were analyzed, containing data on FA

content as a percentage of the total FA content of all

lipids (or a certain class of lipids). In the studies

analysed, the main methods for determining the fatty

acid content of the lipid fraction from microalgal

extracts were gas chromatograph with flame ionisation

detection (Lang et al. 2011; Contreras-Angulo et al.

2019) or with mass spectrometry (Ghazala and

Shameel 2005; Gong and Miao 2019; Barone et al.

2020). Fatty acid methyl esters were obtained by

transesterification of lipids.

3 Fatty acids in microalgae

3.1 Fatty acids classification

It is known that living organisms synthesize many

different FAs. A good example of their diversity is the

detection of 430 FAs in one milk fat sample (Schröder

and Vetter 2013), more than 300 FAs in triacylglycerol

(TAG) of seeds (Fatiha 2019). Harnessing the power

of new sensitive analytical methods, such as gas–

liquid chromatography flame ionisation detection or

mass spectrometry, promotes the growth of informa-

tion about FAs (Sud et al. 2007; de Carvalho and

Caramujo 2018; Gong and Miao 2019; Barone et al.

2020).

The FAs molecule consists of a hydrocarbon chain,

at one end of which there is a carboxyl group (COOH),

and at the other end there is a methyl group (CH3). FAs

have nomenclature chemical names and may have

their own names. In practice, short designations of

FAs are often used. The designations consist of

indicating the number of carbon atoms in the chain,

the number and position of double bonds. When

specifying the position of the double bond, the carbon

atoms could be counted both from the side of the

carboxyl group and from the side of the methyl group.

For example, the designation C18:1n-9cis means that

the FA has 18 carbon atoms, one double bond which

begins at the ninth carbon atom when counting from

the methyl group. This carbon atom is designated by

the Latin letter n. The atom number could also be

denoted by the Greek letter x (omega) which is often

used to distinguish the corresponding families of FAs.

When specifying the position of several double bonds,
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the position of only the first of them could be

indicated. However, this is not always enough. FAs

may differ from each other on this basis. In this case, it

becomes necessary to list all carbon atoms that have a

double bond. The most common approach in this case

is the numbering of carbon atoms from the side of the

carboxyl group. When counting from the side of the

carboxyl group, the Greek letter D ‘‘delta’’ is used to

represent the carbon atom.

An important characteristic of double bonds is the

arrangement of substituents on one or opposite sides of

the plane of the double bond. Cis-isomers have two

substituents on one side of the double bond plane, and

trans-isomers have two substituents on opposite sides

of the double bond plane. FAs with the cis configu-

ration are less densely packed and have a lower

melting point. FAs with three or more double bonds

are less stable and susceptible to rapid oxidation. By

the location of the double bond with respect to the

methyl group, various families of FAs are distin-

guished: omega-3, omega-5, omega-6, omega-7,

omega- 9, etc. At the same time, these families do

not include FAs, in which, while maintaining the

position of the double bond closest to the methyl

group, the remaining ones were displaced. Consider-

ing the exceptional importance of omega-3 and

omega-6 of FAs for living organisms, and the asso-

ciated interest in their industrial production, we have

devoted a separate subsection to this group of FAs.

Isomerism of the position of double bonds changes the

properties of FAs. And FAs, which were characterized

by high value, especially from omega-3 and omega-6,

cease to be essential. Sometimes the carbon aliphatic

chain of an FA can have branches and include

additional functional groups and cycles. Methyl,

hydroxyl, carbonyl and other groups, cyclopropane

and cyclopentane rings can act as such substituents.

Such FAs are often referred to as unusual.

The synthesis of FAs is carried out using a number

of enzymes that are responsible for the lengthening of

the hydrocarbon chain. Elongation predominantly

occurs by two carbon atoms. Therefore, the most

common are FAs with an even number of carbon

atoms. The transformation of FA with the formation of

double bonds occurs with the participation of other

enzymes—desaturases. This is described in more

detail, for example, by Los (2014) and other (Li-

Beissona et al. 2019).

Thus, the variety of FAs in living organisms is

primarily determined by differences in the length of

the hydrocarbon chain: short-chain fatty acid-

s (SCFAs), medium-chain fatty acids (MCFAs),

long-chain fatty acids (LCFAs), very-long-chain fatty

acids (VLCFAs), as well as by the presence, location

and number of double bonds: monounsaturated fatty

acids (MUFAs), PUFAs.

The ability to synthesize LCFAs and VLCFAs

varies from organism to organism. Organisms also

differ in their ability to synthesize PUFAs. Consider-

ing this, we structured the information on the FAs of

microalgae taking into account the length of the

hydrocarbon chain, and then, within the identified

groups, we discussed saturated fatty acids (SFAs) and

unsaturated fatty acids (UFAs).

3.2 Fatty acids in various lipids

The metabolism of FAs in microalgae and cyanobac-

teria has been studied in detail and discussed in a

number of works (Sato et al. 2003; Riekhof et al. 2005;

Hu et al. 2008; Los 2014; Petroutsos et al. 2014; Li-

Beissona et al. 2019). In cells, FAs can be free or

bound. FAs with the help of ether bonds are combined

with glycerol and form glycerolipids. If all three

carbon atoms of glycerol bind to FAs, then neutral fats

are formed in the form of TAG. It is the main energetic

substrate of cells and its amount in some microalgae

can reach up to 80% of the total amount of lipids (Hu

et al. 2008; Guschina and Harwood 2013). If, in

addition to the FA at the first (sn-1) and second

(sn-1) carbon atoms, the third (sn-3) atom combines

with a carbohydrate fragment or with a phosphate

group, then glycolipids or phospholipids are formed,

respectively. These are polar lipids. Their polarity is

ensured by the presence of hydrophilic carbohydrate

groups (residues of glucose, mannose, etc.) or a

phosphate group in the molecules. The content of

glycolipids and phospholipids in lipids of some

microalgae can be up to 93% (Williams and Laurens

2010).

Betaine lipids are another class of glycerolipids.

Their polar head is a quaternary amino alcohol linked

by an ether bond with a diacylglycerol fragment.

Betaine lipids are widespread in microalgae and

sometimes in significant amounts (Cañavate et al.

2016). The connection of FA not with glycerol, but

due to the N-acyl-bond with sphingosine, represents a
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special class of lipids—sphingolipids. In general,

polar lipids in phytoplankton microalgae can account

for 40–95% of the total lipids. However, they mainly

include phospholipids and sphingolipids (Jónasdóttir

2019). Polar lipids are components of cell membranes

and have a direct effect on its specific properties. In

addition, it is believed that polar lipids can be

precursors or intermediate compounds of cellular

signaling systems that provide a response to changes

in environmental conditions (Sharma et al. 2012).

Another group of lipids, which include FAs, are

waxes—esters of higher FAs and monohydric or

dihydric alcohols with a long carbon chain. They are

similar in structure and properties to neutral lipids

(Guschina and Harwood 2009). For example, Euglena

gracilis, under anaerobic conditions, forms waxesters

from SFAs and alcohols with carbon chain lengths

from 10 to 18, including odd chain lengths. The main

constituents are myristic acid (C14:0) and myristyl

alcohol (Tomiyama et al. 2019). In Chroomonas

salina, SFAs were also present in the wax esters, and

among them C13:0 was especially high (Henderson

and Sargent 1989).

3.3 Diversity of fatty acids of microalgae

3.3.1 Total quantity of fatty acids

Now, as a result of numerous studies, there is a fairly

rapid accumulation of data on the diversity of FAs in

microalgae and cyanobacteria. Both individual species

and strains and their various groups are studied

(Volkman et al. 1989; Dunstan et al. 1993; Viso and

Marty 1993; Zhukova and Aizdaicher 1995; Gugger

et al. 2002; Taipale et al. 2013). The most extensive

study of microalgal FAs was carried out by Lang with

co-authors (2011). In total, they studied 2076 strains of

microalgae from the Collection of the University of

Göttingen (SAG) and identified 76 different FAs and

10 other lipophilic substances (Lang et al. 2011).

In order to study the FA composition, the entire

lipid profile is most often covered (Gugger et al. 2002;

Lang et al. 2011; Taipale et al. 2013) whether or not it

is divided into separate classes of lipids. Less

commonly, FAs of certain lipid classes are studied:

phospholipids (Dijkman and Kromkamp 2006; Lu

et al. 2013), glycerolipids (phospholipids and glycol-

ipids) (Arisz et al. 2000), TAG (Yang et al. 2017),

glycolipids (Xue et al. 2002), betaine lipids (Cañavate

et al. 2016).

Analysis of the data on the collected FA profiles,

taking into account all lipid classes, made it possible to

identify 135 FAs in the lipids of microalgae and

cyanobacteria. Taking into account the hydrocarbon

chain, its structure, the presence of substituents, as

well as the presence and amount of double bonds, FAs

of microalgae were divided into corresponding groups

and systematized in Table 1. The summarized infor-

mation on the content of FAs in microalgae strains is

presented in Online Resource.

3.3.2 Odd-chain fatty acids, branched chain fatty

acids, etc

Odd-chain, branched chain, hydroxylated, methylated

FAs, etc. (Bergé and Barnathan 2005; Moellering et al.

2016; Fatiha 2019) represent a relatively rare group

and are rarely found in microalgae and cyanobacteria.

This feature has already been emphasized earlier (Hu

et al. 2008; Liu and Liu 2017).

The branched carboxylic acids of lipids are usually

not classified as FAs proper, but are considered their

methylated derivatives. Methylated at the penultimate

carbon atom (iso-fatty acids) and at the third from the

end of the chain (anteiso-fatty acids) are included as

minor components in microalgal lipids. Odd-chain and

branched chain FAs, for example, C15:0, C17:0,

C18:1n-11cis are used as markers of bacterial con-

tamination of microalgae and cyanobacteria cultures

(Viso and Marty 1993). Nevertheless, the presence of

such FAs was also established for microalgae. The

most frequently noted area C14:0, anteiso C16:0,

10-Methyl C16:0, 10-Methyl 17:0, C15, C17 (Online

Resource). As a rule, their content does not exceed

3–5% of all FAs. But sometimes it is quite significant.

For example, C15 FAs accounted for 52.2% of all FAs

in Chlorococcum humicolum, 31.92% in Chaetophora

elegans, and C17 FAs—32.44% in Zygnema stellinum

(Ghazala and Shameel 2005). The presence of FAs

C27 and C29 was also noted in some microalgae. At

the same time, FA C29:3 was found in an amount of up

to 20% in Chara contraria and Chaetophora elegans

(Ghazala and Shameel 2005).

Nine different types of 3-OH FAs (3-hydroxy fatty

acids) were found in 28 strains of cyanobacteria (Li

et al. 1998). Their total content was small—2–5% of
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Table 1 Overview of the fatty acids identified in microalgae

Fatty acids* Short-

chain

Medium-

chain

Long-chain Very-long-chain Odd chain of

different length

Iso- and anteiso

branched FAs

– Anteiso-12:0

Anteiso-14:0

Iso-14:0

Anteiso-16:0

Iso-16:0

Iso-18:0

– Iso-15:0

Iso/anteiso-17:1

(n.a.)

Methyl-branched

FAs

– – 10-Me 16:0 – 10-Me 17:0

16/15-Me 17:0

3-Hydroxy FAs

Amide FAs

– 3-OH 12:0

3-OH 14:0

16:0 N alcohol

3-OH 16:0

3-OH 16:1 (n.a.)

3-OH 16:3 (n.a.)

3-OH 18:0

3-OH 18:1(n.a.)

– 3-OH 15:0

3-OH 15:1 (n.a.)

Saturated 6:0

8:0

10:0 (Capric)

12:0 (Lauric)

14:0

(Myristic)

16:0 (Palmitic)

18:0 (Stearic)

20:0 (Arachidic)

22:0 (Behenic)

24:0 (Lignoceric)

11:0

13:0

15:0

17:0

(Heptadecanoic)

19:0

21:0

23:0

27:0

29:0

Monounsaturated – 10:1 (n.a.)

12:1 (n.a.)

14:1n-7cis

(cis-D7)

14:1n-6cis

(cis-D8)

14:1n-5cis

(cis-D9)

16:1n-11cis (cis-D5)

16:1n-13trans (trans-D3)

16:1n-9cis (cis-D7)

(Hypogenic)

16:1n-8cis (cis-D8)

16:1n-7cis (cis-D9)

(Palmitoleic)

16:1n-5cis (cis-D11)

18:1n-12cis (cis-D6)

18:1n-9trans (trans-D9)

(Elaidic)

18:1n-9cis (cis-D9) (Oleic)

18:1n-7cis (cis-D11)

(Vaccenic)

18:1n-5cis (cis-D13)

20:1n-9cis (cis-D11) (Gondoic)

22:1n-9cis (cis-D13) (Erucic)

24:1n-9cis (cis-D15) (Nervonic)

13:1 (n.a.)

15:1n-5cis (cis-

D10)

17:1n-8cis (cis-

D9)

17:1n-7cis (cis-

D10)

19:1n-8cis (cis-

D11)

21:1 (n.a.)

23:1 (n.a.)

Polyunsaturated 12:2n-6cis

(cis-D3,6)

12:2n-3cis

(cis-D6,9)

14:2n-6cis

(cis-D5,8)

12:3n-3cis

(cis-D3,6,9)

16:2n-7cis (cis-D7,9)

16:2n-7cis (cis-D5,9)

16:2n-6cis (cis-D7,10)

16:2n-4cis (cis-D9,12)

16:3n-6cis (cis-D4,7,10)

16:3n-4cis (cis-D6,9,12)

16:3n-3cis (cis-D7,10,13)

(Hexadecatrienoic)

18:2n-9cis (cis-D5,9)

18:2n-9cis (cis-D6,9)

18:2cis (cis-D8,x)

18:2n-6trans (trans-D9,12)

(Linolelaidic)

18:2n-6cis(cis-D9,12) (Lenoleic,

LA)

18:2n-4cis (cis-D9,14)

5:2 (n.a.)

11:2n-3cis (cis-

D5,8)

13:2n-6cis (cis-

D4,7)

15:2n-6cis (cis-

D6,9)

17:2n-8cis (cis-

D5,9)
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Table 1 continued

Fatty acids* Short-

chain

Medium-

chain

Long-chain Very-long-chain Odd chain of

different length

14:3n-3cis

(cis-

D5,8,11)

14:5 (n.a.)

16:3n-1cis (cis-D9,12,15

16:4n-3cis (cis-D4,7,10,13)

16:4n-1cis (cis-D6,9,12,15)

16:4n-4cis (cis-Dx,x,x,12)

18:4n-3cis (cis-D5,9,12,15)

18:4n-3cis (cis-D6,9,12,15)

(Stearidonic, SDA)

18:4n-1cis (cis-

D8,11,14,17)

18:5n-3cis (cis-

D3,6,9,12,15)

18:2n-4cis (cis-D11,14)

18:2n-3cis (cis-D12,15)

20:2n-6cis (cis-D11,14)

(Eicosadienoic)

22:2n-6cis (cis-D13,16)

(Docosadienoic)

18:3n-6cis (cis-D5,9,12) (Calendic)

18:3n-6cis (cis-D6,9,12) (c-

Linolenic, GLA)

18:3n-4cis (cis-D8,11,14)

18:3n-3cis (cis-D9,12,15) (a-

Linolenic, ALA)

18:3n-1cis (cis-D11,14,17)

20:3n-7s (cis-D7,10,13)

20:3n-6cis (cis-D8,11,14) (Dihomo-

gamma-linolenic, DGLA)

20:3n-3cis (cis-D11,14,17)

(Eicosatrienoic)

22:3(n.a.)

20:4n-6cis (cis-D5,8,11,14)

(Arachidonic, ARA)

20:4n-5cis (cis-D6,9,12,15)

20:4n-3cis (cis-D8,11,14,17)

(Eicosatetraenoic, ETA)

20:6(n.a.)

22:4n-6cis (cis-D7,10,13,16)

(Adrenic)

20:5n-3cis (cis-D5,8,11,14,17)

(Eicosapentaeonic, EPA)

22:5n-6cis (cis-D4,7,10,13,16)

(Osbond)

22:5n-3cis (cis-D7,10,13,16,19)

(Docosapentaenoic, DPA)

22:6n-3cis (cis-D4,7,10,13,16,19)

(Docosahexaenoic, DHA)

22:6n-6cis (cis-Dx,x,x,x,13,16)

28:7n-6cis (cis-

D4,7,10,13,16,19,22)

28:8n-3cis (cis-

D4,7,10,13,16,19,22,25)

17:2n-8cis (cis-

D6,9)

17:2n-5cis (cis-

D9,12)

19:2n-7cis (cis-

D9,12)

11:3 (n.a.)

13:3n-3cis (cis-

D4,7,10)

15:3n-3cis (cis-

D6,9,12)

17:3n-5cis (cis-

D6,9,12)

17:3n-3cis (cis-

D8,11,14)

17:3n-6cis (cis-

Dx,x,11)

29:3 (n.a.)

15:4 (n.a.)

19:4 (n.a.)

FAs notation: the number of carbon atoms in the chain, the number of double bonds, relative stereochemical configuration of the

double bond (cis—two substituents are on the same side of the double bond plane; trans—two substituents are located on opposite

sides of the double bond plane), the position of double bonds from the methyl end of the molecule (n); prefixes iso, anteiso—iso-fatty

and anteiso-fatty acids; Me—the position of the methyl group on carbon atoms from the carboxyl end of the molecule. In brackets—

the numbers of carbon atoms in which the double bond is located when counting from the carboxyl end of the molecule (D), and the

relative stereochemical configuration of the double bond are indicated: cis- or trans

*The designation of fatty acids is given in accordance with the IUPAC nomenclature
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all FAs. The most common were 3-OH C14:0, 3-OH

C16:0 and 3-OH C16:3.

3.3.3 Short-chain and medium-chain fatty acids

in microalgae

SCFAs and MCFAs are rare in microalgae and

cyanobacteria. Sometimes their detection can be

associated with the presence of other microscopic

organisms in the culture of microalgae. Therefore,

when establishing the origin of such FAs, the possi-

bility of the influence of bacterial contamination on

the FA profile of microalgal culture is analyzed.

Information on the presence of FAs with a C6–C8

chain length in microalgae is sparse. For example, FA

C6:0 in the amount of 1.48–3.93% of all FAs was

observed in Nannochloropsis sp. (Melanie and Fithri-

ani 2020). In Arthrospira platensis and Galderia

sulphuraria (ACUF 064), FA C8:0 was found in an

amount of 0.04% and 0.06%, respectively (Barone

et al. 2020). At the same time, in Galderia sulphu-

raria, FA C8:0 was observed only during cultivation

under autotrophic conditions and was absent under

heterotrophic conditions.

FAs with an average chain length (C10–C14) are

quite often noted by researchers in the composition of

lipids of microalgae, but in insignificant amounts—

less than 1% of all FAs or a little more (Online

Resource). The ability to produce MCFAs in signif-

icant quantities is rare. As the analysis of the table data

shows (Online Resource), MUFAs with a C12–C14

chain length are observed in 25–33% of strains

producing SFAs with the same chain length.

The maximum amount (up to 79.2%) of FA C14:0

in the total FA composition was noted for individual

Euglena gracilis strains. Moreover, in 21 out of 26

Euglena gracilis strains from the SAG collection, its

content did not exceed 5% (additional file 1 in Lang

et al. 2011). The white mutant strain 1224–5/1f, which

has no stigma and lacks a paraxonemal body, is

especially productive (Lebert and Hader 1997).

Another similar mutant (strain 1224–5/9f) produced

only 13.6% of this FA. Among other Euglenophyceae,

a high content of FA C14:0 was found in Astasia

longa—28.1% (Lang et al. 2011).

According to Lee and Loeblich (1971), Prymne-

sium parvum, which according to modern views is

classified as Haptophyta (Frey 2015) and living in a

fairly wide range of water salinity (0.5–30 psu),

accumulates FA C14:0 to 68.9%. Emiliania huxleyi

forms up to 35.1% of FA C14:0 of all FAs. It is a

representative of phytoplankton of almost all oceanic

ecosystems with various trophic parameters and it

often forms water bloom (Volkman et al. 1981; Tyrrell

and Merico 2004).

Among diatoms, Biddulphia aurica is often indi-

cated as an object illustrating the significant produc-

tion capacity of lipids and directly FA C14:0 (Hu et al.

2008; Graham et al. 2012; Levitan et al. 2014;

Akubude et al. 2019) based on Orcuut and Patterson’s

work (1975). Attention is drawn to its ability to

accumulate up to 32.0% of FA C14:0. This data may

be related to another organism, Biddulphia aurita

(Lyngbye) Brebiccon 1838, and there was a misprint in

Orcuut and Patterson (1975).

A fairly high content of FA C14:0 was also noted in

a number of other diatom strains: Nitzschia palea—

26.1% (Lang et al. 2011), Chaetoceros sp. (CS256)—

23.6% (Renaud et al. 2002).

Up to 18% of FA C14:0 of all FAs was noted for the

marine phytoplankton species Rhodomonas lens from

Cryptophyta (Beach et al. 1970), 16.2%—for Pyr-

enomonas salina (Lang et al. 2011). Even less, in the

range of 10–12% of all FAs, was FA C14:0 in

Gymnodinium splendens from Dinophyta (Lee and

Loeblich 1971).

Only a few species of green microalgae are able to

synthesize FAs C10–C14 in an amount exceeding 5%

of all FAs. As examples, strains of such representa-

tives as Chlamydomonas asymmetrica, which synthe-

sizes FA C14:0 in an amount of 14.2%, Chlorella

sp.—10.9% (Lang et al. 2011), Rhizoclonium ripar-

ium—8.05% (Osuna-Ruiz et al. 2019), Scenedesmus

obliquus—5.0% (Orazova et al. 2017) should be

noted. An increase in the C14 FA content from 4.76 to

9.79% was established for Dunaliella salina when it

was transferred from a 0.5 mol NaCl solution to a

3.5 mol NaCl solution. In addition, the production of

FA C14:2 increased especially significantly, almost

threefold (Azachi et al. 2002).

Among cyanobacteria, FA C14:0 in the amount of

27.05% was recorded for Limnothrix redekei,

25.9%—for Scytonema bohneri, 22.7%—for Lyngbya

maior, 21.2%—for Pseudanabaena catenata (strain

254.80) (Lang et al. 2011). An interesting pattern was

found by Gugger et al. (2002) in toxic and non-toxic

strains of cyanobacteria. In non-toxic strains An-

abaena, Nostoc C14:0 was absent, and in hepatotoxic
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strains it was found in the amount of 5–7% and

3.1–4.0%. This gave them the opportunity to offer FA

C14:0 as a taxonomic biomarker of the hepatotoxic

strains Anabaena and Nostoc.

There is evidence that under conditions of nitrogen

deficiency, Synechococcus sp. accumulates a total of

about 23.8% of caprylic acid (C10:0) and myristic acid

(C14:0) (Karatay and Dönmez 2011). Similar data (up

to 19.6–22.5% C14:0) were obtained for the strains of

Synechococcus sp. from the SAG collection (Lang

et al. 2011). At the same time, there are species of this

genus that do not form these FAs or form them in

insignificant amounts. According to Gong and Miao

(2019) for the studied strains of Synechococcus sp. an

increase in the production of FAs C12 ? C14 from

2.44% in general to 2.44% and 2.84%, respectively, of

the total amount of FAs was noted when using

cerulenin at a concentration of 7.5 g L-1 (cerulenin

has a specific inhibition of KAS I (FabB) and KAS II

(FabF), which are responsible for carbon chain

lengthening) (Gong and Miao 2019). Among filamen-

tous cyanobacteria, for Trichodesmium erythraeum,

the ability to synthesize 27–50% of C10 FA of the total

amount of FAs was noted (Parker et al. 1967).

Unsaturated, including polyunsaturated short- and

medium-FAs, were found in a wide variety in the snow

alga Chloromonas brevispina (Řezanka et al. 2008).

For example, C14:3 accounted for 4.63%, various

C16:3 in total—15.56%, C16:4—9.56%. A wide

variety of unusual SCFAs and MCFAs were noted in

some freshwater green microalgae from Pakistan

(Ghazala and Shameel 2005). Some of them reached

a significant number. For example, C14:1 accounted

for 40.58% of all FAs in Zygnema stellinum.

3.3.4 Long-chain fatty acids in microalgae

The FA profiles of microalgae are usually based on a

group within the C16–C18 chain length. The most

common FAs are Palmitic (C16:0), Stearic (C18:0),

Palmitoleic (C16:1), Oleic (C18:1), Linoleic (C18:2),

and Linolenic (C18:3) acids (Liu and Liu 2017).

Saturated C16 and C18 are the main FAs synthe-

sized in the plastids of eukaryotic microalgae or on the

thylakoids of cyanobacteria undergoing further vari-

ous modifications (Los 2014). In this case, the ratio

between FAs C16 and C18 can be different. Some

microalgae have a preferential accumulation of FA

C16 in comparison with C18. Thus, in Synechococcus

sp. PCC 7942, their content is 63.49% and 18.44%,

respectively (Gong and Miao 2019), 55.2% and 5.0%

is in Chaetoceros sp. (Renaud et al. 2002), 47.3% and

10.1% is in Nannochloropsis sp. (Sukenik 1999). On

the contrary, the prevalence of C18 in comparison

with C16 was established for Dunaliella tertiolecta

(Nielsen et al. 2019)—77.93% and 17.53%, respec-

tively, for Scrippsiella sp.—62.6% and 10.1% (Man-

sour et al. 1999), for Rhodomonas salina—55, 81%

and 11, 87% (Nielsen et al. 2019), for Rhodomonas

lens—53.5% and 24.2% (Beach et al. 1970), for

Scenedesmus obliquus—50.31% and 29.8% (Orazova

et al. 2017). Sometimes their content is quite close. For

example, in Gymnodinium sanguineum (Mansour

et al. 1999), C16 FAs and C18 account for 27.4%

and 24.3%, respectively.

In this group of FAs, the most common is palmitic

acid (C16:0). One of the leaders in its content are the

Chlamydomonas strains: Ch. applanata (SAG

11-36a)—88.57%, Ch. media (SAG 10.87)—

88.12%. More than 50% C16:0 from all FAs accumu-

late: Ch. callosa (SAG 9.72)—54.0%, Ch. monadina

(SAG 8.87)—57.36%, Ch. maxima (SAG 31–1)—

57.49%, Ch. proteus (SAG 2.85)—59.36% (Lang

et al. 2011). Nannochloropsis sp. contains Palmitic

acid in significant amounts—61.06% (Melanie and

Fithriani 2020). Some cyanobacteria are also capable

of synthesizing C16:0 FA in large amounts: 48.4% in

Calothrix (Gugger et al. 2002), 47.93% in Syne-

chococcus sp. PCC 7942 (Gong and Miao 2019),

Scytonema lyngbyoides (SAG 40.90)—54.63%, S.

mirabile (SAG 83.79)—69.52%, Spirulina labyrinthi-

formis (SAG 59.90)—58.7% (Lang et al. 2011).

FA C18:0 in FAs composition of microalgae is on

average 2–3% (Online Resource). However, there are

strains that accumulate Stearic acid in significant

amounts: Parachlorella kessleri (SAG 17.80)—

71.5%, Tetracystis texensis (SAG 99.80)—65.79%

(Lang et al. 2011). Strains capable of synthesizing

more than 50% of Stearic acid from all FAs are widely

represented among Chlorophyta, especially Chloro-

phyceae and Trebouxiophyceae (Chlorosarcinopsis

negevensis (SAG 68.80), Desmatractum bipyramida-

tum (SAG 3.97), etc.), and are practically absent in the

composition of other divisions of eukaryotic microal-

gae. The amount of Stearic acid in cyanobacteria

rarely exceeds 1–2% (Gugger et al. 2002). Only in an

insignificant part of the strains, the Stearic acid content

is higher than 20%, and in Westiellopsis prolifica
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(SAG 23.96) it reaches a maximum value of 44.95%

(Lang et al. 2011).

Among MUFAs, C16:1 and C18:1 are widespread

in microalgae and cyanobacteria and can be formed in

significant quantities. For example, the cyanobac-

terium Synechococcus sp. PCC 7942 synthesizes

C16:1 and C18:1—up to 38.2% and 15.84% of the

total of FAs, respectively (Gong and Miao 2019).

Slightly less C16:1 was found in Planktothrix and

Nostoc—25.4% and 29.3%, respectively (Gugger

et al. 2002). In the diatom Chaetoceros sp. C16:1

was 36.5% (Renaud et al. 2002). Quite often, C16:1 is

noted in Eustigmatophyceae in an amount exceeding

20%.

For example, in Nannochloropsis sp. C16:1—up to

23.5–27.4% (Sukenik 1999; Melanie and Fithriani

2020), in Monodus subterraneus (Cohen 1999)—up to

26.9%. FA C18:1 in an amount of up to 21.91% was

noted in Isochrysis galbana (Nielsen et al. 2019), up to

20.02% in Chlorella vulgaris SDEC-3M (Qi et al.

2019). A high amount of C18:1 was noted for

Tribonema aequale (Lee and Loeblich 1971)—

73.1%. Detailing the location of the double bond in

the hydrocarbon chain, geometric (cis- and trans-)

isomerism, allows one to obtain additional informa-

tion about the peculiarities of the distribution of these

FAs (Online Resource). The most frequently noted

FAs are C16:1n-7cis, C18:1n-7cis, C18:1n-9cis.

Polyunsaturated C18 FAs, which belong to the

omega-6 and omega-3 families, are discussed below.

3.3.5 Very-long-chain fatty acids in microalgae

FAs with a long hydrocarbon chain (C20–C22 and

more) are not very typical of cyanobacteria and are

formed in insignificant amounts. For example, for

Synechococcus sp. PCC 7942 FAs C20–C22 in total

did not exceed 0.46% of the total amount of FAs on the

20th day of cultivation (Gong and Miao 2019). In

eukaryotic microalgae, FAs C20–C22 are more

diverse and can accumulate in significant amounts.

FAs with a chain length exceeding C22 are rare in

microalgae. The C24:0 content is generally limited to

1%, but sometimes it is more. So, it is noted in the

amount of 5.82% in Zygnema stellinum (Ghazala and

Shameel 2005), 4.0% in Rhodomonas baltica (Patil

et al. 2007). And its maximum content of 21.31% was

recorded in Lagerheimia hindakii (Lang et al. 2011).

The presence of FAs with an even longer carbon chain

(C28) was noted in some marine and freshwater

microalgae. C28:8 in an amount of 1.7–2.2% was

found in Prorocentrum mexicanum, Scrippsiella sp.,

Gymnodinium sp., Fragilidium sp. C28:7 was in an

amount of 0.7–0.8% in Prorocentrum micans, Sym-

biodinium microadriaticum (Mansour et al. 1999).

3.3.6 Omega-6 and omega-3 fatty acids

Omega-6 and omega-3 FAs are of great interest among

FAs. They have a wide range of applications in various

spheres of human economic activity, which will be

shown in detail below. Microalgae have different

capacities to produce these FAs.

In the omega-6 FA family, the most important are

linoleic (LA) and GLA acids, dihomo-gamma-li-

nolenic acid (DGLA), ARA; in the omega-3 FA

family, the most important are a-linolenic (ALA),

stearidonic acid (SDA), EPA, docosapentaenoic acid

(DPA), DHA acids. Of these, LA and ALA constitute a

special category of the so-called essential FAs, which

take a significant part in the metabolism of humans and

animals, but cannot be synthesized by them (Cunnane

2003; Harwood 2019). Conditionally essential acids,

the synthesis of which depends on the presence of LA

and ALA, include ARA, DHA, EPA acids. As a rule,

these acids can be synthesized in animal organisms,

not being essential in the strict sense, but they are

conventionally referred to as essential FAs, since they

are able to eliminate the symptoms of deficiency of LA

and ALA (while ARA is 10 times more active than LA

in normalizing the resulting disorders) (Berezhnoi and

Korneva 2016).

The content of LA in microalgae is highly variable.

For example, its content in Heterococcus endolithicus

(SAG 63.90) is 53.37% (Lang et al. 2011), in

Trebouxia simplex is 45.9% (Lang et al. 2011), in

Bracteacoccus bullatus (strain MZ–Ch32) is 23.8%

(Maltsev et al. 2020) and Bracteacoccus bullatus

(strain MZ–Ch11) is 13.9% (Mamaeva et al. 2018), in

Chlorella sorokiniana is 36.0% (Patterson 1970).

Among cyanobacteria, many accumulate up to 10%

and a little more (for example, up to 20.8%—Nostoc

(Gugger et al. 2002), up to 17.6%—Arthrospira

platensis (Xue et al. 2002), up to 15.2%—Cylindros-

permum (Gugger et al. 2002), up to 13.8%—Plank-

tothrix (Gugger et al. 2002)). However, there are

strains producing LA in significant quantities: 54.75%

is in Chamaesiphon polonicus (SAG 32.87), 46.78% is
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in Pseudanabaena galeata (SAG 13.83), 41.10% is in

Phormidium autumnale (SAG 78.79) (Lang et al.

2011). There are species among diatoms that synthe-

size LA in significant amounts, for example, Cysto-

seira sauvageauana (15.35% LA) (Kord et al. 2019).

GLA acid is formed mainly in an amount of up to

1%, rarely more. These are separate representatives of

the divisions of eukaryotic microalgae. For example,

inChlorococcum sp. (strain 2076) its content is 28.7%,

in Chlamydomonas zebra (strain 25.86) is 18.3%, in

Cryptomonas sp. (strain 20.88) is 17.7% (Lang et al.

2011), in Isochrysis galbana (Volkman et al. 1981) is

7.0%, in Scrippsiella sp. (Mansour et al. 1999) is

5.2%. It is found in significant quantities in some

cyanobacteria: in Microcystis aeruginosa—

22.0–33.3% (Piorreck et al. 1984; Lang et al. 2011),

in Arthrospira maxima (strain 84.79)—24.8% (Lang

et al. 2011), in Arthrospira platensis—up to 20.3%

(Xue et al. 2002).

A number of green microalgae shows a high content

of ALA. Some strains ofChlamydomonas contain it up

to 62.3% (Lang et al. 2011), Dunaliella tertiolecta—

60.2% (Nielsen et al. 2019), Chaetopeltis orbicu-

laris—up to 57.5% (Lang et al. 2011),Carteria—up to

54.6% (Lang et al. 2011), Scenedesmus obliquus—

41.17% (de Oliveira et al. 2020). Many cyanobacteria

accumulate ALA from 20% and more (48.6%—in

Planktothrix, 41.4%—in Nostoc, 38.8%—in Aphani-

zomenon, 38.1%—in Anabaena (Gugger et al. 2002),

Anabaena—up to 54.6–64.0%, Nostoc—up to 54.4%,

Cylindrospermum—up to 52.3%, Calothrix—up to

40.0%, etc. (Lang et al. 2011)). From Chrysophyceae,

a fairly significant (39.5%) amount of ALA was noted

in Poterioochromonas malhamensis (strain 933-1d)

(Lang et al. 2011), from Eustigmatophyceae—in

Ellipsoidion parvum (strain 40.86) (42.0%) (Lang

et al. 2011), in Nannochloropsis sp. (35.7%) (Melanie

and Fithriani 2020), from Xanthophyceae—in Tri-

bonema aequale (strain 880-1) (25.3%) (Lang et al.

2011). Cryptophytes synthesize ALA often in an

amount of more than 10%. Among them, for example,

Chilomonas sp. (strain 977-2b) contains 28.9% ALA

(Lang et al. 2011), Rhodomonas salina—21.14%

(Nielsen et al. 2019), Rh. lens—16.0% (Beach et al.

1970).

Cryptophytic microalgae form SDA even more. For

example, in the FA profile of Hemiselmis brunescens,

the SDA is 30.0% (Chuecas and Riley 1969). Some

green microalgae form SDA in amounts of 10% or

more. For example, in Tetraselmis suecica (Nielsen

et al. 2019) SDA—is 11.75%, in some Ankistrodesmus

strains is up to 21.4%, in Chlamydocapsa is up to

27.2%, in Chlamydomonas is up to 52.3% (Lang et al.

2011). Quite often, this FA is found in noticeable

amounts in cyanobacteria. For example, in Stigonema

sp. (strain 49.90) its content is 30.3%, in Anabaenopsis

siamensis is 29.5% (Lang et al. 2011), inMicrocystis is

up to 21.6% (Gugger et al. 2002), in Arthrospira

platensis is 20.3% (Xue et al. 2002). Among crypto-

phytes, some Cryptomonas strains form SDA up to

27.0% (Lang et al. 2011). From dinophytes Amphi-

dinium carterae (strain Amp) synthesizes SDA up to

33.0% (Lang et al. 2011). Scrippsiella sp. synthesizes

SDA up to 10.6%, as well as rather rare SDA—up to

43.1% (Mansour et al. 1999).

FAs belonging to the omega-3 and omega-6

families and having a hydrocarbon chain length of

C20 and more were noted in a small number of

cyanobacterial strains and in an insignificant amount:

EPA—4.4% in Calothrix sp. (strain 25.94), 11.3% in

Phormidium sp. (strain 1463-1e) (Lang et al. 2011);

DPA—1.0% in Aphanocapsa sp. (Kenyon et al. 1972),

DGLA—0.6% in Arthrospira platensis (Xue et al.

2002), ARA—3.2% in Calothrix desertica (Lang et al.

2011).

Of the green EPA, up to 19.47%, is contained in the

biomass of Tetraselmis suecica (Nielsen et al. 2019),

up to 24.0%—in Chlamydomonas allensworthii (Lang

et al. 2011). A similar EPA content was noted in some

diatoms: 23.8% is in Phaeodactylum tricornutum

(strain 1090-1b) (Lang et al. 2011), 26.0% is in

Biddulphia aurica (Orcuut and Patterson 1975).

Cryptophytes synthesize somewhat less EPA:

11.0%—Hemiselmis brunescens (Chuecas and Riley

1969), 13.0%—Rhodomonas lens (Beach et al. 1970),

15.22%—Rhodomonas salina (Nielsen et al. 2019).

The leaders in the accumulation of EPA are a number

of strains from eustigmatophytes (44.2%—Nan-

nochloropsis salina (Safafar et al. 2016), 37.1%—

Monodus subterraneus (Hu et al. 1997); 34.9%—

Nannochloropsis sp. (Sukenik 1999)), dinophytes

(41.1% is in Pyrocystis lunula (strain 2014) (Lang

et al. 2011)).

The content of ARA in microalgae varies widely. A

large amount of this FA was noted in some euglenids

(34.3% is in Khawkinea quartana (strain 1204-9)

(Lang et al. 2011), 41.3% is in Rhabdomonas incurva
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(Lang et al. 2011)), Trebouxiophyceae (58.9% is in

Parietochloris incisa (Khozin-Goldberg et al. 2002)).

FAs C22 are rare in microalgae. In this case, DHA

is somewhat more frequent than DPA. The maximum

DHA values are indicated for dinophytes: in Crypthe-

codinium cohnii, Crypthecodinium sp. and Schizochy-

trium sp.—up to 50–60% (Spolaore et al. 2006;

Doughman et al. 2007; Ratledge and Cohen 2010); in

Ceratium horridum (strain Cer)—29.3% (Lang et al.

2011); in Gymnodinium sanguineum—24.2% (Man-

sour et al. 1999). A significant DHA content is known

for some haptophytes (28.37% in Isochrysis galbana

(Nielsen et al. 2019)), green microalgae (26.13% in

Chlorella sp.) (Sivaramakrishnan and Incharoensakdi

2020), Haptophyta (13.2%—Pavlova sp. (NIVA-4/

92) (Patil et al. 2007)). The leaders in the amount of

DPA are Pyrocystis lunula (SAG 2014) from dino-

phytes (41.08%), Trachelomonas volvocina (SAG

1283-4) from Euglenophyceae (23.66%) (Lang et al.

2011).

4 Fatty acids of microalgae as an industrial

resource

4.1 Microalgae fatty acids market

A wide range of compounds synthesized by microal-

gae are very successfully used in various fields of

human economic activity, which is discussed in a

number of review works (González-Fernández et al.

2012; Barkia et al. 2019; Figueroa-Torres et al. 2019;

Sathasivam et al. 2019; Lever et al. 2020). As a rule,

such works are devoted either to a specific direction of

use of microalgal compounds (bioenergy, food and

feed industry, aquaculture, pharmacology, cosmetol-

ogy) (Sathasivam et al. 2019; Levasseur et al. 2020) or

their goal is to present the maximum variety of

compounds and their application in various fields of

activity (Pulz and Gross 2004; Chu 2012; Khan et al.

2018; Levasseur et al. 2020). The possibilities of the

FAs market are limited by the rather high cost of

obtaining and processing microalgal biomass (Hu

et al. 2008; Bai et al. 2011; Li-Beissona et al. 2019). A

comparative assessment of economic attractiveness

and approaches to reducing costs in obtaining com-

mercial FAs are discussed in detail in a number of

works (Li et al. 2014; Michalak and Chojnacka 2014;

Bleakley and Hayes 2017; Michalak et al. 2017;

Mondal et al. 2017; Santoro et al. 2019; Sharma et al.

2020).

FAs are one of the main components of the biomass

of microalgae and are present in cells mainly in the

form of glycerolipids. In turn, glycerolipids are mainly

composed of phospholipids, glycolipids and TAG.

Their content in cells can be significant and be of

interest for various industries. As part of this work, we

set the task to analyze the commercial interest in

various groups of FAs of microalgae.

4.2 Industrial interest in short-chain and medium-

chain fatty acids

SCFAs are not very common for microalgae, and

MCFAs are quite often observed in representatives of

different divisions of eukaryotic microalgae, as well as

in cyanobacteria. The content of some MCFAs can be

significant (for example, C10 up to 27–50% of all FAs,

C14—up to 79.2%). SCFAs and MCFAs play an

important role both as nutrients and as regulators of

metabolism. MCFAs constitute an important nutri-

tional resource for patients with long-chain FA

hydrolysis disorders. TAG containing MCFAs are

rapidly absorbed when ingested with food or as a

dietary supplement. At the same time, they have a low

energy value, which is very important in some diets. A

diet high in SCFAs and MCFAs increases energy

expenditure and decreases body fat (Schönfeld and

Wojtczak 2016). These features are important not only

for the implementation of dietary nutrition, but also

when assessing, for example, food chains in ecosys-

tems (Iverson 2009; Taipale et al. 2009). Another

important property of these FAs is their antibacterial

action. When added to feed, they can represent an

alternative to antimicrobial drugs (Rybin and Blinov

2001; Orazova et al. 2017). MCFAs are also valuable

for the cosmetic industry, which is associated with

their resistance to oxidation, easy absorption by the

skin, and other valuable properties (Aripovsky and

Titov 2013).

4.3 Industrial interest in long-chain and very-

long-chain fatty acids, including omega-6

and omega-3 families

LCFAs represent a wide range of uses and are of

greatest commercial interest. Saturated and unsatu-

rated LCFAs of microalgae are valuable for producing
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oils with different properties that are used in various

industrial fields.

Biodiesel properties such as cetane number, kine-

matic viscosity, oxidative stability, etc., which are

taken into account by international standards and

specifications, depend on the profile of FAs used in the

production process of microalgae (Biodiesel specifi-

cations) (Knothe 2009; Ma et al. 2016; Mondal et al.

2017; Xu et al. 2020). The composition of oils from

microalgae can include PUFAs and FA methyl esters

with 4 or more double bonds. Oxidizing during

storage, they impair the suitability of such oils for

biodiesel production (Chisti 2007; Ma et al. 2016;

Mondal et al. 2017; Xu et al. 2020). It was found that a

high content of esters of SFAs leads to an increase in

the cetane number, and a sufficient amount of esters of

MUFAs, for example, oleic acid ester, significantly

improves the flow properties of biodiesel fuel at low

temperatures (Knothe 2012). Thus, microalgae with a

high content of SFAs and MUFAs in lipids are the

most promising for the production of biodiesel fuel

(Maltsev et al. 2021).

Microalgae containing large amounts of SFAs can

become an alternative to the production of hydro-

genated vegetable oils (Los 2014). Usually, to increase

the content of SFAs, vegetable oils undergo catalytic

hydrogenation. However, this process often leads to

the appearance, in addition to cis-double bonds, also

bonds in the transpositionin FAs. Trans-double bonds

are not typical of most natural sources of unsaturated

FAs, and regulation of the FA composition in food is

currently considered an important task (Hodson et al.

2009).

The most developed direction is the search and use

of microalgae strains synthesizing PUFAs in signifi-

cant quantities. Special attention is paid to the ability

of microalgae to accumulate PUFAs omega-6 and

omega-3 (Harwood 2019; Sathasivam et al. 2019). As

indicated above, ALA and LA acids are essential and

are directly related to the formation of very long-chain

PUFAs (VLCPUFA) C20–C22, which are therefore

referred to as ‘conditionally essential’ (Cunnane

2003). These are primarily such VLCPUFAs: ARA,

EPA and DHA acids. ARA, together with other FAs

containing 20–22 carbon atoms (EPA, DHA, GLA),

serves as a precursor for a large number of physio-

logically active substances—eicosanoids.

Intensification of food production of plant and

animal origin, artificial breeding of fish changed the

balance of the content of valuable PUFAs in the

direction of oversaturation by omega-6 FAs and

deficiency of omega-3 (Nazarov et al. 2009; Moeller-

ing et al. 2016; Harwood 2019; Poole et al. 2020). In

the Western diet, the omega-6:3 ratio is (20–30):1,

which adversely affects health indicators (Simopoulos

2016). It should be optimal from the point of view of

ensuring a balanced diet from 1:1 to 4:1 (Berezhnoi

and Korneva 2016; Peltomaa et al. 2019).

The lack of omega-3 can contribute to the devel-

opment of various pathological processes. The enrich-

ment of diets with these FAs has a positive effect on

human health and is used in the prevention of a number

of diseases. Much attention is paid to the analysis of

these problems (Swanson et al. 2012; Haimeur et al.

2016; Calder 2018; Bhatt et al. 2019; Harwood 2019;

Sathasivam et al. 2019).

Correction of the omega-6:3 balance in the human

diet can be achieved both as a result of the use of food

additives and by improving the quality and value of

livestock, poultry and aquaculture products.

The main dietary source of omega-3 PUFAs for

humans is marine fish. Numerous evidences suggest

that fish oil is actually enriched with omega-3 PUFAs

through the marine food chain from zooplankton

consuming microalgae containing omega-3 PUFAs or

from microalgae directly. Thus, microalgae are one of

the most important sources of valuable FAs (omega-3,

omega-6) in aquaculture. In this regard, it is important

both to maintain an optimal phytoplankton composi-

tion in aquaculture and to use microalgae-based

supplements (Burns et al. 2011; Knutsen et al. 2019;

Bruni et al. 2020).

Fortification of feed with PUFAs is a new strategy

for the feed industry (Schmitt et al. 2018; Ma et al.

2019). The positive effect of the inclusion of PUFAs of

microalgae in the diet was observed when growing

various farm animals and birds (Lamminen et al. 2019;

Moran et al. 2019b; Pajor et al. 2019; Petrolli et al.

2019). Fortification of the diet of chickens with

microalgae-based supplements was accompanied by

an increase in the content of omega-3 (DHA) in eggs,

which increased their nutritional value (Moran et al.

2019a).

An important aspect of microalgae cultivation is the

ability to simultaneously reduce environmental pollu-

tion. A positive experience was obtained with the

cultivation of Crypthecodinium cohnii in environ-

ments with relatively high concentrations of acetic,
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butyric or propionic acid as the main carbon source.

As a result, the water was purified from the content of

organic acids, and DHA accumulated in the biomass of

the alga up to 29.8% (w w-1) of the total amount of

FAs (Chalima et al. 2019). It has been demonstrated by

means of the example of other microalgae that the

growth of microalgae depends on the pH of the

medium and the presence of non-dissociated mole-

cules of volatile FAs (Lacroux et al. 2020). The

Desmodesmus sp. KNUA024 strain demonstrated a

high level of PUFA accumulation (up to 54.83% of all

FAs) with simultaneous purification of wastewater

from ammonia and total nitrogen by 91–99% and total

phosphorus by 95%. (Do et al. 2019).

5 Fatty acids are biomarkers

5.1 Main and specific fatty acids of microalgae

The search for biotechnologically valuable strains of

microalgae is a rather urgent task. Important for its

solution is the possibility of predicting the ability of

microalgal species to accumulate lipids highly on the

basis of clarification of their phylogeny (Fields and

Kociolek 2015; Galloway and Winder 2015; Neofotis

et al. 2016). As a number of studies show, for taxa of

various ranks, a certain dependence can be traced at

the level of predominance of certain groups of FAs in

the profile (Bergé and Barnathan 2005; Petkov and

Garcia 2007; Kelly and Scheibling 2012; Shukla et al.

2012; etc.). This gives the possibility of both a targeted

search for new highly productive representatives of

certain FAs among certain groups of microalgae, and

the use of FA profile data for identifying taxa,

determining the characteristics of food chains in

ecosystems (Iverson 2009; Kühn et al. 2019; Taipale

et al. 2009).

As a rule, when analyzing the FA composition, the

main FAs are noted, which accumulate in the greatest

amount, and specific ones, which can be used as a

taxonomic biomarker (Tables 2, 3).

On the basis of numerous studies, conclusions were

drawn about the FA profiles typical of various taxa of

microalgae. This has been most successful for the

division and class level (Lang et al. 2011; Taipale et al.

2013; Galloway and Winder 2015; Cañavate 2018).

However, unambiguity in the composition of the FA

profile at the level of species of the same genus,

different strains of the same species has not yet been

achieved (Lang et al. 2011; Procházková et al. 2019).

It is believed that prokaryotic organisms—

cyanobacteria—synthesize significant amounts of

FAs C16:0, C16:1, as well as PUFAs with 18 carbon

atoms: C18:2n-6cis, C18:3n-3cis, C18:3n-6cis,

C18:4n-3 (Gugger et al. 2002; Lang et al. 2011).

According to the FA composition, cyanobacteria are

divided into 4 groups (Kenyon et al. 1972; Li et al.

1998). The first group of cyanobacteria contains SFAs

and MUFAs: C16:1n-7cis, C18:1n-9cis. A feature of

the second group is the presence of ALA, the third—

GLA, the fourth—SDA (Kenyon et al. 1972; Los

2014). There is a report on the isolation of the fifth

group of cyanobacteria. It is described by Cohen et al.

(1995) and is located according to the Kenyon-Murata

classification system between groups 1 and 2. Strains

in this group contain LA as the only C18 PUFA.

The specific group 3-OH FA (3-hydroxy fatty acid)

found in cyanobacteria has also been considered as

taxonomic biomarkers. The results of the studies

showed that, in contrast to bacteria, in cyanobacteria,

3-OH FAs did not show any special taxonomic

significance (Li et al. 1998).

In Chlorophyta, FAs are dominated by FAs with 16

and 18 carbon atoms. At the same time, different

classes have their own characteristics in the FA profile,

associated mainly with the composition of unsaturated

and especially PUFAs. Jónasdóttir (2019), comparing

the content of FAs C16, C18, and C20–22 (including

C18:5n-3cis) in different classes of Chlorophyta, notes

the predominance of FAs C16:2 and C16:3 in

Trebouxiophyceae, Nephroselmidophyceae and

C16:4 in Chlorophyceae, Chlorodendrophyceae, Pyra-

mimonadophyceae, Mamiellophyceae; prevalence of

C18:1n-7, SDA and EPA in Pyramimonadophyceae,

Mamiellophyceae and C18:1n-9, C18:2n-6, C18:5n-

3cis and C22:6n-3cis in Trebouxiophyceae,

Nephroselmidophyceae, Chlorophyceae, Chloroden-

drophyceae. A quite specific composition of FAs in

relation to other classes of Chlorophyta is observed in

Prasinophyceae (Dijkman and Kromkamp 2006).

In heteroconts (or stramenopiles), the value of C20

in the FA profile increases, and in Dinophyta, Hapto-

phyta, Cryptophyta also the value of C22 increases

(Dijkman and Kromkamp 2006; Taipale et al. 2013).

Diatoms are characterized by a high content of C16

FAs, especially C16:1n-7cis. At the level of such

classes as Cosciondiscophyceae and
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Table 2 Main fatty acids for each algal class

Class (Order) Main fatty acids

Cobelas and Lechado (1989) Dijkman and Kromkamp (2006) Taipale et al. (2013)

Cyanobacteria 16:0

16:1

18:1

–

Chlorophyceae 16:0

18:1

18:3n-3cis

16:4n-3cis

16:0

18:1n-9cis

18:3n-3cis

16:0

18:1n-9cis18:2n-6cis

Trebouxiophyceae – 18:3n-3cis

16:3n-3cis

16:0

18:2n-6cis

18:3n-3cis

16:0

18:1n-9cis

18:2n-6cis

Prasinophyceae 16:0

18:1

18:4n-3cis

16:0

16:4n-3cis

18:3n-3cis

–

Bacillariophyceae 16:0

16:1

20:5n-3cis

16:1n-7cis

16:0

14:0

16:1n-7cis

20:5n-3cis

16:0

14:0

Eustigmatophyceae 16:0

18:1

– –

Xanthophyceae 14:0

16:0

16:1

– –

Chrysophyceae 16:0

16:1

18:1

– –

Raphidophyceae – – 16:0

20:5n-3cis

18:4n-3cis

18:3n-3cis

Synurophyceae – – 18:4n-3cis

14:0

18:3n-3cis

16:0

Synurophyceae (Ocromonadales) – – 16:1n-7cis

16:0

18:2n-6cis

18:1n-7cis

Euglenophyceae 16:0

18:1

– 16:0

18:3n-3cis

20:5n-3cis

22:6n-3cis
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Bacillariophyceae, the differences are in the content of

PUFAs C16:3cis, where C16:3n-3cis and C16:3n-6cis

are present in Cosciondiscophyceae, and not in

Bacillariophyceae. Differences in the FA profile

within Dinophyta mainly relate to the proportions in

the content of DHA, OPA and EPA, and in Haptophyta

differences in the FA profile mainly relate to the

proportions in the content of FAs C16, C18, and[ 20

PUFA (Jónasdóttir 2019). Euglenophyceae are distin-

guished by a high specificity of the composition of the

main FAs (Taipale et al. 2013).

In the analysis of the FA profile, as mentioned

above, FAs used as markers for certain groups of

microalgae are often distinguished. It is believed that

relatively rare FAs specific for a narrow group of

organisms are good biomarkers (Kelly and Scheibling

2012; Galloway and Winder 2015). A certain ratio

between FAs or the absence of a certain FA is also

considered a marker. For example, when labeling

marker FAs in Bacillariophyceae, it is noted that the

amount of FA C18:1n-7cis is up to 10 times higher

than the content of C18:1n-9cis, C16:3n-3cis and

C16:3n-6cis are absent (de Carvalho and de Caramujo

2018; Jónasdóttir 2019). Summary information on

FAs used as markers for various taxa of microalgae is

presented in Table 3.

5.2 Fatty acids of freshwater and marine

microalgae

The composition of both main FAs and FAs used as

markers indicated in the works of various researchers

is not always unambiguous (Tables 2, 3). A number of

works are devoted to the analysis of the relationship

between the composition of FAs and the ecological

group of microalgae (marine, freshwater) (Galloway

and Winder 2015; Cañavate 2018; Peltomaa et al.

2019). It was found that only 1–3% of the differences

are associated with the marine or freshwater origin of

the strains (Galloway and Winder 2015; Cañavate

2018). It was concluded that the main features of the

FA profile are determined by phylogenesis (Galloway

and Winder 2015; Cañavate 2018). In this case, the FA

profile is determined at the early stage of phylogen-

esis, and the colonization of freshwater and saline

ecotopes and adaptation to them does not cause

significant changes in the FA composition. Based on

the FA profile of marine microalgae, 14 classes from

seven phyla and the phylum Bacillariophyceae were

distinguished (Cañavate 2018). However, in some

cases, a more pronounced difference in the FA

composition is observed between marine and fresh-

water species. For example, in comparison with

marine ones, freshwater Cyanobacteria had more

C18:3n-6cis, and Bacillariophyceae had more 16:1n-

7cis respectively. Within the classes Chlorophyceae

and Trebouxiophyceae, the main differences in the FA

Table 2 continued

Class (Order) Main fatty acids

Cobelas and Lechado (1989) Dijkman and Kromkamp (2006) Taipale et al. (2013)

Dinophyceae 16:0 22:6n-3cis

18:4n-3cis

16:0

–

Prymnesiophyceae 16:0

16:1

18:1

22:6n-3cis (DHA)

14:0

16:0

18:1n-9cis

–

Cryptophyceae 16:0

20:1

18:4n-3cis

20:5n-3cis

18:3n-3cis

16:0

22:6n-3cis

18:3n-3cis

16:0

18:4n-3cis
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Table 3 Fatty acids—potential biomarkers for each algal class (phylum)

Class/phylum (order) Fatty acids

Zhukova

(2009)

Taipale

et al.

(2013)

de Carvalho and

Caramujo (2014)

de Carvalho and Caramujo

(2018)

Rozentsvet

et al. (2019)

Jónasdóttir

(2019)

Cyanobacteria – – 16:1n-7cis

18:1n-9cis

18:1n-7cis

18:2n-6cis (fr)

18:3n-6cis (fr)

18:3n-3cis

16:1n-7cis

17:1

18:1n-9cis

18:1n-7cis

18:2n-6cis (fr)

18:3n-6cis (fr)

18:3n-3cis

10-Me 18:0

10-Me 16:0

16:0

16:1n-7cis

16:4n-3cis

18:1n-9cis

18:0

–

Chlorophyta – – 16:2n-6cis

16:3n-3cis

16:4n-3cis

18:1n-9cis

18:2n-6cis

18:3n-3cis

– 16:1n-

13trans

16:4n-3cis

18:1n-9cis

18:2n-6cis

18:3n-3cis

–

Chlorophyceae 16:2n-6cis

16:3n-3cis

16:4n-3cis

18:2n-6cis

18:3n-3cis

20:5n-3cis

22:6n-

3cis—

absent

16:2n-6cis

16:3n-3cis

16:4n-3cis

– – – 16:4

18:1n-9cis

18:2n-6cis

18:5n-3

22:6n-3cis

Trebouxiophyceae – 16:2n-6cis

16:3n-3cis

16:4n-3cis

– – – 16:2

16:3

18:1n-9cis

18:2n-6cis

18:5n-3cis

22:6n-3cis

Nephroselmidophyceae – – – – – 16:2

16:3

18:1n-9cis

18:2n-6cis

18:5n-3cis

22:6n-3cis

Chlorodendrophyceae – – – – – 16:4

18:1n-9cis

18:2n-6cis

18:5n-3cis

22:6n-3cis
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Table 3 continued

Class/phylum (order) Fatty acids

Zhukova

(2009)

Taipale

et al.

(2013)

de Carvalho and

Caramujo (2014)

de Carvalho and Caramujo

(2018)

Rozentsvet

et al. (2019)

Jónasdóttir

(2019)

Pyramimonadophyceae – – – – – 16:4

18:1n-7cis

18:4n-3cis

20:5n-

3cis

Mamiellophyceae – – – – – 16:4

18:1n-7cis

18:4n-3cis

20:5n-

3cis

Prasinophyceae 16:4n-3cis

18:3n-3cis

18:4n-3cis

20:5n-3cis

– 16:2n-4cis

16:4n-3cis

18:3n-3cis

22:5n-3cis

16:2n-4cis

16:4n-3cis

18:3n-3cis

22:5n-3cis

– –

Bacillariophyceae 14:0

16:0

16:1n-7cis

16:2n-4cis

16:3n-4cis

16:4n-1cis

20:5n-3cis

22:6n-3cis

16:2n-7cis

**

16:2n-4cis

16:3n-4cis

16:4n-1**

18:4n-

3**cis

16:1n-7cis

18:1n-7cis

16:2n-7cis

16:2n-4cis

16:3n-4cis

16:4n-1cis

20:4n-6cis

20:5n-3cis

22:5n-3cis

22:6n-3cis

16:1n-7cis

18:1n-7cis (up to tenfold

more than 18:1n-9cis)

16:2n-7cis

16:2n-4cis

16:3n-4cis

16:4n-1cis

20:4n-6cis

20:5n-3cis

22:5n-3cis

22:6n-3cis

14:0

16:0

16:1n-3trans

16:1n-7cis

17:0

18:0

18:1n-9cis

18:2n-6cis

20:5n-3cis

22:6n-3cis

16:1n-7cis

16:3n-

3cis—

absent

16:3n-

6cis—

absent

Cosciondiscophyceae – – – – – 16:1n-7cis

16:3n-3cis

16:3n-6cis

Synurophyceae

(Synurales)

– 18:4n-3cis

22:5n-6cis

– – – –

Synurophyceae

(Ochromonadales)

– 16:3n-1cis

18:4n-3cis

22:5n-6cis

– – – –

Raphidophyceae – 16:2n-4cis

16:3n-4cis

**

16:3n-1cis

20:3n-3cis

– – – –

Eustigmatophyceae 16:0

16:1n-7cis

20:5n-3cis

– – – – –
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profile were associated with a higher content of

C18:1n-9cis and 18:3n-3cis in freshwater representa-

tives compared to marine ones (Cañavate 2018).

Recent studies of the profile (which denotes the

amount of FAs in % of the total amount of FAs) and

the content (as lg fatty acids per mg dry weight) of

FAs of 10 diatoms and seven dinoflagellates originat-

ing from marine, brackish water and freshwater

habitats showed that the phytoplankton group (46%)

explained most of the differences in the fatty acid

profile, and the habitat (31%) together with the

phytoplankton group (24%) explained the differences

in fatty acid content (Peltomaa et al. 2019). It was

concluded that the FA profile can be genetically

determined and the FA content varies depending on

the environment.

Table 3 continued

Class/phylum (order) Fatty acids

Zhukova

(2009)

Taipale

et al.

(2013)

de Carvalho and

Caramujo (2014)

de Carvalho and Caramujo

(2018)

Rozentsvet

et al. (2019)

Jónasdóttir

(2019)

Euglenophyceae – 15:3n-3cis

**

15:3n-1cis

15:4n-3cis

17:2n-7/

5cis **

17:3n-2cis

**

20:2n-6cis

20:4n-3cis

20:3n-6cis

22:4n-6cis

– – – –

Dinophyceae 18:5n-3cis

*

22:6n-3cis

– 18:1n-9cis

18:2n-6cis

18:3n-3cis

18:5n-3cis

20:5n-3cis

22:6n-3cis

18:1n-9cis

18:2n-6cis

18:3n-3cis

18:5n-3cis

20:5n-3cis

22:6n-3cis

– –

Prymnesiophyceae

Pavlovophyceae

14:0

16:0

16:1n-7cis

18:4n-3cis

20:5n-3cis

22:6n-3cis

– 22:6n-3cis 22:6n-3cis – –

Cryptophyceae 16:0

16PUFA

18:0

18PUFA

20:5n-3cis

18:4n-3cis

22:5n-6cis

18:1n-7cis

18:3n-3cis

20:5n-3cis

22:5n-3cis

22:6n-3cis

18:1n-7cis

18:3n-3cis

20:5n-3cis

22:5n-3cis

22:6n-3cis

– –

Fr—freshwater

*the most indicative as a marker

**found only in phytoplankton
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5.3 Variability in fatty acids composition

of various lipid classes

Fatty acid profiles are unique to specific lipid classes.

SFAs and MUFAs are predominantly contained in

TAG, PUFAs are in polar lipids (Harwood 2019; Xin

et al. 2019). This pattern is inherent in many microal-

gae, including well-known producers of PUFAs such

as EPA, DHA (Nannochloropsis sp., Chroomonas

sauna, Phaeodactylum tricornutum, etc.). Based on

the analysis of the FA composition and the amount of

TAG, it was found that the content of FAs character-

istic of taxa can be used to determine the TAG content

in the composition of total lipids. The coefficients of

correlation (r2) of C16:0, C16:1 and EPA with TAG

content were 0.96, 0.94, and 0.97, respectively, in the

case of Phaeodactylum tricornutum. Given the inverse

relationship between polar lipids and TAG, EPA was

negatively correlated with TAG content (Shen et al.

2016). However, there are species capable of accu-

mulating PUFAs in TAG. For example, in Pari-

etochloris incisa in the stationary phase, the ARA

content in TAG reaches 47% (Bigogno et al. 2002).

The FA composition also exhibits specificity at the

glycolipid level. C16:0, C18:3n-6cis, and C18:2n-6cis

were the main FAs in glycolipids of monogalactosyl

diacylglycerol and digalactosyl diacylglycerol, while

C16:0, and C18:2n-6cis were the main FAs in

sulfoquinovosyl diacylglycerol (Xue et al. 2002).

The FA composition of betaine lipids differs

significantly from the FA composition of total lipids

(Armada et al. 2013; Cañavate et al. 2016). The

differences are seen, first of all, in the ratio of SFAs

and unsaturated FAs. The FA profile of betaine lipids

has a greater amount of unsaturated FAs. It is assumed

that the combined use of the composition of betaine

lipids, the composition of FAs of betaine and total

lipids can have a high chemotaxonomic potential.

Thus, the use of data on FAs of total lipids or a

certain class of them also leads to differences in the FA

spectrum of certain taxa. Changes can concern the

sequence of the FAs in the spectra, and sometimes also

its composition. This can be evidenced by data on the

composition of the main FAs based on phospholipids

(Dijkman and Kromkamp 2006) and total lipids

(Taipale et al. 2013) (Table 2).

5.4 Influence of environmental factors on lipid

profile and fatty acids composition

5.4.1 Change in lipid profile

The number and composition of lipids in different taxa

of microalgae are different (Jónasdóttir 2019). This is

used to determine the main profile of FAs and

biomarker FAs. However, by changing the cultivation

conditions, it is possible to achieve a change in the

lipid composition and, accordingly, the FAs content.

For example, the use of nitrogen and phosphorus

starvation in some species of microalgae led to an

increase in the synthesis of total lipids by 15–54%,

temperature stress by 12–21.7% (Illman et al. 2000;

Sharma et al. 2012). An almost threefold increase in

lipid content in Arthrospira sp. was achieved with a

decrease in temperature and nitrogen content in the

cultivation medium (Macedo and Alegre 2001). Under

conditions of moderate stress, when cells stop dividing

but still photosynthesize, the lipid content can increase

by two or three times, with up to 60–80% (DCW) of

lipids recorded (Vince et al. 2012). The specific

conditions of habitats can also influence the formation

of biochemical phenotypes of microalgae. This has

been demonstrated for a number of desmid strains

(Stamenković et al. 2020).

Thus, the stimulation of lipid production and

changes in their composition also entails changes in

the profile of the FAs of microalgae. The sensitivity of

the FA profile of microalgae species to changes in the

ecological conditions of the habitat is well known and

is used to change the FA content during cultivation. At

the same time, the effectiveness of a wide variety of

abiotic stresses is tested (restriction of nutrients,

changes in heat, light, salt, etc. modes).

5.4.2 Fatty acid composition with nitrogen

and phosphorus deficiency

The general trend in the change in the composition of

FAs when using nitrogen and phosphorus starvation is

a decrease in the content of PUFAs and an increase in

MUFAs and SFAs. In this case, the lipid content itself

increases, and the rate of microalgal biomass forma-

tion slows down. The severity of these changes is not

the same for different taxa of microalgae. For exam-

ple, the use of phosphoric and nitrogen starvation

during the cultivation of Coccomyxa elongata
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(Maltsev et al. 2019a) led to an increase in the content

of palmitic to 24.7–25.6%, C16:1n-9cis to 14.8% and

ALA to 9.1–10.1% acids in comparison with the

control sample with such corresponding concentra-

tions as 21.9%, 12.1% and below detection limits for

ALA. The absence of nitrogen and both nitrogen and

phosphorus led to a threefold increase in total FA in

comparison with the control in the study of the strain

Parietochloris grandis sp. nov. is described from

forest soil (Maltsev et al. 2018). In Parachlorella

kessleri, nitrogen starvation led to a decrease in

PUFAs content from 57.7 to 50.8% and an increase in

MUFAs from 2.4 to 8.2% and in SFAs from 28.1 to

33.1% (Gao et al. 2019). With nitrogen limitation

during the cultivation of Botryococcus braunii, a

decrease in the amount of trienoic FAs (from

52.8–57.2 to 19.5–24.7% of total FAs) and an increase

in the content of oleic (C18:1n-9cis) (from 1.1–1.2 to

17.1–24.4%) and saturated (from 23.7–26.0 to

32.9–46.1%) acids in TAG and an increase in SFAs

to 76.8% and a decrease in PUFAs to 6.8% in FAs of

polar lipids (Zhila et al. 2005). The amount of SFAs,

monoenoic and dienoic FAs increases, while the

amount of PUFAs significantly decreases in Chlamy-

domonas reinhardtii under conditions of phosphorus

restriction in the culture medium (Qari and Oves

2020).

5.4.3 Influence of the environment and time

of cultivation of microalgae

An analysis of the influence of the composition of

culture media, which may differ in nutrient content, as

well as the duration of the cultivation period of strains

in collections, is important in establishing the speci-

ficity of the FA profile and FAs used as markers for

certain taxa of microalgae. For example, the Pseudo-

muriella engadinensis MZ–Ch33 strain cultivated on

BBM medium differed from the P. engadinensis SAG

221-3 and SAG 221-4 strains grown on ESP Ag

medium, almost twice as high in palmitic (C16:0) FA

(20.1% and respectively 11.3% (SAG 221-3) and

10.1% (SAG 221-4)). An increased amount of LA

(D9.12–18:2) was also noted—17.7% in MZ–Ch33,

while 11.6 and 12.0% in SAG 221-3 and SAG 221-4,

respectively (Maltsev et al. 2019b). In desmid strains

(Stamenković et al. 2020) cultivated for more than

35 years the role of SDA increased in the FA profile.

5.4.4 Dynamics of the composition of fatty acids

with changes in pH

A change in the pH of the medium affects the

metabolism of microalgae and is reflected in the

accumulation of lipids and the composition of FAs.

The growth and biochemical reactions of microalgae

have been tested over a wide range of pH changes.

Some microalgae showed the ability to grow well at

pH from 4 to 10 (Coccomyxa melkonianii grew at pH

4–8, Dunaliella bardawil grew at pH 4–8, Chlorella

ellipsoidea grew at pH 4–10), others (Pleurochrysis

carterae, Emiliania huxleyi) could not grow at pH

below 7.5 (Khalil et al. 2010; Moheimani and

Borowitzka 2011; Soru et al. 2019). This indicates

that each species of microalgae has its own optimal pH

range. Alkaline pH stress in Chlorella led to the

accumulation of TAG and a decrease in the amount of

glycolipids and phospholipids (Guckert and Cooksey

1990). The accumulation of neutral lipids and the

highest levels of their content have been noted in other

studies in Tetraselmis suecica at pH 9 (Almutairi and

Toulibah 2017). In general, under the action of

alkaline pH values, new UFAs can be found in the

FAs profiles of microalgae, as well as a decrease in the

proportion of SFAs and MUFAs and an increase in

PUFAs can be found in them. For example, the

spectrum of FAs Tetraselmis suecica in response to pH

changes was supplemented with linolelaidic acid

(C18:2n-6trans), which contains two double bonds

(Almutairi and Toulibah 2017). An increase in PUFAs

content (from 39.93 to 56.97%) and a decrease in

SFAs and MUFAs (from 40.72 to 30.37% and from

16.51 to 10.22%, respectively) were observed in

Chlorella sorokiniana with a change of pH from 6.5

to 8.5 (Qiu et al., 2017).

5.4.5 Dynamics of the composition of fatty acids

under salt stress

Salt stress is accompanied by an increase in lipid

production in microalgae (Takagi et al. 2006; Moham-

mady and Fakhry 2014) and a change in the propor-

tions of the content of various groups of FAs. An

increase in the number of FAs with a longer hydro-

carbon chain and the proportion of UFAs was

observed in Dunaliella salina in the composition of

lipids of microsome membranes under the action of

high concentrations of (3.5 mol) NaCl. When
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Dunaliella salina was grown in a 3.5 mol NaCl

solution, the C22 FAs content was 8.8% of the total

FAs, and when cells were transferred to a 0.5 mol

solution, their concentration decreased to 4.45%

(Azachi et al. 2002). An increase in the content of

C18:3 from 25.9 to 37.2% in the composition of total

lipids of Dunaliella salina was observed in another

experiment when the NaCl concentration changed

from 2.5 to 20% (Al-Hasan et al. 1987). At the same

time, as the concentration of NaCl increased from 0.85

to 3.4 mol in the composition of polar lipids of

Dunaliella salina, a decrease in the content of C18:3

and an increase in C18:2 and C18:1 were observed

(Peeler et al. 1989). A decrease in the content of C18:3

and C18:2 under salt stress was noted for Nan-

nochloropsis oculata (Mohammady and Fakhry

2014). In addition, an increase in the amount of SFAs

and a decrease in UFAs were observed (from 23.0 to

33.7% and from 77.0 to 66.3%, respectively) with an

increase in the NaCl content from 0 to 40 g L-1. In

studies with Tetraselmis tetrathele, more than 90% of

FAs accumulated under conditions of salt stress were

saturated (El-Kassas and El-Sheekh 2016), while

Botryococcus braunii showed a 1.7–2.25-fold increase

in the relative proportion of palmitic acid (C16:0) and

a twofold increase in oleic acid (C18:1n-9cis) (Rao

et al. 2007). The observed variability in the propor-

tions between SFAs and UFAs may depend on the

characteristics of changes in the lipid composition of

cells in response to salt stress in different species of

microalgae. Regulatory mechanisms may be associ-

ated with TAG accumulation, biosynthesis of polar

lipids of membranes containing SFAs and UFAs in

proportions sufficient to resist osmotic shock, or other

actions.

5.4.6 Influence of temperature on the composition

of fatty acids

Changes in environment temperature are reflected in

the composition of the FAs of microalgae. As the

temperature rises, the relative content of UFAs usually

decreases in the composition of microalgal FAs

(Sushchik et al. 2003; Guschina and Harwood 2006).

For example, a decrease from 53 to 37% in the

proportion of n-3 PUFAs (in particular, ALA) and a

concomitant increase in the amount of SFAs in

Scenedesmus obliquus were noted with a decrease in

temperature from 28 to 20 �C (Fuschino et al. 2011). A

decrease in culture temperature from 25 to 10� C

within 12 h was accompanied by an increase in the

EPA content in Phaeodactylum tricornutum (Jiang

and Gao 2004). A similar effect was achieved in

Pavlova lutheri when grown at 15� C (Fork et al.

1979). There is an indication that a decrease in

temperature and an increase in illumination intensity

are accompanied by an increase in the content of

unsaturated FAs in microalgae (Los 2014). At the

same time, the established relationship between an

increase in membrane plasticity and changes of the

amount of SFAs and unsaturated FAs in the compo-

sition of its lipids, is considered among the mecha-

nisms of organisms that adapt to changing conditions

of their habitat, including low temperatures. However,

in species living in Arctic conditions, a high content of

PUFAs is not a stable feature (Los 2014).

The opposite phenomenon was noted for Emiliania

huxleyi (Bi et al. 2018). An increase in temperature

caused an increase in PUFAs by 13% and a decrease in

MUFAs by 20%. A significant relationship was also

found between temperatures, N:P intake ratio, CO2

concentration, and FA composition.

The inconsistency of data on the nature of changes

in the content of PUFAs and SFAs with changes in

environment temperature requires further research in

this direction and clarification of the reasons for such

variability of responses in different taxa of microalgae.

A deep understanding of these relationships will allow

not only to regulate the cultivation conditions of

certain types of microalgae, but also to increase the

objectivity of forecasting, for example, the global

production of PUFAs by phytoplankton. Based on the

existing patterns, climate change modelers indicate

that global EPA production will decrease by 8.2% and

DHA production will decrease by 27.8% with 2.5 �C
rise in temperature (Hixson and Arts 2016).

5.4.7 Influence of light regime on fatty acid

composition

Chlorella zofingiensis accumulated large amounts of

C18:1 upon exposure to bright light, and the level of

PUFA C16:3 decreased by about 50% (Liu et al.

2012). A less pronounced decrease in the C16 content

and an increase in C18 (by 2.87% and 11.99%,

respectively) was noted for Chlorella protothecoides

with an increase in light intensity from

130 lmol m-2 s-1 to 420 lmol m-2 s-1
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(Krzemińska et al. 2015). Changes in light intensity

also affect the percentage of SFAs, MUFAs and

PUFAs. In an experiment with Botryococcus braunii,

it was recorded that with an increase in light intensity,

the percentage of MUFAs increases significantly,

while the percentage of SFAs and PUFAs decreases

(Wang et al. 2018). A decrease in the content of total

n-3 FAs from 29 to 8% of the total amount of FAs was

observed in Nannochloropsis sp. with increasing

illumination (Fabregas et al. 2004). In Chlorella

vulgaris, an increase in light intensity from

37.5 lmol m-2 s-1 to 100 lmol m-2 s-1 was

accompanied by an increase in the SFAs content by

16.43–28.88% and a decrease in MUFAs and PUFAs

by 20.24–24.65% and 25.82–26.77%, respectively

(Khoeyi et al. 2011). In Chlorella protothecoides, with

an increase in light intensity from 35 lmol m-2 s-1 to

130 lmol m-2 s-1, the SFAs content increased from

14.93% to 18.72%, MUFAs practically did not change

(49.71% and 49.54%, respectively), and PUFAs

decreased from 12.34 to 11.56% (Krzemińska et al.

2015). When the light intensity reached

420 lmol m-2 s-1, the SFAs content decreased to

15.24%, the MUFAs amount sharply increased to

65.43%, and the PUFAs content decreased to 7.44%.

The observed differences demonstrate the differences

in the relationships between photosynthetic processes

and biosynthesis of FAs in microalgal species (Kly-

achko-Gurvich et al. 1999; Nzayisenga et al. 2020). It

can be assumed that PUFAs are important for the

adaptation of microalgae to low light intensity, and the

synthesis of SFAs and MUFAs is an important

mechanism for counteracting excessive light.

5.5 Problems and prospects

It should be noted that the description of the taxonomic

profiles of the FAs of microalgae is based mainly on

the data obtained under standard conditions, without

taking into account stress effects. On the one hand, this

makes it possible to give the greatest weight to the

taxonomic variability of the FA profile. On the other

hand, it does not allow us to answer the question how

wide is the range of variability of the FA profile of

marine, freshwater, and terrestrial species under

abiotic stress and whether it coincides. It is believed

that phylogenetic differences in taxa determine 3–4

times more variations in the FA profile of microalgae

than the conditions for their growth (Galloway and

Winder 2015). However, it is the ability to change the

production of target bioproducts and FAs in the result

of changing the cultivation conditions, that is one of

the advantages of using microalgae in biotechnolog-

ical processes, as already mentioned above (Sun et al.

2018; Li-Beissona et al. 2019; Levasseur et al. 2020).

Thus, the assessment of the features of the FA

profiles of microalgae as one of the markers of the

range of possibilities of their metabolism, biotic

bonds, and trophic value, most likely, should be

carried out taking into account the phylogenetic,

ecological, geographical, chorological aspects, as well

as the taxonomic specificity of the lipid composition

and its dynamics when changing environmental con-

ditions, the uniqueness of the FA composition of

different classes of lipids, the diversity of response to

the impact of key abiotic factors.

6 Conclusion

The composition of FAs in microalgae is very diverse.

This review systematized information about 135 fatty

acids of microalgae from different habitats. Taking

into account the length of the hydrocarbon chain, its

structure and the presence of substituents, they are

distributed into several groups: with an even number

of carbon atoms in the chain—81 (SCFAs—2,

MCFAs—14, LCFAs—28, VLCFAs—37), with an

odd number of carbon atoms—33, with a branched

hydrocarbon chain and additional functional groups—

21. Among FAs of microalgae there are both saturated

and unsaturated FAs with different numbers of double

bonds: SFAs—19, MUFAs—26, PUFAs—68. The FA

profile of microalgae is rich in omega-3 and omega-6

fatty acids.

The FAs of microalgae are of wide commercial

interest for various spheres of human activity: bioen-

ergy, food and feed industries, aquaculture, pharma-

cology, and cosmetology. Further research is needed

both to increase the productivity of commercially

valuable FAs and to reduce the cost of their production

through the introduction of effective technologies and

the use of highly productive strains.

The presence and combination of certain FAs show

a certain specificity within the phylogenetically

isolated taxonomic groups of microalgae. However,

in some cases, especially at the level of taxa of the

lowest rank, the variability of the composition of the
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FA profile is quite high, which reduces the unambi-

guity of its use and requires further research. Also, the

composition of FAs of microalgae is characterized by

a variety of responses to the action of key abiotic

factors. There is no unambiguous answer to how much

the composition and number of FAs can change under

various abiotic stresses and will the uniqueness and

recognition of the taxonomic profiles remain or not

under stress conditions. Understanding these patterns

will make it possible to make significant progress in

optimizing the conditions for cultivating microalgae,

selecting strains with maximum productivity of com-

mercially interesting FAs, modeling and predicting

various processes both within the framework of

production and at the level of natural ecosystems of

various scales.
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Appendix

Online Resource. FAME database established of all

reviewed microalgal strains. The database contains

information about phylum, class, genus and species

identification (1st to 4th column) and strain number

(5th column) and the amount of the different sub-

stances given as relative proportion (following

columns). The second sheet of the table contains

references used to construct the initial matrix of fatty

acid profiles in marine and freshwater microalgae.
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