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Abstract The wide utility and catalytic efficiency of

microbial pectinase in various industries has greatly

increased its global demand. Among the natural

sources of pectinases, microbial pectinases are used

frequently for its ease of production and unique

physicochemical properties. Yet similar to other

industrial enzymes, pectinases also face the constraint

of thermo-tolerance and low yield in its economised

production. The current review addresses the various

strategies adopted to meet the high yield and thermo-

tolerance of pectinases as well as the various attempts

made in the field of pectinases to its improved

production and better catalytic efficiency. The utilisa-

tion of natural as well as recombinant microbial

sources, metagenomic approaches, metabolic engi-

neering, site directed mutagenesis and media engi-

neering techniques adopted in the field of pectinases

have been discussed. The significance of pectinases in

various industries is depicted by enlisting its applica-

tions. To the best our knowledge the current review is

unique being the first attempt to compile the recent

advancements in the field of pectinases.

Keywords Pectinase � Thermo-tolerance �
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1 Introduction

Pectinases traced back as the first enzyme used in

homes to its commercialized production since 1930,

accounts for a major proportion of the industrial

enzymes. They have attained more value with the

multitude applications such as production of func-

tional foods (Khan et al. 2013; Prathyusha and

Suneetha 2011), retting and degumming of fibres in

textile industry (Cao et al. 1992), production of good

quality paper (Ahlawat et al. 2008), fermentation of

coffee and tea, oil extractions and treatment of pectic

waste water, bioethanol production etc. (Kashyap et al.

2001). The term pectinase refers to heterogeneous

enzymes including homogalacturonan-degrading

polygalacturonases (PG) or pectin depolymerase;

polymethylgalacturonases (PMG); lyases or transe-

liminases and pectin esterases (PE), which is also

known as pectin methyl esterases (PME).These

enzymes are capable of either lysing the glycosidic

bonds, debranching or modifying pectin, the most
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abundant component of fruits (Cuesta 2016). Pectin

functions as a cross linking polysaccharide in the

primary cell wall and middle lamella of fruits and

vegetables cross linking cellulose and hemicellulose

fibres and the use of pectinases improve access of

cellulases to their substrates (Giacobbe et al. 2014).

Pectin hydrolases are produced mainly by fungi, being

more active on acid or neutral medium at temperatures

between 40 and 60 �C, whereas bacterial pectinases

are more active in acidic conditions (Pedrolli et al.

2009). As per reports available approximately 75% of

the industrial enzymes are hydrolases, with carbohy-

dralases being the second largest group (Priya and

Sashi 2014).

Pectinases are classified based on their mode of

action into polygalacturonase (EC 3.2.1.15), Pectin

esterase (EC 3.1.1.11), Pectin lyase (EC 4.2.2.10) and

Pectate lyase (EC 4.2.2.2). These enzymes act on O-a-
(1,4) poly galacturonopyranose structures with activ-

ities and specificities that depend partly upon the

degree of methylation (Saadoun et al. 2013). Based on

their cleavage specificity pectinases can be grouped

into ones cleave pectin smooth regions or pectin hairy

regions (Pedrolli et al. 2009). Protopectinases solubi-

lizes protopectin and forms soluble pectin, pectin

methyl esterases and pectin acetyl esterases eliminates

methoxyl and acetyl residues from pectin which give

rise to polygalacturonic acid, polygalacturonase

breaks the glycosidic a-(1–4) bonds between galac-

turonic residues by hydrolysis and trans-elimination

reactions. Pectinases are divided as acidic or alkaline

based on pH; whereas they are termed as endo or exo

when enzyme action is random or at terminal end

respectively.

A critical study on the various reviews on pecti-

nases indicate different aspects of this group of

enzymes such as its structural–functional characteris-

tics (Gummadi et al. 2007), purification (Gummadi

and Panda 2003), applications (Khan et al. 2013;

Pedrolli et al. 2009; Sharma et al. 2013) etc. The

current review lays down the various attempts made in

the field of pectinases to its increased production,

improved thermo-tolerance and better catalytic effi-

ciency of this enzyme. The increasing global demand

of pectinases could be addressed by the adoption of

either natural or recombinant enzymes by strain

improvement, genetic engineering, metagenomic

studies, site-directed mutagenesis, directed evolution

and media engineering.

2 Significance of pectinase thermo-tolerance

and enzyme yield

Most of the commercially available pectinases are

combinations of pectate lyases, polygalacturonases

and pectin methyl esterases mainly derived from

Aspergillus sp (Kashyap et al. 2001). Of these acidic

pectinases are widely used in food industry, while

alkaline pectinases find applications in a variety of

industrial processes. A close study of these enzymes

reveal that these enzymes are exposed to extreme

processing conditions with temperatures ranging from

30 to 70 �C in the food industry, for instance in sugar

extraction and temperatures higher in biotech indus-

tries (Singh et al. 1999). A comparative analysis on the

thermal inactivation of commercial pectinases

revealed that some of the brands lost half of its

activity on exposure to 50 �C for even 2 min of

exposure (Ortega et al. 2004). Thus the choice of

pectinases with better thermo-tolerance becomes

essential for its effective utilization. Apart from

tolerating high temperatures, thermo-stable enzymes

would be advantageous in having a little activity at

lower temperatures, longer shelf life, resistant to

organic solvents, high and low pH solubility, less

viscous and high reaction rates (Kusuma and Sri

2014). Moreover, by the use of thermo- tolerant

enzymes the chance of enzyme inactivation during

attempts to kill contaminating pathogens becomes

quite rare.

The high yield and thermo-tolerance of pectinases

can be addressed by use of natural or recombinant high

yielding isolates in combination with efforts using

metagenomic, metabolic engineering, site-directed

mutagenesis and various production optimization

strategies. Deep insights on the molecular character-

isation, functional analysis, genetic studies and muta-

tion strategies have been some of the key factors

contributing to pectinase enzyme yield, its thermo-

tolerance and alkaline stability.

2.1 High yielding natural strains

Pectinase is naturally present in plants and in fruits for

natural ripening of fruits, yet microbial sources are

commonly used for large scale production for appli-

cation level studies and for industrial use due to ease of

maintenance and production. Pectinolytic organisms

can be isolated from spoiled fruits walls, soil, decaying
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agro-waste, animals etc. The predominantly pectinase

producing microorganisms include Pseudomonas,

Xanthomonas, Erwinia, soil isolates such as Actino-

mycetes and Streptomycetes and various fungi.

Aspergillus niger, Aspergillus versicolor, Aspergillus

flavus, Fusarium oxysporum, Rhizopus stolonifer,

Mucor racemous, Mucor hiemalis, Penicillium jen-

seni, Penicillium citrinum and Trichoderma viride are

the main fungal source of pectinases (Priya and Sashi

2014). Fungal organisms A. niger is a good source of

pectinase. A. niger IM 6 gives maximum enzyme

activity at 40 �C with 60% moisture on seventh-day

solid state fermentation (Akhter et al. 2011). Almost

82% of pectinase activity was retained by A. niger

strain MCAS2 pectinase even at 100 �C and the

enzyme was found to be stable even at alkaline

conditions (Khatri et al. 2015). Table 1 enlists some of

the natural thermo-stable pectinases.

Thermostable pectinases have widely reported in

various studies and these natural strains are selected

when higher temperatures of processing are required.

A comparative analysis shows that the optimal tem-

perature for a Polygalacturonase from Streptomyces

sp. QG-11-3 is 60 �C and the hyper-thermophilic

bacterium Thermotoga maritima is at 80 �C (Kluskens

et al. 2005). Most predominantly Bacillus sp. are good

sources of thermo-stable enzymes (Rebello et al.

2017). The thermal stability of polymethyl galactur-

onase from thermo-stable Bacillus sp. BR1390 indi-

cated 100% activity at 60 �C after 60 min and a

residual activity of 50% at 90 �C was observed after

30 min of incubation (Banafshe and Hamid

2014).Various studies indicate that the thermo-stabil-

ity is attributed to the presence of cysteine residue

present in the amino acid sequences of pectinases

enabling the formation of disulphide bonds as well as

conferring a strong hydrophobicity to the pectinase

(Singh et al. 2012a, b; You et al. 2010).

2.2 Recombinant pectinase sources

Recombinant pectinases also find various applications

in foods and quite often the natural non-GMO food

products also may be finally treated with recombinant

pectinases to improve food quality. The most common

source of recombinant pectinase used in the food

industry includes mainly fungal derived pectinases

such as Aspergillus, Penicillium and Trichoderma

varieties as per GMO compass reports (http://www.

gmo-compass.org/eng/database/ enzymes/92.pecti-

nase.html). Bacillus derived recombinant pectinases

are used predominantly in industrial purposes.

The use of highly efficient pectinases with peculiar

properties under the promoter control of various

expression hosts has been done in Escherichia coli,

Pichia pastoris, Saccharomyces cerevisiae, P. grise-

oroseum have been reported as shown in Table 2. A

comparative analysis of the yield, thermo-stability and

pH tolerance of these enzymes helps greatly to

validate their use in different fields. Recombinant

expression of thermo-alkaline Pel (BacPelA) gene

from Bacillus clausii in E. coli resulted in recombinant

mature BacPelA with an enzyme activity of

8378.2 U ml-1 (A235) by high-cell-density cultivation

in fed-batch fermentation with productivity of

239.4 U ml-1 h-1 and this represents the highest Pel

yield reported to date (Zhou et al. 2017). In another

study recombinant Aspergillus expressed in P. pas-

toris achieved a maximal activity of 2408.70 U ml-1

in the culture supernatant of by high cell density batch

fermentation, equivalent to a 4.8 times greater yield

than that from shake-flask culture (Abdulrachman

et al. 2017). P. pastoris based expression of an acid

stable endo-polygalacturonase gene from Penicillium

oxalicum produced a yield of 1828.7 U ml-1 (Cheng

et al. 2017).The long lag time in basal salts medium

(BSM) and an occurrence of proteolysis associated

with recombinant pectinase production in P. pastoris

KM71 has been found to be overcome by using

synthetic FM22 medium for inoculum and proteolysis

control by growth at lower pH (Charoenrat et al.

2013).

Recombinant P. griseoroseum T20 produced by

transformation of P. griseoroseum with the plasmid

pAN52pgg2, containing the gene encoding PG of P.

griseoroseum, under control of the gpd promoter gene

from Aspergillus nidulans yielded 266- and 27-fold

greater levels of pectin lyase (PL) and polygalactur-

onase (PG) respectively than the wild-type strain

(Teixeira et al. 2011). The use of a constitutive

promoter such as the promoter of gpd gene instead of

the indigenous promoter of Penicillium greatly

enhanced the pectinase production. Attempts in the

generation of catabolite repression resistant mutant

strains of Penicillium griseoroseum mutants by UV-

induced spontaneous mutations resulted in a 7.8-fold

increase of pectinase production than the wild strain

(Lima et al. 2017).
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Table 1 Natural high pectinase yielding microbes

Microorganism Type of pectinase PH tolerance Thermal stability Enzyme activity Reference

Bacillus subtilis

ZGL14

pH stable at

8.6–10.0

Residual activity of 51, 40

and 22% when incubated

at 80 �C for 60, 80 and

100 min

52,372.52 U/mg Yu et al. (2017)

Sclerotium rolfsii Polygalacturonases

PG1 and PG2

Optimally

active at pH

5

PG1 had t1/2 of 20 min at

70 �C and t1/2 of 80 min

at 50 �C

300 U/ml Schnitzhofer

et al. (2007)

Pectobacterium

carotovorum

subsp.

carotovorum

BR1

Pectate lyase Optimum at

alkaline pH

Alkaline pH and Ca2? ions

favor thermostability of

purified PL at 60 and

70 �C

– Maisuria and

Nerurkar

(2012)

Penicillium

notatum

Polygalacturonase on

wheat bran

Optimum pH

range of 4.5

to 6.0

Optimum activity at 50 �C 1129.62 U/gds Amin et al.

(2013, 2017b)

Penicillium

occitanis

Pectate lyase with apple

pectin

Optimum pH

9.0

Optimum 60 �C 434 U/ml Damak et al.

(2011)

Aspergillus

fumigatus

Fres. MTCC

4163

Pectinase and

polygalacturonase

(PG) using wheat bran

substrate

pH 4.0

optimum

denatured at

higher and

lower pH

Lost 25% activity on

incubation at 80 �C for

10 min

Maximum of 1116

Ug-1 by pectinase

and 1270 Ug-1 by

polygalacturonase

Phutela et al.

(2005)

Aspergillus

fumigatus R6

Polygalacturonase solid

state fermentation

using rice bran

Broad range

pH 3.0–8.0

– 565 U/g Wong et al.

(2017)

Aspergillus

kawachii

Two inducible

exopolygalacturonase

Optimum

between

3.0–4.0

Exo PG1 at pH 4.0 after a

2 h incubation at 37, 50,

a and 60 �C had residual

activity of 95, 79 and

54%

45 U/mg-ExoPG1

32 U/mg-ExoPG2

Byrne et al.

(2017)

Aspergillus niger Pectin lyase liquid

media containing 1%

pure pectin

Retained

60–90%

activity over

the range

6.2–9.2

Stable up to 70 �C and

about 82% of pectinase

activity was still

observed at 100 �C

Maximum activity

of 24 U/ml at

2.5% pectin

concentration

Khatri et al.

(2015)

Aspergillus

giganteus

Polygalacturonase (PG)

on liquid Vogel

medium with citrus

pectin

Optimum pH

6.0, very

stable over a

neutral ,and

alkaline pH

range

Optimum 55–60 �C, half-
life of 115, 18, and 6 min

at 40, 50 and 55 �C,
respectively

419.4 U/mg on

purification

Pedrolli and

Carmona

(2010)

Aureobasidium

pullulans

Polygalacturonase

under submerged

culture using tomato

pomace agro-waste

Broad pH

range

(5.0–10.0)

Stability over a range of

temperature (5–90 Æ C)

with an optimum at 60 �C

25.75 U/mL Bennamoun

et al. (2016)

Acrophialophora

nainiana

Growth on 0.5% (w/v)

pectin from citrus

fruits

Optimum pH

8.0

Temp optimum of 60 �C,
half-life of 7 days at

50 �C

286.63 nkatal/mg Celestino et al.

(2006)
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Table 1 continued

Microorganism Type of pectinase PH tolerance Thermal stability Enzyme activity Reference

Thermomucor

indicae-

seudaticae

SSF conditions on

media containing a

mixture of wheat bran

and orange ba gasse

(1:1) at 70% of initial

moisture

Retained

above 80%

of maximum

activity in

the pH range

from

3.0 to 10.0

the PG from SmF showed

an increase of activity

when incubated for 1 h at

temperatures over 40 �C,
reaching 120% of the

initial activity after 1 h at

60 �C, while the enzyme

from SSF lost 80% of its

activity at 60 �C

SSF 120 U/ml of

exo-PG, while in

submerged

fermentation

(SmF) it produced

13.6 U/ml

Martin et al.

(2010)

Thermoascus

aurantiacus

Pectin lyase (Pl) and

polygalacturonase

(Pg)

Pg and Pl had

optimum

activity at

pH 5.0 and

10.5–11.0,

respectively

Pg was stable in the acidic

to neutral pH range and

at 60 �C for 1 h, whereas

Pl was stable at acidic pH

and at 60 �C for 5 h

43 U/g for Pg using

wheat bran and

40 U/g for PI

using orange

bagasse and

sugarcane bagasse

Martins et al.

(2002)

Table 2 Most important recombinant pectinases and their properties reported in the last 10 years

Parent microbe Expression

host

PH stability Thermal stability Enzyme activity References

Bacillus clausii Escherichia

coli

Maximum

activity at

pH 10.5

Maximum activity at

70 �C
8378.2 U ml-1 Zhou et al.

(2017)

Paenibacillus

sp. 0602

Escherichia

coli

7.6–10.4 t1/2 of 9 h and 42 h at

50 �C and 45 �C
respectively

2060 U mg-1 on polygalacturonic

acid (PGA)

Li et al. (2014)

Bacillus

halodurans

Escherichia

coli

JM109

(DE3)

Stable from

pH 9.5–10.5

t1/2 of 90 min at 80 �C Km and Vmax values of 4.1 g L-1 and

351 U mg-1 protein

Mei et al.

(2013)

Bacillus

licheniformis

Escherichia

coli

Optimum 7.0

Active at a

broad range

Optimum at 70 �C
t1/2 of 5 h at 60 �C

14 U/mlS Singh et al.

(2012a)

Paenibacillus

campinasensis

BL11

Escherichia

coli

Optimum pH

10

Optimum at 50 �C, t1/2
of 103 min at 70 �C
and 288 min at

40 �C

1623 IU mg-1 Ko et al.

(2011)

Aspergillus

aculeatus

Pichia

pastoris

pH5.0

optimum

Optimal condition at

50 �C
2408.70 ± 26.50 U/mL on citrus

pectin

Abdulrachman

et al. (2017)

Penicillium sp.

CGMCC 1669

Pichia

pastoris

Stable at acidic

pH with pH

optimum at

3.5

90% of the activity at

35–55 �C and

remained active even

at 0 �C

– Yuan et al.

(2011)

Bispora sp.

MEY-1

Pichia

pastoris

Good stability

at pH

2.0–7.0

Optimally active at

50 �C
Km,app and Vmax,app values for

polygalacturonic acid were

1.25 mg/ml and 2526 lmol/min/

mg, respectively

Yang et al.

(2011)
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2.3 Metagenomic approach

Metatranscriptomics studies of the rumen of a dairy

cow revealed the presence of pectinase producing

microbes such as Bacteroides; Prevotella sp., Bac-

teroides sp. and the Ruminococcus (Comtet-Marre

et al. 2017); while studies in sheep previously

indicated the pectinase genes of Butyrivibrio, Pre-

votella, Bacteroides and Fibrobacter (Yuan et al.

2012). Studies on a soil metagenome yielded an ORF

of a pectate lyase similar to Bacillus licheniformis and

it was expressed in E. coli (Singh et al. 2012a). As

noted this enzyme worked at a broad range pH and

temperature not requiring Ca2? for its activity.

Recombinant expression of pelB gene a soil

metagenome product in E. coli turned out to be good

bioscouring agent in the textile pretreatment process

(Wang et al. 2014). The further optimization of this

recombinant in a 7L bioreactor resulted in the produc-

tion of pectinase with activity of 1816.2 Uml-1. New

insights on the presence and role of multiple pectin

degrading enzymes such as pectin lyase, polygalactur-

onase, galactosidase, arabinofuranosidase and rham-

nosidase was reported from a thermophilic compost

metagenome (Wang et al. 2016). The above paper was

also unique making a first report on the role of

actinomycetes in pectin degradation.

2.4 Metabolic engineering strategies

Protoplast fusion between complementary aux-

otrophic and morphological mutant strains of P.

griseoroseum and P. expansum was induced by

polyethylene glycol and calcium ions (Ca2?) to obtain

recombinant RGE27 with a threefold increase in

polygalacturonase and 1.2-fold pectin lyase produc-

tion than the parental strain (Varavallo et al. 2007). A

semi rational approach based screening and compar-

ative analysis on poly galacturonidase (PGL) produc-

tion using first, 6 signal peptides (amyX, bpr, vpr,

yvgO, wapA and nprE) in Bacillus subtilis, yielded a

bpr directed efficient PGL secretory expression with a

PGL titre to 313.7 U ml-1 (Zhang et al. 2013). Further

optimization and use of strong promoter P43 and

Shine–Dalgarno sequence increased PGL titre to

446.3 U ml-1; whereas fed-batch studies in a fer-

menter yielded a titre of 632.6 Uml-1 with a produc-

tivity of 17.6 U ml-1 h-1, which was the highest

secretory production of PGL by the B. subtilis system.

2.5 Site-directed mutagenesis

Site-directed mutagenesis (SDM) research on pectate

lyase was initially done to elucidate its mechanism of

action and active site analysis. SDM studies on pelC

and pelE pectate lyases of Erwinia chrysanthemi

revealed that the active site included also the Ca2?

binding site (Jurnak et al. 1996). Mutagenesis studies

revealed that the amino acids around the Ca2? binding

site are involved in the catalysis reaction of pectate

lyase. Another study on the pectate lyase of A. niger

revealed that the substrate binds to the enzyme as a

Ca2?-substrate complex, thus explaining the absolute

requirement of pectate lyases for Ca2?-ions (Benen

et al. 2003).

Improvements in the thermo-stability of pectate

lyase of Xanthomonas campestris origin (PLXc) was

achieved by a single beneficial mutation (R236F)

based on melting temperature guided sequence

alignment; resulted in a 6 �C increase in Tm and a

23-fold increase in the half-life at 45 �C without

compromising the enzymes catalytic efficiency (Xiao

et al. 2008). Combination of R236F with another

beneficial mutation (A31G) caused a hydrophobic

desolvation of the enzyme with a two-fold increase in

specific activity of the enzyme maintaining the

improved Tm value.

Site-directed mutagenesis of polygalactauronidase

of S. cerevisiae expressed in P. pastoris showed that

aspartic acid residues at positions 179, 200, and 201

and histidine 222 were critical for enzyme activity

(Blanco et al. 2002). Mutation of the two potential

glycosylation sites at residues 318 and 330 revealed

that double mutations at these two sites by converting

asparagine to aspartate caused a 50% reduction in

enzyme activity when compared to the wild-type

PGU1 transformant.

Directed evolution studies conducted on pectate

lyase generated 12 mutants (A118H, A182 V, T190L,

A197G, S208 K, T219 M, T223E, S255R, S263 K,

N275Y, Y309 W, and S312 V) with thermo-tolerance

greater than the parent strain (Solbak et al. 2005).

However the best performing isolate had eight point

mutations which contributed to a melting temperature

16 �C greater than the wild strain. Directed evolution

of pectin methylesterase of E. chrysanthemi involving

a four amino acid substitution led to the formation a

mutant enzyme with Tm value of 11 �C from the wild

type, maintaining its wild type kinetic properties.
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2.6 Efforts to optimised industrial production

Pectinases are produced commercially by both sub-

merged (SmF) and solid state fermentation (SSF), with

the latter giving better enzyme yields. Various factors

such as substrate selection, process conditions, water

content, incubation time, inoculums size, pH, temper-

ature, presence of inhibitors/activators and addition of

carbon and nitrogen sources are crucially influencing

the pectinase biosynthesis. A comparison on pectinase

yield by 6 different fungus on different substrates viz,

wheat bran, rice bran, orange peels, peanut shells,

canola oilseed cake and sugarcane bagasse found wheat

bran a promising substrate (Amin et al. 2017a). The role

of ammonium sulphate in the induction of pectinase

production was also evident with fungi such as

Aspergillus fumigatus andA. alliaceusBIM-83 (Phutela

et al. 2005; Sapunova et al. 1997). The former isolate A.

fumigatus attained a maximum activity of 1116 Ug-1

for pectinase and 1270 Ug-1 for polygalacturonase at

pH 4.0 and 5.0, respectively on growth on wheat bran

(Phutela et al. 2005). Intermittent agitation exhibited a

positive effect in the SSF of pectinase production in

pilot scale bed reactor (Finkler et al. 2017).

Production of thermostable alkaline pectinases by

Bacillus pumilus dcsr1 was increased 1.7-fold at

optimized conditions with a 14.2-fold high enzyme

production obtained in solid state fermentation than in

submerged fermentation (Sharma and Satyanarayana

2012). An enzyme yield of 348 ± 11.8 Ug-1 was

obtained on agro residue used as substrate moistened

with mineral salt solution and optimum water activity

was 0.92, optimum pH 9.0 and optimum temperature

obtained was 40 �C.
An evaluation on the various bioreactors used in the

production of pectinases indicate that better results

were obtained by solid state fermentation as shown in

Table 3. Pectinase production byA. nigerLB-02-SF in

a bench-scale rotating drum bioreactor indicated that

enzyme production was favoured in conditions limit-

ing the fungal growth, without any temperature control

but with an intermediate air flow. Thus the best

conditions for biomass growth were not the best for

pectinase production (Poletto et al. 2017).

A novel strategy extraction protocol aiming to

reduce the cost and increase the enzyme yield was

adopted in the downstream process of pectinase

extraction (Wolf-Marquez et al. 2017). The above

extraction strategy utilised the salting-out potential of

two biocompatible cholinium-based ionic liquids

(N1112OHCl and N1112OHH2PO4) in aqueous solutions

of Tergitol, enabling 90% extraction of pectinase.

Further on the exposure of pectinase to pulsed electric

field was found to increase its thermal stability and

activity without altering its structure (Zhang et al.

2017).Mild ultrasound treatment of pectinase increased

its immobilization yield as well as its catalytic activity,

but reduced its thermo-stability, reaction stability and

reusability due to structural changes (Ma et al. 2017).

2.7 Structural and genetic factors contributing

to enzyme properties

The presence of various conserved aminoacid residues

in pectinases, the protein conformation and interacting

bonding forces play a great role conferring to the

properties such as thermotolerance, alkaline stability

and catalytic efficiency to these enzymes. Polygalac-

turonases generally possess a conserved right-handed

parallel b-helical structure with ten complete turns

(Bonivento et al. 2008), with the active site open on

both sides in endo-PGs or occluded on one side in the

exo-PG (Abbott and Boraston, 2007). A unique

tetrameric b-helical structure was also reported in

exopolygalacturonase from Thermotoga maritime, the

most thermotolerant pectinase reported so far (Pijning

et al. 2009). The tetrameric nature of this protein

accounts to its thermotolerance, substrate specificity

(exo-activity and acceptance of non-methylated, sat-

urated polygalacturonate only), as well as product

specificity (release of mono-galacturonate).

Three conserved aspartate residues of pectinase

interact with the substrate, with one residue (Asp173)

acting as an acid, while the other two (Asp153 and

Asp174) act as a base in the hydrolytic cleavage of the

substrates (Pijning et al. 2009). Recent studies indicate

that cation-p interactions of endo-polygalacturonases

critically affect the thermotolerance and catalytic

efficiency of these enzymes. Three single mutants of

polygalacturonases viz, H58Y, T71Y and T304Y

promoted the cation-p interactions of the enzyme,

thereby increasing its thermostability (Tm increased by

0.6–3.9 �C) and catalytic efficiency to a 32-fold (Tu

et al. 2016).

The genetic analysis of various pectinase coding

genes in different microbes indicate that this enzyme

could be coded by post-translational modification a

polypeptide encoded by a single gene as in Fusarium
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moniliforme (Caprari et al. 1993) or encoded by family

of diverged genes as in A. niger (Bussink et al. 1992).

Microarray analysis of A. niger grown on main sugar

components of pectin revealed the expression of 46

pectolytic genes in the isolate (Martens-Uzunova and

Schaap 2009) and most of these multigenes have been

generated by gene duplication (Carroll et al. 2005).

Presence of substrates such as pectin, galacturonic

acid and polygalacturonic acid induce the secretion of

pectate lyase, polygalacturonase and pectin methyl

esterase encoding genes, but glucose represses these

genes. A clear involvement of carbon catabolite repres-

sor protein (Cre A) is also found in the process of

repression (Maldonado and Saad, 1998). The presence

of various conserved sequence 50-TYATTGGTGGAA-
30 and 50-CCCTGA-30 aiding in gene expression were

identified in A. niger (Visser et al. 2004).

3 Applications of pectinases

Pectinases basically find applications both in acidic

and alkaline conditions particularly in the food and

textile industry respectively. Applications studies with

pectinases are ongoing in global research fields to

obtain maximum fastened activity with enzymes. The

wide applications of this enzyme has attributed to its

increasing global demand and some of these applica-

tions are reviewed here (Fig. 1).

3.1 Protoplast isolation

Protoplasts can be isolated by mechanical or enzymatic

methods. Pectinases finds application for protoplast

isolation in combination with other enzymes like

cellulases and chitinases. Protoplasts have a wide range

of applications in genetic transformations, membrane

studies etc. An enzyme cocktail consisting of commer-

cial cellulases, crude pectinases and crude chitinases

was used to release maximum number of protoplast

from Pleurotus eous and P. flabellatus mycelia (Parani

and Eyini 2011). Mycelia extracted and incubated with

enzyme cocktail for 3 h, KCl (0.6 M) as osmotic

stabilizer, phosphate buffer of pH 6.0 and 3 days old

culture gave maximum protoplast yield.

3.2 Fruit juice clarification

Fungal pectinolytic preparations are widely used for

the clarification of fruit juices. Acid pectinases are

Table 3 An outline of various bioreactors used in pectinase production

Type of reactor Principle Substrate Yield References

Column-tray bioreactor Solid-state fermentation Lemon peel

pomace

2181 U/L Ruiz et al.

(2012)

Pilot-scale packed-bed

bioreactor

Solid-state fermentation Wheat bran

and

sugarcane

bagasse

1840 U kg-1 of dry solid per h Pitol et al.

(2016)

Pilot-scale packed-bed

bioreactor

Solid-state fermentation Wheat bran

and

sugarcane

bagasse

22 U g-1 Finkler

et al.

(2017)

Rotating drum bioreactor Solid-state fermentation Rice bran 4 U gdm-1 Colla et al.

(2016)

Tray-type reactor Solid-state fermentation Wheat bran 298 Ug-1 substrate Demir and

Tari

(2017)

Stirred tank reactor Submerged

fermentation (yielded

exopectinase and

endopectinase)

Orange peel Exo and endo: batch fermentation (670.7 and

28.2 U/L h, respectively) pulsed fed-batch

(189.1 and 24.89 U/L h, respectively)

Wolf-

Marquez

et al.

(2015)

Packed bed reactor (PBR)

with recycled flow for

continuous production

Solid-state fermentation Spent grains Volumetric productivity (P(V) = 0.98

U ml-1 h-1
Almeida

et al.

(2003)
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mainly used to remove pectin in fruit juice. Pectinases

produced by A. niger (fungal pectinases) are com-

monly used to clarify fruit juices. Fruits are rich in

pectin, crushing of fruit gives highly viscous fruit

juice. Pectin is responsible for haze and precipitate

formation in juice. The gelatinous nature of juice will

result in clear juice extraction difficulties. Pectinase

usages in extraction process improve juice quality.

Pectinases increases filtration efficiency of fruit juice

by decreasing turbidity of fruit juices (Saadoun et al.

2013). Pectinases degrades gel structure and decreases

viscosity of juice. More than 90% improvement than

mechanical extraction of clear juice and enzyme

treatment also improves colour, flavour and nutritional

characteristics of juice. Mainly used in apple juice

preparation, clearness will be high when compared to

pectinase untreated juice and on enzymatic treatment

total pectin content of juice decreases (Pedrolli et al.

2009).

The benefits of using pectinases in juices include

also the release of various phenolic compounds from

fruits which serve as good antioxidants aiding in

prevention of various ailments such as cancers and

coronary heart diseases (Aliaa et al. 2010). Strawberry

and raspberry juices need enzymatic de-pectinization

to remove the colloidal nature (Versari et al. 1998).

The pectin, phenolic substances and protein of juices

result in formation of irreversible complexes that

enzyme cannot break so it is essential to remove

pectin. Pectinases depolymerize highly esterified

pectin in apple juice. A combination of pectinase,

cellulase and amylase gives juice yield up to 100%

(Pasha et al. 2013). The enzyme treated banana can be

used to produce banana wine, which gives cleared

banana wine without affecting any other characteris-

tics of banana wine (Tapre and Jain 2014).

3.3 Retting and degumming of fibre crops

Fibres containing gum should be degummed for its

usage in textile industry. Pectin cements the fibres

together and this pectin should be degraded. As

chemical degumming causes pollution, an alternative

use of pectinases and xylanases mixture serves as an

eco-friendly and economical solution for pollution

with non biodegradable pollutants (Sharma and

Satyanarayana 2012). Alkaline pectinases are com-

monly used for retting and degumming process of

fibres like ramie, flax, sunn hemp and jute. Pecti-

nolytic enzymes secreted by soft rot bacteria cause

maceration of woody fabrics that are long, strong and

stiff, which softens fibres (Liao 1989).

Pectinase based enzyme retting is an eco-friendly

process and has several advantages over water retting

providing a high yield, quality and consistent quality

to fibres. Moreover, it is a faster process and produces

fewer odours. Green stem of ankra plant wet retting

takes 10–12 days but 6% NaOH treatment with

enzyme ankra twigs fibre extraction takes only

1 day. The use of medium twigs for enzyme treatment

resulted in 81.5% pulp yield (Kuhad and Singh 2013).

In another study banana fibre separation was

attained by using pectinase enzyme produced by A.

niger (Azzaz et al. 2013). In higher plant tissues cells

are united together through middle lamella are rich in

pectin, on enzyme treatment middle lamella will be

destroyed and separation of fibres can be observed.

Scanning electron microscopy reveals that pectin

degraded and fibres are separated. Apart from use in

treatment of natural fibres, pectinase treatment was

also found to increase the mechanical properties of

reinforced thermoplastic composites (Saleem et al.

2008).

3.4 Animal Feeds

Reports on the supplementation of pectinases in

animal feed suggest that it helps to increase the
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clarifica�on
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Paper 
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Fig. 1 Schematic presentation of various applications of

pectinases
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absorption of nutrients by animals aided by degrada-

tion of fibres entrapping them (Hoondal et al. 2002).

3.5 Liquefaction and saccharification of biomass

Bioethanol obtained from enzyme treated biomass is a

suitable alternative to fossil fuels and it helps to

remove green house gas emissions. As the complex

pectinaceous structures in feed stock degraded and

hydrolysed by pectinases, the rate of ethanol produc-

tion increases (Chen et al. 2012). Enzymatic hydrol-

ysis of biomass is efficient treatment without

generation of toxic waste and economically feasible

process. Liquid hot water treatment enlarges the

accessible and susceptible surface area of sugar and

makes it accessible to hydrolytic enzymes. Substrate

with enzyme cocktail of 2.5U gives high level of

galacturonic acid released shows high percentage of

saccharification.0.25–2.0 g lemon peel in 15 ml

buffer with enzyme gives 94.59% saccharification

and 1 g yield of sugar. Increase in lemon peel

concentration decreases saccharification yield and

reducing sugars and it may be due to feed back

inhibition i.e. high end product (reducing sugar)

concentration which results in enzyme inactivation

(Mostafa et al. 2013).

3.6 Coffee and tea fermentation

Alkaline pectinases are generally produced by bacteria

Bacillus species. Some fungi and yeasts also produces

alkaline pectinases which are used for coffee and tea

fermentation (Pedrolli et al. 2009). Soft ripe coffee

fruits sorted and passed into mechanical pulper to

remove coffee skin. Only coffee seed is released

through pulper screen, thin viscous inner mesocarp

which is a highly hydrated layer called mucilage can

be removed by natural fermentation then washed dried

to 35% moisture content.

Pectinase treatment increase tea fermentation rate

and destroy foam forming property of instant tea

powders by destroying pectin (Pasha et al. 2013).

Pectinase from A. niger, Byssochlamys fulva and

Mucor circinelloids used for fermentation of tea

leaves from Camellia sinensis plant, increased pro-

duction of phenolic compounds increases tea quality.

Polygalacturonase are mainly used to increase tea

quality (Thakur and Gupta 2012).

3.7 Wine industry

Pectinases are also widely used in wine making

industry to increase the quality of wine (Rehman et al.

2015). The use of pectinases in combination of other

enzymes such as hemicellulases, glucanases and

glycosidases in the wine industry is considered to be

the oldest application of this enzyme. The use of

pectinase in wine industry in the grape must is done

mainly to support the extraction process to maximize

juice yield, facilitate filtration and intensify the flavour

and colour (Sieiro et al. 2012). However, the use of

pectinases is often low in commercial preparations to

avoid the production of excess amount of methanol by

the action of pectin methyl esterases.

3.8 Essential oil extraction

The utility of pectinase in the extraction of essential

oils from various sources such as olives (Ortiz et al.

2017), flaxseed oil (Kulkarni et al. 2017), dates

(Mehanni et al. 2017) etc. have been widely studied.

Pectinase treatment yields oil of superior quality than

organically extracted oil with lower fatty acids,

peroxide value and colour intensity (Mehanni et al.

2017). Moreover the retaining of phospholipids in

solid phase reduces the cost for refining process.

3.9 Paper bleaching, deinking and recycling

Pectinases in combination with xylanases are primar-

ily used in the paper industry as a bio-bleaching agent.

Unlike the conventional chemical bleaching agents,

the use of enzymes is found to be eco-friendly, less

harsh and good in improving the quality of the paper.

Apart from reducing the kappa number and perman-

ganate number of pulp, biological bleaching using

pectinases in combination with xylanases brighten the

paper and improve its physical properties (Kaur et al.

2010; Nathan et al. 2017). The replacement of

chemical pectinases also contribute to reduce the

chlorine disposal into the environment compared to

those chemical alternative strategies. Recent studies

indicate that ultra filtered concoction of pectinase and

xylanase give better result than crude enzyme (Sharma

et al. 2017). Biological deinking and bleaching would

aid in lowering the BOD and COD of waste water

before disposal (Singh et al. 2012a).
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3.10 Others

The use of pectinase in the production of non-

digestible oligosaccharides especially bioactive com-

pounds has also been reviewed (Bezerra et al. 2017).

The use of enzyme decoctions of pectinases and other

enzymes are used to obtain good preparation of viruses

from plant tissues (Butot et al. 2007). The role of

pectinases in treatment of waste water is also evident

in the remediation of water from pectin waste exuding

industrial units (Singh et al. 2012a).This makes

wastewater devoid of pectinaceous matter and ready

for treatment by activated sludge treatment (Hoondal

et al. 2002).

4 Conclusion and future perspectives

Application of pectinases in various fields shows the

potential of green process. The various applications of

pectinases as noted in the above section, greatly

demands its economised production. Yet the proper-

ties of thermo-tolerance and high yield would surely

be an advantage to these enzymes to its effective

utilisation. Thus the use of various proteomic,

genomic and production optimization methodologies

either singly or combinatorial should be attempted to

meet the increasing global demands of pectinases.

Fine tuning will lead to the development of an

economically viable strategy.
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