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Abstract This article reviews the comparative

diversity of psychrophilic and psychrotrophic fungi,

their adaptability mechanisms for survival and poten-

tial applications in biotechnology and pharmaceuti-

cals. Fungi are able to grow and survive at low

temperature and exist widely in polar and non-polar

habitats. These cold regions are known for very low

temperature, high ultra violet-B radiation, frequent

freeze and thaw cycles and low water and nutrient

availability. Most of the fungi adapt to such harsh

conditions by evolving various strategies in their

metabolism and physiology. Psychrophilic and psy-

chrotrophic fungi are of importance in biotechnolog-

ical and pharmaceutical fields due to their diverse

characteristics developed or evolved due to their

adaptation and survival in extreme environments, like;

production of cold-active enzymes, pharmaceutical or

bioactive metabolites and exo-polysaccharides, have

potential for bioremediation and can also be used as

biofertilizer.

Keywords Psychrophilic fungi � Psychrotrophic
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1 Background

Approximately, 85 %ofEarth is coldwith temperatures

ranging below 5 �C, permanently or seasonally (Hos-

hino andMatsumoto 2012;Margesin andMiteva 2011).

Cold habitats range from deep sea to high mountains

and fromAntarctica toArctic region.A large proportion

of cold environment consists of deep sea. Around 71 %

of the biosphere is occupied by oceans and provides

temperature from-1 to 4 �C, the snow covers*35 %

of total terrestrial environment, frozen ground *24 %

of terrestrial environment, sea ice *13 % of the Earth

surface and glaciers*10 % of terrestrial environment,

providing a temperature of about -5 �C, along with

some other low temperature environments comprising

cold soils, lakes, caves and cold deserts (Singh et al.

2006; Margesin and Miteva 2011).

The living entities that have adapted to and live in

cold environments are termed as psychrophiles and

psychrotrophs. Psychrophiles and psychrotrophs are

defined as the organisms that can grow at or near 0 �C
(Ingram 1965; Morita 1975). More specifically, the

optimum and maximum temperature for the growth

of psychrophiles is B15 and B20 �C, respectively.
Psychrotrophs grow well above 15 �C (Morita 1975;

Gounot 1991; Cavicchioli et al. 2002). ‘‘Obligate

psychrophiles’’ require 15 �C for their optimal growth,

\20 �C for their maximal growth and 0 �C or lower

for their minimum growth (Turchetti et al. 2008) and

facultative psychrophiles grow well below 0 �C
(Raspor and Zupan 2006).
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According to Deverall (1968), the psychrophilic

fungi have an optimum growth temperature near

10 �C or below and that 10 �C was the minimum

growth temperature required for most of the fungi.

Many researchers agree with Morita’s definition of

psychrophiles that psychrophilic fungi grow well at

15 �C or lower, whereas, psychrotrophic fungi require

temperatures above 20 �C for their maximum growth

(Maheswari 2005; Cavicchioli et al. 2002; Robinson

2001). Bacteria and fungi are reported to remain viable

for at least thousands of years (Shi et al. 1997; Catranis

and Starmer 1991). Microorganisms that can be

recovered from the interior of deep-core samples of

Arctic and Antarctic ice are expected to be millions of

years old (Taylor et al. 1997). Various ancient fungi,

ranging from 10,000 to 140,000 years in age, have

been isolated and documented from Arctic and

Antarctic ice (Abyzov 1993; Christner et al. 2003).

2 Low temperature adapted life forms

The extremely cold environments such as Arctic and

Antarctic areas are dominated by microorganisms e.g.

bacteria, protists and fungi as well as microscopic

animals e.g. nematodes, rotifers, tardigrades, spring-

tails, mites (Hogg et al. 2006; Arenz and Blanchette

2011). The Arctic and Antarctica have been investi-

gated for psychrophiles, belonging to bacteria and

archaea, to some extent, for algae, but less for fungi

(Ma et al. 1999; Gunde-Cimerman et al. 2003; Abyzov

1993). Fungi not only survive but can also grow and

propagate in unusual environments. Diverse fungi

have been documented from different extreme envi-

ronments such as saline liquids (Gunde-Cimerman

et al. 2000), surface of dried rocks (Steflinger 1998),

ocean pits (Lopez-Garcia et al. 2001), dry and hot

deserts (Abdel-Hafez et al. 1989), very low pH

(Lopez-Archilla et al. 2001), as well as in the coldest

polar environments (Tojo and Newsham 2012). Cold

adapted fungal species are considered the most

effective eukaryotic extremophiles and have adapted

such strategies from prokaryotic extremophiles (Petro-

vic et al. 2002).

Many studies have found that primary biomass

production in cold ecosystems is facilitated by fungi

because of their endophytic and lichenic relationship

with several primary producers (Rosa et al. 2009;

Gianoli et al. 2004). Their ability to decompose wood

(carboxymethyl cellulose) suggests their role in recy-

cling of the nutrients in cold environments (Duncan

et al. 2006). Several fungi have been isolated from

various historic huts (built with woody materials) in

Antarctica, showing their biodegradation potential

(Blanchette et al. 2010; Arenz and Blanchette 2009).

Moreover, well-known fungal pathogens such as

Pythium species have also been found in cold habitats

(Uspon et al. 2009; Bridge et al. 2008).

Psychrophilic fungi in cold environments are facing

numerous extreme situations, including coldest tem-

peratures (frequent freeze–thaw cycles), high salt

concentrations, lowmoisture content, extreme UV and

solar radiation and low nutrient availability. Such

extreme factors may vary from one site to another, but

all fungi must overcome such potential challenges

(McKenzie et al. 2003; Selbmann et al. 2002; Robin-

son 2001). To combat such harsh conditions, fungi

have adapted special features that are still not fully

understood. Although, several cold adaptive mecha-

nisms of psychrophilic fungi have been described, it is

assumed that a combination of strategies including

production of antifreeze proteins, compatible solutes

(glycerol), trehalose, polyols (acyclic sugar alcohols)

and cold-active enzymes, are employed by psy-

chrophiles for their survival (Brown 1978; Lewis

and Smith 1967; Weinstein et al. 2000; Robinson

2001).

3 Fungal diversity in cold habitats

Psychrophilic fungi exist in some of the coldest

environments throughout the world because of their

great efficiency of adaptation to cold environment

(distribution of cold adapted fungi throughout the

world is summarized in Fig. 1; Table 1). The presence

of psychrophilic and psychrotrophic fungi in cold

environments, including; permafrost (Golubev 1998),

cold water (Tosi et al. 2000), glacial ice (Ma et al.

1999), off-shore polar waters (Broady and Weinstein

1998), glaciers, ice sheets and shelves, freshwater ice,

sea ice, icebergs (Tojo and Newsham 2012), have been

widely studied.

Cryoconite holes on glacier surfaces are the cold

niches of microbial diversity and activity. Multivariate

analysis of terminal-restriction fragment length poly-

morphism (T-RFLP) profiles of rRNA ITS amplicons

detected fungal communities in cryoconite holes at
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Kongsfjorden, Svalbard, and were compared to those

from the soils of adjacent moraine and tundra sites. It

was observed that the communities on glaciers with

contrasting ice-surface hydrology differed remark-

ably. Most of the fungi cultured from cryoconite

sediment were basidiomycetous yeasts or filamentous

Ascomycota (Helotiales/Pleosporales), including

aeroaquatic fungi, such as Articulospora and Vari-

cosporium, indicating their role in cycling of carbon in

cryoconite holes (Edwards et al. 2013).

It was reported by Zumsteg et al. (2012) that

fungi shifted from an Ascomycota-dominated com-

munity in young soils to a more Basidiomycota-

dominated community in old soils. Redundancy

analysis indicated that base saturation, pH, soil C

and N contents and presence of plant material

related to soil age, associated with the microbial

succession along the Damma glacier forefield in

central Switzerland.

Arbuscular mycorrhizal (AM) and dark septate

endophytic (DSE) fungi colonization in two dominant

plant species (Melandrium apetalum and Poa litwi-

nowiana) was observed on the forefront of Zhadang

Glacier in Qinghai–Tibet Plateau, China. It was

observed that AM dominated in M. apetalum and

DSE dominated in P. litwinowiana.A total of five AM

fungal spore morphotypes (Acaulospora capsicula,

Diversispora sp., Glomus constrictum, Glomus ebur-

neum and Glomus sp.) were found in the rhizosphere

soils. Two AM fungal phylotypes: one Claroideoglo-

mus phylotype from roots and one seaweed, also

thought to be endemic phylotype from spores were

identified (Pan et al. 2013).

3.1 Antarctica

Approximately, 99 % of the Antarctica continent is

covered by ice throughout the year (Fox et al. 1994).

The climate of Antarctica is one of the coolest and

driest on the Earth, however, it contains variable

climatic regions throughout the continent. The Antarc-

tica is grouped into three different regions including

the continental Antarctic, the Sub-Antarctic and the

Maritime Antarctic (Peck et al. 2006). The biodiver-

sity of fungi has been studied in different areas of the

Antarctic continent (Onofri et al. 2005a; Bridge and

Worland 2004). Biodiversity studies range from the

floristic (Onofri and Tosi 1992; Mercantini et al.

1993), ecophysiologic (Tosi et al. 2002; Onofri et al.

2000), at molecular level (Vishniac and Onofri 2002)

and phylogenetic (Selbmann et al. 2005).

Many mycological studies carried out in Antarc-

tica, comprised different fungi that exist in lakes

(Brunati et al. 2009; Goncalves et al. 2012), soil,

historic woodlands (Fell et al. 2006; Arenz et al. 2006)

as well as live on macroalgae (Loque et al. 2010) and

on plants (Uspon et al. 2009; Rosa et al. 2009). About

0.6 % of fungi (water molds, Kingdom Chromista)

and 99.4 % true fungi including yeasts (unicellular),

and filamentous fungi (phylum Ascomycota, Basid-

iomycota, Chytridiomycota and Zygomycota) have

been reported from Antarctica (Onofri et al. 2005b).

Fig. 1 Distribution of cold

adapted fungi in different

niches. Distribution of cold

adapted fungi in different

regions of the world. 1

Hindu Kush, Karakoram,

Himalaya (HKKH), 2

European Alps, 3 Iceland, 4

Svalbard, 5 Arctic Ocean, 6

Greenland, 7 Canadian

Arctic Islands, 8 North USA

(Alaska), 9 Western USA

(Utah), 10 North Pacific

Ocean, 11 South America

(a Bolivia, b Patagonia), 12

Antarctica, 13 Indian Ocean,

14 South Pacific Ocean (for

detail refer to Table 1)
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Paleobiological and paleoecological studies have

shown that the Antarctic fossil fungal biota was

present in degraded organic material, which proposes

that perhaps they were initially saprophytic and acted

as main decomposers (White and Taylor 1988;

Stubblefield and Taylor 1983).

Blanchette et al. (2010) isolated 69 filamentous fungi

from Nimrod Hut, Cape Royds, Antarctica that

included the genera Cadophora, followed by Thielavia

and Geomyces. Thielavia was studied in the Ross Sea

Region (Blanchette et al. 2010), also reported from

lichen on King George Island (Stchigel et al. 2001).

Arenz et al. (2006) studied various filamentous

Ascomycetes (New Harbor), Basidiomycetes (Allan

Hills), Ascomycete yeasts, Geomyces sp. (Mt Fleming)

and Zygomycetes (Lake Fryxell Basin). Duncan et al.

(2006) isolated filamentous fungi from Terra Nova Hut

whichweremainly cold active and grow at 4 and 25 �C.
Geomyces pannorum is reported from many locations

of Antarctica (Loque et al. 2010; Rosa et al. 2010;

Arenz and Blanchette 2011) which were thought to be

indigenous (Vishniac 1996) and keratinophilic (Mar-

shall 1998). The Geomyces and Cadophora sp. are

widely present in Antarctica (Blanchette et al. 2010),

playing significant role in the decaying and nutrient

recycling (Arenz and Blanchette 2009; Arenz et al.

Table 1 Geographical distribution of cold adapted fungi in the world

No. Region Sampling site References

1 HKKH (non polar) 1. Kumaun, Himalaya Sati et al. (2014)

2. Pangong Lake, Himalaya Anupama et al. (2011)

3. Nainital Kumaun, Himalaya Sati et al. (2009)

2 European Alps 1. Damma glacier, Swiss Alps Brunner et al. (2011)

2. Forni and Sforzellina glacier, Ita. Alps Turchetti et al. (2008)

3. Stubaier glacier, Austria Margesin et al. (2007)

3 Iceland Iceland Richardson (2004)

4 Svalbard Kongsfjorden glaciers Sonjak et al. (2006)

Fujiyoshi et al. (2011)

5 Arctic Ocean 1. Franz Josef Land Bergero et al. (1999)

2. Kongsfjorden glaciers Sonjak et al. (2006)

6 Greenland 1. GISP2 and Dye-3 sites Ma et al. (2000)

7 Canadian Arctic Islands Keewatin, Baffin Island, Ward Hunt Iceland,

Saskatoon Island

Allen et al. (2006)

Ellesmere Island Olsson et al. (2004)

8 North USA Alaska Deslippe et al. (2011)

9 Western USA Utah state Kuddus et al. (2008)

10 South Pacific ocean Peru Margin and Trench Edgcomb et al. (2010)

11 South America Bolivia Flakus and Kukwa (2012)

Patagonia Garcia et al. (2013)

12 Antarctica 1. Peninsula Laura et al. (2014)

2. Intertidal transects, rocky coastline, Antarctica Laura et al. (2013)

3. King George Island Vivian et al. (2013)

4. Admiralty Bay, King George Rosa et al. (2010)

5. Livingston Island, West Antarctica Kostadinova et al. (2009)

6. Schirmacher Oasis Singh et al. (2006)

7. King George Island Stchigel et al. (2003)

13 Indian Ocean Central Indian Basin Singh et al. (2010, 2012),

Raghukumar et al. (2004),

Damare et al. (2006a, b)

14 South Pacific Ocean region Canterbury (New Zealand) Ciobanu et al. (2014)
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2006). In Antarctica, Penicillium species have been

isolated from lakes (Ellis-Evans 1996), soils (Azmi and

Seppelt 1998), historical woodlands (Arenz et al. 2006)

and macroalgal thalli (Loque et al. 2010).

The extreme environment of Antarctica is accom-

panied by stressful conditions (Pugh 1980). Fungal

genera including Aspergillus, Candida, Cryptococcus,

Cylindrocarpon, Glomerella, Golovinomyces, Peni-

cillium and Phoma have been reported from marine

sediments (Singh et al. 2011; Lai et al. 2007; Calvez

et al. 2009). G. pannorum, Thelebolus sp., mainly

Thelebolus microsporus and Mortierella sp. are

reported from Antarctic Peninsula (Goncalves et al.

2012; Arenz and Blanchette 2011). Thelebolus sp. is

widely present in many other sites such as in benthic

mats of Antarctic lakes (Brunati et al. 2009). The genus

Antarctomyces is represented by the type species A.

psychrotrophicus, isolated from Antarctic soil and

seaweed, also thought to be endemic to Antarctic

environment (Arenz et al. 2006; Arenz and Blanchette

2011; Stchigel et al. 2001; Loque et al. 2010).

King George Island, South Shetland archipelago,

Antarctica, have an average temperature of 2 �C (min

-20 �C, max 10 �C). Stchigel et al. (2003) reported
two species of Ascomycetes, Thielavia antarctica and

Apiosordaria antarctica, from King George Island

(Antarctica). Moreover, Azmi and Seppelt (1997)

reported many fungi from soils e.g. Cadophora

malorum and from moss (Tosi et al. 2002) in the

Windmill Islands, Antarctica. Mycological investiga-

tions in Victoria Land have been carried out by many

authors, who provided lists of fungi present in the

surrounding territories of that area (Broady et al.

1987). Park et al. (2015) studied lichen associated

fungal species from King George Island, Antarctica,

by pyrosequencing of eukaryotic large subunit (LSU)

and revealed that fungal communities belonged to the

Arthoniomycetes, Eurotiomycetes, Lecanoromycetes,

Leotiomycetes, Sordariomycetes (Ascomycota) and

Tremellomycetes and Cystobasidiomycetes (Basid-

iomycota). Litova et al. (2014) isolated Aspergillus,

Penicillium and Alternaria as common genera from

Antarctic soil probes.

McMurdo Dry Valley, one of the most unreceptive

environments on Earth is favorable for the growth of

microorganisms which love to grow in ice- free

area including black meristematic fungi, persistent

members of endolithic microbial communities such

as lichen-dominated cryptoendolithic communities

(Nienow and Friedmann 1993; Selbmann et al. 2008).

Black meristematic fungi are known to be tolerant to

extreme environmental conditions. The black fungi

constitute melanized cell walls and meristematic

development, which support survival and persistence

in hostile environmental conditions (Selbmann et al.

2010). They are commonly isolated from environ-

ments that are almost devoid of other eukaryotic life-

forms, including saltpans (Plemenitas and Gunde-

Cimerman 2005), acidic and polluted sites (Baker

et al. 2004; Isola et al. 2013) and exposed rocks in dry

and extremely hot or cold habitats (Staley et al.

1982). In Antarctica, the black meristematic fungi

have been isolated from Northern and Southern

Victoria Land (Selbmann et al. 2005; 2013).

Pythium belong to oomycete genera and are well-

known fungal pathogens, usually infect small plants

and arthropods in Antarctica (Humber 1989; Bridge

et al. 2008). Pythium species, such as Pythium tenue,

Neozygites sp. etc., have been reported from plants in

vegetated sub-Antarctic islands such as Kerguelen,

Macquarie and South Georgia (Knox and Paterson

1973; Hughes et al. 2003; Bridge and Denton 2007).

Bridge et al. (2008) isolated pathogenic Pythium

species from Antarctic hair grass Deschampsia

antarctica in Signy Island, South Orkney Islands.

Pathogenic Pythium species have also been reported

from different Antarctic plants (Uspon et al. 2009;

Bridge et al. 2008). The endophytic fungi have also

been investigated in various plants such as D. antarc-

tica and Colobanthus quitensis (Rosa et al. 2009;

Gianoli et al. 2004). Taxonomically, most endophytic

fungi were Ascomycetes but also belonged to Basid-

iomycota and Zygomycota (Huang et al. 2001). The

endophytic fungal groups can help the plants to face

abiotic (temperature, pH, osmotic pressure) and biotic

stresses (bacteria, fungi, nematodes, and insects)

(Rodriguez et al. 2001).

3.2 Arctic

The cold Arctic region comprises northern fringes of

Ellesmere Island as well as Svalbard, Franz Joseph

Land,Novaya Zemlya and theNew Siberian Islands, all

in the region of 80–85�N. TheArctic is divided into five
bioclimatic sub zones (A–E), with A being the coldest

and E the warmest (Ludley and Robinson 2008).

Fungi are found in all aerobic ecosystems, coloniz-

ing a diversity of substrates and performing a wide

Rev Environ Sci Biotechnol (2016) 15:147–172 151

123



diversity of functions, some of which are not well

understood (Table 2). Yeasts, black yeast-like fungi,

melanized filamentous species as well as representa-

tives of Aspergillus and Penicillium seem to be

dominant among the mycobiota adapted to cold and

saline niches (Cantrell et al. 2001).

Franz Joseph Land is a high-arctic desert or semi

desert archipelago. The average air temperature during

summer, ranges from 0.2 to 1.3 �C, with an average

for the year as 14.1 �C (Bergero et al. 1999). Bergero

et al. (1999) have isolated fungal species ofGeomyces,

Phialophora, Phoma, Acremonium, Thelebolus and

Mortierella from Franz Joseph Land. The filamentous

Penicillium species have been investigated in three

different polythermal glaciers of Arctic region (Sval-

bard, Norway) (Sonjak et al. 2006). The most

predominant species was Penicillium crustosum.

Thirty-two genera of decomposer basidiomycetes,

having around 100 species, have been collected and

surveyed in Arctic tundra in North America (Lydolph

et al. 2005). The Mycorrhizal fungal communities are

common in arctic environment. They are important for

growth and survival of their host plants as they provide

water and limiting nutrients in exchange for photo-

synthetic carbon (Smith and Read 2002). Some of the

ectomycorrhizal fungal communities have been inves-

tigated in the Arctic–Alpine ecosystems that were

associated with Dryas octopetala or chronosequences

(Cripps and Eddington 2005; Harrington and Mitchell

2002; Jumpponen et al. 2002). The Arbuscular myc-

orrhizal (AM) fungal communities have also been

found in Arctic ecosytems (Allen et al. 2006; Olsson

et al. 2004). Ectomycorrhizal fungi are widely

distributed in arctic and alpine habitats on all conti-

nents. Some widely distributed EMF (Ectomycor-

rhizal fungi) genera include Inocybe, Cortinarius,

Hebeloma, Russula, Thelephora, Tomentella, Ceno-

coccum and Laccaria (Deslippe et al. 2011; Fujiyoshi

et al. 2011).

There are about 2600 morphologically described

macrofungi and at least 150 ectomycorrhizal species

reported from Svalbard, the Russian Arctic and

Iceland (Borgen et al. 2006). EMF have been collected

from two arctic ectomycorrhizal host plants, Salix

Table 2 Fungal species/genera and their distribution in different Artic and Alps regions

No. Distribution sites Fungal genera/species References

1 Franz Joseph Land Geomyces, Phialophora, Phoma, Acremonium,

Thelebolus and Mortierella

Bergero et al. (1999)

2 Colorado Front Range Saccharomyces cerevisiae, Taphrina communis,

Neolecta vitellina, Phialophora gregata,

Fesctuca psuedostems, Hymenoscyphus ericae

and Phialophora finlandia

Schadt et al. (2001)

3 Lyman Glacier Cortinarius decipiens, C. tenebricus, Inocybe

lacera, Laccaria cf. Montana, Suillus cavipes

Jumpponen et al. (2002)

4 Northern Fennoscandia, Arctic Anthracoidea echinospora and Anthracoidea

heterospora

Scholler et al. (2003)

5 Western Beringia, Arctic Acanthophysium, Mortierella, Bensingtonia,

Cryptococcus, Sordaria, Phanerochaete and

Phialocephala

Lydolph et al. (2005)

6 Svalbard, Norway Penicillium crustosum and other penicilium

species

Sonjak et al. (2006)

7 Tyrolean Alps Cenococcum geophilum, Sebacina sp.,

Tomentella sp. and Cortinarius sp.

Muhlmann and Peintner (2008)

8 Cliff ledges, Arctic–Alpine Cenococcum geophilum, Thelephoraceae sp.,

Cortinarius sp., and Sebacinales sp.

Ryberg et al. (2009)

9 Arctic tundra Cortinarius sp. and Russula Deslippe et al. (2011)

10 Austre Broggerbreen, Svalbard Geopora sp. and Cenococcum sp. Fujiyoshi et al. (2011)

11 High Arctic Cryptococcus, Rhizosphaera, Mycopappus,

Melampsora, Mrakia, Tetracladium,

Phaeosphaeria, Venturia, and Leptosphaeria

Zhang and Yao (2015)
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arctica and Dryas integrifolia that belong to the major

genera Thelephora, Tomentella, Sebacina, Inocybe,

Cortinarius, Russula, Hebeloma, Laccaria and Cla-

vulina are characteristic of arctic and alpine environ-

ments (Muhlmann and Peintner 2008; Ryberg et al.

2009; Deslippe et al. 2011). Dark septate endophytes

are present in the Arctic and Alpine plant roots but

there is less knowledge about their phylogenetic

antiquities or their effects on host plants (Jumpponen

and Trappe 1998; Schadt et al. 2001). As in Antarctica,

some of the fungal pathogens are also present in Arctic

habitat, for example obligate basidiomycetes plant

pathogens in Arctic ecosystems are Exobasidium

(Nannfeldt 1981; Ing 1998) and rusts (belonging to

Basidiomycetes that consist of a large group of

obligate plant parasites) and smuts (obligate parasitic

fungi of the genus Anthracoidea) (Scholler et al. 2003;

Singh and Palni 2011). Zhang and Yao (2015)

assessed the diversity and dissemination of endophytic

fungal communities in High Arctic using 454 pyrose-

quencing by targeting the ITS region and found that

the Cryptococcus, Rhizosphaera, Mycopappus, Me-

lampsora, Tetracladium, Phaeosphaeria, Mrakia,

Venturia, and Leptosphaeriawere predominant fungal

genera.

Cryoconite holes have biogeochemical, ecological

and biotechnological importance. Culturable psy-

chrophilic yeast and filamentous fungi from cry-

oconite holes at Midre Lovénbreen glacier have been

studied. The microbes were identified through con-

ventional and DNA sequencing techniques as Cryp-

tococcus gilvescens, Mrakia sp., Rhodotorula sp.,

Phialophora alba and Articulospora tetracladia.

Rhodotorula sp. expressed high amylase, while Cryp-

tococcus gilvescens showed high lipase activity.

Mrakia sp. showed phosphate solubilization between

4 and 15 �C. Filamentous fungi and yeast in the

cryoconite holes drive the process of organic macro-

molecule degradation through secretion of cold-

adapted enzymes, thereby having important role in

nutrient cycling in these sub-glacial environments

(Singh and Singh 2012).

Ribosomal DNA sequences were amplified from

sub-fossils of the ascolichen Umbilicaria cylindrica

(L.) Delise ex Duby collected at the ablating edges of

Greenland glaciers. Phylogenetic analysis indicated

that they were not closely related to those of the

lichen-forming fungus but rather represented 2

groups of psychrophilic basidiomycetes (orders

Cystofilobasidiales and Sporidiales) and one group

of ascomycetes (order Leotiales). Sporidiales and the

Leotiales, include fungi previously detected from

grass clothing of the Tyrolean Iceman desiccated and

frozen for over 3000 years and also in 2000 and

4000 year-old ice core samples from northern Green-

land. Cystofilobasidiales were identical to those of the

basidio yeast saprobe Mrakia frigida (DePriest et al.

2000).

3.3 Deep sea

Deep sea is an environment of extreme conditions,

such as high hydrostatic pressure and low nutrient

availability, with an average temperature between -1

and 4 �C in most areas of deep sea or high temperature

([400 �C in hydrothermal vents) and absence of

sunlight. Living organisms in deep sea are considered

to be adapted to cold environments. Yeast diversity

commonly found in deep sea is represented by

Rhodosporidium spp., Rhodotorula spp., Candida

spp., Cryptococcus spp., Pichia spp., Sporobolomyces

spp. and Trichosporon spp. As compared to prokary-

otic microorganisms, yeasts in deep-sea environment

remain relatively underexplored, with few studies

carried out on their physiology (Nagano et al. 2013).

The deep-sea is usually defined as the area of ocean

beyond the photic zone (e.g.[200 m depth). Due to

coldness, darkness and stability of the deep-sea

bottom, it was presumed that most of life forms may

be present in a suspended state.

Singh et al. (2010) have isolated filamentous fungi

and yeasts that belong to phylum Ascomycota and

Basidiomycota from sediments of Central Indian

Basin. Similarly, Aspergillus sp., Fusarium sp.,

Curvularia sp., Penicillium sp. and Cladosporium

sp. have been isolated at 5 �C from deep-sea sediment

core of the Indian Ocean (Raghukumar et al. 2004;

Damare et al. 2006a, b). Singh et al. (2012) also

investigated fungal diversity in two sediment cores

*40 cmbsf (cm below seafloor) at a depth of

*5000 m in the Central Indian Basin, by culture-

dependent as well as culture-independent approaches

and recovered a total of 19 culturable fungi, of which

two showed similarity to Hortaea werneckii and

Aspergillus versicolor. Some of the fungi, such as

Cerrena, Hortaea and Aspergillus sp., were recovered

by culture-dependent as well as culture-independent

approaches.
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Most of the fungi of deep-sea environments are of

psychrotrophic nature, but in some cases, deep-sea

fungal isolates can also grow well at 30 �C than 5 �C
(Damare and Chandralata 2008; Singh et al. 2010).

Moreover, fungal communities belonging to Ascomy-

cota and Basidiomycota phylum have been reported

from the deep marine subsurface by DNA and RNA-

based clone library analyses (Edgcomb et al. 2011;

Orsi et al. 2013; Burgaud et al. 2013). Zhang et al.

(2015) studied the presence of fungal communities in

eight marine sediments of Kongsfjorden (Svalbard,

High Arctic) using 454 pyrosequencing and revealed

the Pichia, Fusarium, Alternaria and Malassezia as

common fungal genera. Zhang et al. (2013) explored

the diversity of fungal communities in different deep-

sea sediment samples of the South China Sea by

culture-dependent methods and isolated Aspergillus,

Cladosporium and Penicillium as dominant genera. In

an another study in the East India Ocean, fungal

diversity of sediments from a depth of 4000 m have

been studied using a mixture of metagenomics and

conventional methods (Zhang et al. 2014). This tactic

stemmed in the salvage of a total of 45 fungal

operational taxonomic units (OTUs) and 20 culturable

fungal phylotypes including fungal generaAspergillus,

Alternaria, Cladophialophora, Cladosporium, Euro-

tium, Fusarium,Geomyces,Hypocrea, Leptosphaeria,

Mortierella, Phoma, Rhizoscyphus and Trichoderma.

3.4 The European Alpines

About 200 km long and 800 km wide, European

Alpines extends across eight European Alpine coun-

tries. The highest peaks of Alpine mountain are

approximately 4400–4800 m. The mean temperature

in the valley floors range from-5 to 4 �C to as high as

8 �C during January, and in July it range between 15

and 24 �C. The variability of climate in European Alps

is influenced by the North with huge Eurasian

terrestrial physique, the Atlantic weather systems

andMediterranean Sea (Auer et al. 2005; Beniston and

Jungo 2002; Begert et al. 2005).

The microbiological analysis of 78 samples taken

from a boreal bog in Western Siberia and from a

tundra wetland soil in Alaska showed the presence of

23 yeast species belonging to the genera Bullera,

Candida, Cryptococcus, Debaryomyces, Hansenias-

pora, Metschnikowia, Mrakia, Pichia, Rhodotorula,

Saccharomyces, Sporobolomyces, Torulaspora, and

Trichosporon. Peat samples from the boreal bog were

dominated by eurytopic anamorphic basidiomycetous

species, such as Rhodotorula mucilaginosa and

Sporobolomyces roseus, and by the ascomycetous

yeasts Candida spp. and Debaryomyces hansenii.

These samples also contained Candida paludigena

and Schizoblastosporion starkeyi-henricii. The wet-

land Alaskan soil was dominated by one yeast species

(Cryptococcus gilvescens), which is a typical inhab-

itant of tundra soils (Poliakova et al. 2001).

In European Alps, psychrophilic yeasts have been

documented in ice, subglacial sediments and melted

water from two different Italian alpine glaciers

including C. gilvescens, Aureobasidium pullulans

(about half of the total), Cryptococcus terricolus,

Mrakia gelida, Naganishia globosa, Rhodotorula

glacialis, Rhodotorula psychrophenolica, Rhodotor-

ula bacarum, Rhodotorula creatinivora and Rhodo-

torula larynges (Turchetti et al. 2008). Margesin et al.

(2007) described three new psychrophilic species of

the genus Rhodotorula comprises Rhodotorula psy-

chrophila, R. psychrophenolica and R. glacialis col-

lected from soil of an alpine railway area, from mud in

the thawing zone of a glacier foot and from glacier

cryoconite, respectively. Buzzini et al. (2005) reported

the presence of viable yeast cells in melted waters

running off from glaciers in Italian Alps. Similarly, a

novel species of the genus Acaulospora has also been

reported from numerous mountains in Southern Chile

and Switzerland at 550–1600 and 1850–2050 m,

respectively (Fritz et al. 2011). Acaulospora alpine a

novel arbuscular mycorrhizal fungal species have

been reported from Swiss Alp (Oehl et al. 2006).

Brunner et al. (2011) isolated 45 fungi from sediments

of fine granite of Damma glacier in the central Swiss

Alps. A set of fungal species isolated from fine granitic

sediment of the non-vegetated forefield of the Damma

Glacier showed a high potential to weather powdered

granite material in batch experiments. In particular,

the zygomycete fungi Mucor hiemalis, Mortierella

alpina, Umbelopsis isabellina and the ascomycete

fungus Penicillium chrysogenum dissolved the granite

powder most efficiently. It was shown that high

concentrations of Ca, Fe, Mg and Mn in the solutions

were the result of release of high amounts of organic

acids, mainly citrate, malate and oxalate (Brunner and

Schlumpf 2014). Muggia et al. (2015) isolated 248

lichen-associated fungi that belong to the Chaetothyri-

omycetes and Dothideomycetes, while a slight section
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represents Sordariomycetes and Leotiomycetes, from

the Koralpe mountain range in the south eastern rim of

the Austrian Alps. A total of 347 endophytic fungi

were isolated from alpine plants, Rhodiola crenulata,

Rhodiola angusta and Rhodiola sachalinensis, repre-

senting at least 57 genera in 20 orders of four phyla,

namely, Ascomycota (88.89 %), Basidiomycota

(2.78 %), Zygomycota (1.11 %), and Glomeromycota

(0.56 %), which displayed high copiousness and

diversity (Cui et al. 2015). Coleine et al. (2015)

studied the presence of fungi in Alpine Tarfala Valley

and the data showed that the mainstream of fungi

isolated belonged to the Ascomycota and Cryptococ-

cus gilvescens and Pezoloma ericae were the most

frequently isolated species.

3.5 Glaciers of Hindu Kush–Karakoram–

Himalayas (HKKH)

Hindu Kush–Karakoram–Himalayas hosts more than

20,000 glaciers, of which 5000 are in the Karakoram

range (Inman 2010) and more than 12,000 are in the

Himalayas that cover about 60,000 km area (Kaab

et al. 2012). The HKKH glaciers have not been

properly investigated earlier for presence of psy-

chrophilic and psychrotrophic fungi and very few

studies have been carried out. Five species of aquatic

hyphomycetes belonging to the genus Lemonniera and

aquatic hyphomycete, Tetracladium nainitalense a

root endophyte has been isolated from Kumaun

Himalaya, India (Sati et al. 2009, 2014; Sati and

Belwal 2005). Anupama et al. (2011) reported the

psychrophilic and halotolerant Thelebolus mi-

crosporus from the Pangong Lake, Himalayan region.

Singh and Palni (2011) have collected 35 species

belonging to 7 families of rust fungi from herbaceous

and shrubby hosts in central Himalayan region.

Moreover, 25 psychrophilic yeasts have been identi-

fied from Roopkund Lake soil of Himalayas, India

(Shivaji et al. 2008). Wang et al. (2015) studied

glaciers on the Qinghai–Tibet Plateau for the presence

of cold-adapted fungi and isolated 1428 fungi, of

which 150 were identified and Phoma sclerotioides

and Pseudogymnoascus pannorum were the most

dominant species and Helotiales (Leotiomycetes,

Ascomycota) was the most commonly encountered

group and also described six new species; P. antarc-

tica, P. lutea, P. olivacea, T. ellipsoideum, T. globo-

sum and T. psychrophilum.

Recently, few studies about the diversity of fungi in

Hindu Kush and Karakoram mountain ranges of

Pakistan have been conducted. A total of 77 fungal

isolates were isolated from Batura, Passu and Siachen

glaciers, representing 24 fungal genera, one class and

one order (Hassan 2015). Most of the fungi from these

glaciers belong to genus Penicillium, Cladosporium,

Mrakia, Geomyces, Leotiomycetes, Thelebolus, Tri-

choderma, Pueraria, Pseudogymnoascus, Beauveria,

Pseudeurotium, Fontanospora, Cordyceps, Cado-

phora, Periconia, Cryptococcus, Trametes, Mortier-

ella, Scopulariopsis, Candida, Antrodia,

Sporobolomyces, Phoma, Eupenicillium, while one

fungal species to order Pleosporales and class Doth-

ideomycetes each. Antrodia juniperina is isolated for

the first time from any polar or non-polar habitats. In

another study, Nadeem (2014) isolated 57 fungal

strains from Tirich Mir glacier, Pakistan, with Al-

ternaria, as predominant genus.

4 Adaptability in cold environment

Psychrophilic fungi in cold habitats of polar and non-

polar regions are subject to extreme low temperature

and various other stress conditions including high

repeated freeze and thaw cycles (Ruisi et al. 2006), UV

radiation (mainly UV-B), reduced moisture, increased

salinity, low nutrient availability and desiccation.

These potential challenges and stress conditions vary

considerably from one environment to the other, and

fungi must counter it for their survival. Coldness is a

relative name (Smith 1993), which is defined as

freezing temperature with a limit of -70 �C, beyond
which life process stops (Robinson 2001). Such low

temperature and regular freeze thaw cycles are also

provided by Polar terrestrial regions (Montiel 2000).

Low temperature influence fungal cells by increasing

water viscosity, denaturing of proteins, slowing of

chemical reactions and decreasing of membrane

stability (Crowe et al. 1992; Russell 1990). Water

unavailability and salinity are common in Antarctic

island due to extreme dryness. Antarctica has almost

70 % of the world’s fresh water which is entirely

covered in ice. High winds enhance evaporation that

leads to drought and the key source of humidity is

fleeting water melted due to solar heating during the

austral summer. Due to increased evaporation, salt

concentrations in the soil, shallow ponds and rocks are
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frequently elevated (Nishiyama 1977), that produce

similar consequence of osmotic disparity as caused by

freezing (Gunde-Cimerman et al. 2003). UV-B is a

solar spectrum’s component that causes wide range of

harmful effects (Kerr and McElroy 1993) on the

environment due to which the whole productivity of

ecosystems may be affected. The consequences of

UV-B radiation (280–315 nm) have been observed on

fungal growth (Gunasekera et al. 1997; Newsham

et al. 1997). The significant detrimental effects of UV-

B have also been observed on several Antarctic

terrestrial fungi including G. pannorum, Phoma

herbarum, Mortierella parvispora, Pythium and Ver-

ticillium species (Hughes et al. 2003).

4.1 Adaptation characteristics

To thrive under extreme conditions, fungi have

adapted special mechanisms and features (Fig. 2).

However, all the mechanisms in psychrophilic fungi

are not completely known that allows them to survive

at low temperature (Weinstein et al. 2000; Smith 1993;

Snider et al. 2000; Russell 1990). To grow at low

temperature, it is necessary that all the cell components

of psychrophilic fungi must function properly (Russell

1990). Several tools of cold tolerance have been

documented in fungi, as mentioned earlier.

4.1.1 Plasma membrane fluidity maintenance

The first line of defense is the cell membrane that faces

the change coming from external environment. It is,

therefore, important to be stable and function properly.

Cell membrane consists of phospholipid bilayer and

proteins organized in various coinciding domains with

unlike fluidity features (Strancar et al. 2000; Simons

and Toomre 2000). Hence, a minute change can

considerably disturb membrane functions (Hazel and

Williams 1990). It is well established that the Antarc-

tic and other cold inhabitant microorganisms alter

membrane lipid conformation as a strategy of cold-

tolerance (Russell 1990). Extreme low temperature

causes freezing and dehydration, damages cells by

changing the cell membrane lipids from liquefied

crystalline to gel phase and leads to disruption of

membrane function (Crowe et al. 1987). This

Pigments 

Membrane fluidity by cis and branched PUFA *
Trehalose production Antifreeze protein

Compatible solute (Mannitol, glycerol)

Extracellular Polysaccharide

Mycosporin

Melanin

Other cold shock proteins (CSP)

NucleusMitochondria

Cell Membrane

Cell Wall

External glacial environment

Fungal fruiting body

Genetic level adaptation

Fig. 2 A typical structure of psychrophilic and psychrotrophic fungi and their adaptability mechanisms in low temperature

environments, *Polyunsaturated fatty acids
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transition can be handled by an increase in fatty acids’

unsaturation. Various strains isolated from Antarctic

region including Cadophora fastigiata, Mortierella

alpine and Mortierella antarctica, produce arachi-

donic and linoleic acid, when grown at low temper-

ature and the change of fatty acid in cell membrane in

reaction to cold temperature has even been scrutinized

in Geomyces vinaceus and G. pannorum and in other

Antarctic strains (Maggi et al. 1991; Finotti et al.

1993). In a similar study, the presence of fatty

acids ‘stearidonic acids’ were also reported, in another

fungiMortierella elongate only, formerly described in

psychrotrophic zygomycete, however the ergosterol

were not detected (Weinstein et al. 2000). The

increased membrane fluidity has been reported in

psychrotolerant yeast Rhodosporidium diobovatum

(Turk et al. 2011), indicating the role of unsaturation

of fatty acids in maintaining integrity and functionality

of plasma membrane at low temperature.

4.1.2 Compatible solute–polyols

Fungi produce various compatible solutes to overcome

the increased dehydration and osmotic stress due to

low temperature (Pascual et al. 2002). Glycerol is

supposed to be the utmost important compatible solute

(Brown 1978). Sugars, such as mannitol provides

cryoprotective ability during freeze or desiccation

(Feofilova et al. 1994). These solutes sustain the

function and integrity of cell membrane to stabilize it.

They can stabilize plasma membrane by sustaining

their function and integrity and complete dehydration

(Crowe et al. 1984, 1986). Grant (2004) observed an

increase in the concentration of mannitol and glycerol

to sustain the turgor pressure against heat mediated

decrease in the external water potential i (Grant 2004).

Mannitol might have role in cryoprotection (Wein-

stein et al. 1997), and is thought to be dynamic in water

stress protection (Lewis and Smith 1967). Polyols are

thought to act as buffering agents (Jennings 1984). The

potential cryoprotectant role of polyols in fungi is

revealed by comparing Humicola marvinii with H.

fuscoatra (Weinstein et al. 1997). Polyols (acyclic

sugar alcohols) are the principal soluble carbohydrates

in fungi (Lewis and Smith 1967). Polyol’s main

function in fungi is in osmoregulation and coenzyme

regulation (Jennings 1984) as well as protection

against damage due to freezing by lowering the

freezing point of intracellular fluid.

4.1.3 Trehalose

Trehalose is a disaccharide widely found in both

reproductive and vegetative stages in fungi (Theve-

lein 1984). Trehalose plays a key role in enhancing

the resistance in fungi to environmental stress condi-

tions, like freezing, desiccation, dehydration and

extreme temperature (Lewis et al. 1995; D’Amore

et al. 1991). It has been documented that concentra-

tion of trehalose increases, when fungi is subjected to

low temperature and such changes have been seen in

excised alpine mycorrhizal roots (Niederer et al.

1992), H. marvinii, a psychrophile, (Weinstein et al.

2000) and Hebeloma species of the arctic and

temperate regions (Tibbett et al. 1988a). Weinstein

et al. (2000) documented the increase of cryoprotec-

tive carbohydrates at low temperature in H. marvinii,

such as extracellular glycerol and intracellular tre-

halose, while in Mortierella elongate, only intracel-

lular trehalose, in field soils of maritime Antarctica. It

has also been documented that thermophilic fungus

Myceliophthora thermophila (growth optimum at

42 �C) has also shown an increase in trehalose and

mannitol content and a decrease in inositol content

when exposed to low temperature stress (growth at

26 �C), suggesting a role for trehalose and mannitol in

the fungal response to low temperature (Feofilova

et al. 1994). Trehalose has been found to be the most

effective cryoprotectant during desiccation or freez-

ing and help in maintaining membrane integrity and

function (Crowe et al. 1986).

4.1.4 Cold-active enzymes

The fungi and other microbial proliferation at

extremely low temperature is extensively supported

by cold-adapted enzymes as they provide high flex-

ibility and active site complementarity for substrate,

ensuing an increased specific activity at low energy

cost (Weinstein et al. 2000; Kuddus et al. 2011). Such

flexibility is accomplished by combining structural

features including, increased surface residue charge,

decreased ionic and electrostatic interactions and

deterioration in core hydrophobicity (Weinstein et al.

2000). The tractability also comprise substitution of

proline by glycines in surface loops, decreased in

lysine–arginine ratio, low subunit and inter domain

interaction and reduced aromatic interaction (Gerday

2000; Gianese et al. 2001).
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Several Antarctic fungal species produce cold

dynamic enzymes (Fenice et al. 1998) that may

highlight the struggle of the fungi to flourish at low

temperatures. Although, some Antarctic fungal spe-

cies have wide enzymatic capabilities that intensify

probability of persistence under hostile conditions

(Fenice et al. 1997). Fungal strains isolated from

Antarctic soil has been documented to have an

enzymatic activity at low temperature e.g. psy-

chrophilic fungal species, H. marvinii, H. fuscoatra

and H. marvinii, responsible for production of extra-

cellular protease and inorganic phosphate solubiliza-

tion in solid media at 15 �C, have also been

documented from Antarctic soil (Weinstein et al.

1997). Similarly, Fenice et al. (1997) reported differ-

ent fungal strains including mitosporic fungi, yeast

like fungi, Ascomycetes and sterile mycelial strains to

produce various extracellular enzymes like DNase,

protease, phosphatase, amylase glucose oxidase,

lipases and polygalacturonase. The strains were iso-

lated from diverse locations of Victoria Land (Antarc-

tic continent). The ectomycorrhizal fungal strains

belonging to genus Hebeloma have been screened for

proteolytic and phosphatase activity (Tibbett et al.

1988a, b).

Enzymes can also act as a virulence factor in

animals as well as in plants. One of such enzyme in

plants is keratinase. Out of 72 positive samples

(67.3 %), a total of seven genera with eleven species

Chrysosporium keratinophilum (3.7 %), Chrysospo-

rium tropicum (5.6 %), Chrysosporium state of

Ctenomyces serratus (11.2 %), G. pannorum

(2.8 %), Malbranchea sp. (0.9 %), Microsporum

gypseum complex (20.6 %), Microsporum nanum

(1.9 %), Microsporum van-breuseghemii (0.9 %),

Trichophyton ajelloi (15 %), Trichophyton terrestre

(2.8 %) and Uncinocarpus reesii (1.9 %) were iso-

lated from soil at glacier banks of Gulmarg, Khilan-

marg, Sonamarg and Tangmarg of Kashmir valley,

and were able to utilize keratin, and are keratinophilic

fungi and dermatophytes (Deshmukh 2002).

4.1.5 Antifreeze proteins

Production of Antifreeze protein (AFP) is one of the

key strategies of prokaryotes and poikilothermic

eukaryotes to persevere in low temperature environ-

ment (Duman and Olsen 1993). Antifreeze proteins

adsorb to ice surface and avoid its growth and to attach

to ice nucleators (Knight et al. 1993: Sicheri and Yang

1995). AFPs when bind to ice, lowers the freezing

temperature of a solution, melting point remains same.

This phenomenon is known as thermal hysteresis

(Urrutia et al. 1992). The thermal hysteresis ranges

from 2 to 6 �C in insects, in fish from 1 to 1.5 �C and in

plants from 0.1 to 0.5 �C (Urrutia et al. 1992), in fungi

it ranges from 0.3 to 0.35 �C in fungi (Snider et al.

2000) and 0.1 to 0.35 �C in bacteria (Duman andOlsen

1993). AFPs alter the ice crystal pattern, i.e. it changes

the ice crystals from hexagonal to pyramid (Scotter

et al. 2006). Antifreeze proteins’ adsorption to ice

crystals can lead to inhibition of recrystallization

(Knight et al. 1984, 1988). Antifreeze proteins have

been studied in fungi (snowmolds) that are pathogenic

to dormant plants under snow covers (Hoshino 2005;

Hoshino et al. 2003; Snider et al. 2000). Snow molds

consist of two key fungal taxa, Basidiomycetes and

Ascomycetes and one pseudofungal taxon of oomy-

cetes. However, among all three taxa, the AFPs have

only been identified in Coprinus psychromorbidus

belonging to basidiomycetes (Hoshino et al. 2003).

The Ascomycetes isolated from Antarctica have been

studied in detail among which seven strains were able

to produce andmodify ice crystal nature, although they

were not recognized as Antifreeze proteins (Hoshino

2005). Xiao et al. (2010) recognized and purified a

novel fungal antifreeze protein from Antarctic asco-

mycetes Antarctomyces psychrotrophicus.

4.1.6 Mycosporines

Mycosporines are renowned small secondary metabo-

lites, which were initially revealed in spores of various

terrestrial fungi and sporulating mycelia (Young and

Patterson 1982; Bernillon et al. 1984). Mycosporine

compound, like mycosporine glutaminol was found in

Trichothecium roseum belonging to Deuteromycetes

(Favre-Bonvin et al. 1987). The oxo-carbonyl chro-

mophores are present in these compounds (absorbing

radiation of UVB at 310 nm), are restricted to

fungi that are found in terrestrial habitats (Shick and

Dunlap 2002). In Basidiomycetous yeasts like Rho-

dotorula minuta and Rhodotorula slooffiae, the

Mycosporine glutaminol glucoside (absorb UV at

310 nm) was studied for the first time (Sommaruga

et al. 2004). Similarly, a non-melanized and predatory

Antarctic fungus Arthrobotrys ferox, which feed on

springtail, was capable of producing carotenoids and
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mycosporins that act as protecting agents against UV

(Arcangeli et al. 1997; Arcangeli and Cannistraro

2000). In our knowledge, mycosporines have not been

investigated in fungi from polar and non-polar origin,

but the vast presence of mycosporines in other fungi

use them to protect themselves from UV radiation, has

clearly shown that these metabolites can exist in such

fungi but it needs further exploration.

4.1.7 Melanin

Melanin is a distinctive and multifunctional pigment

present in all biological kingdoms (Eisenman and

Casadevall 2012; Gomez and Nosanchuk 2003). In

fungi it provides protection against various environ-

mental stresses like desiccation, ionizing radiation,

oxidizing agent and UV light (Gorbushina 2003;

Butler and Day 1998). It also plays a part in fungal

pathogenesis. Several strains of Antarctic fungal taxa

like having melanized strains that resist UV radiation

including Alternaria alternat, Stachybotrys chartarum

and Ulocladium consortiale (Domsch et al. 1980).

Hughes et al. (2003) observed P. herbarum, isolated

from Antarctica, was able to produce a brown

pigment, probably melanin, within 24 h of disclosure

to high radiation of UV-B. Similarly, many other

investigators also reported the melanin in fungi (Kogej

et al. 2004), which perhaps gives the idea that melanin

is helping them to face the extreme conditions.

4.1.8 Fungal adaptation to high pressure

High pressure disturbs or inhibits themicrobial activity

such as growth, respiration and specific biochemical

processes (Abe 2006). Effect of lethal pressures on

yeast cells were studied by several groups (Iwahashi

et al. 2003). Iwahashi et al. (2003) studied DNA

microarrays of S. cerevisiae and analysed expression

levels of *6000 genes. The genome-wide expression

profiles suggested that high pressure (180 MPa at 4 �C
for 2 min) caused damage to cellular organelles as

same as damage caused by detergents, oils, freezing

and thawing (Raghukumar et al. 2010). It has been

observed that the effects of pressure that cause growth

inhibition in S. cerevisiae were different from those

caused by lethal pressures (Abe 2004).

Pressure-inducible genes, to help in pressure

acclimatization, have been studied in marine bacteria

(Bartlett 1991). In case of bacteria, the pressure effects

on DNA replication, growth (El-Hajj et al. 2009), gene

expression, membranes, membrane proteins, DNA

structure and function, cell division, protein and

enzyme functions have been studied in detail while

in case of fungi the studies have not been carried out

except their detection in the deep-sea sediments and

capability to grow under high pressure and yield

extracellular enzymes active under raised hydrostatic

pressure (Raghukumar and Damare 2008). In conclu-

sion, none of the principle mechanism of adaptability

has yet been explored. It needs to be further investi-

gated to find out the factors involved in adaption of

fungi in deep sea environment.

5 Applications

5.1 Cold active enzymes

Psychrophilic fungi are capable of providing a large

number of biotechnological and pharmaceutical

applications (Fig. 3). Psychrophilic fungi are capable

of synthesizing secondary metabolites that are very

unique to cold ecosystems (Margesin et al. 2008).

They are an important source of cold-adapted

enzymes which are economically important, as they

work actively at low and moderate temperatures

(Georlette et al. 2003). Fungi from cold habitats have

the ability to be used as biofertilizers and production

of pigments of medicinal value (Singh et al. 2011,

2014) (Table 3).

The psychrophilic enzyme that is active at low and

moderate temperature provides probable cost-effec-

tive benefits (Cavicchioli et al. 2002). For instance, it

works in low temperature set-up in winter season,

provides high yields, increases stereospecificity,

decreases undesirable reactions and saves significant

energy in large scale process, which requires the

heating of reactors. The thermophilic and mesophilic

fungi have been investigated extensively for the

production of extracellular enzymes (Sahai and

Manocha 1993; Hankin and Anagnostakis 1975),

however psychrophilic fungi are yet to be investigated

in detail.

Cold active enzymes, polygalacturonases and alka-

line proteases have been characterized from deep-sea

yeast and fungi, respectively (Abe et al. 2006; Damare

et al. 2006a, b). Alkaline, cold-tolerant proteases have

been isolated from deep-sea fungi in the Central Indian
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Basin. Many of these grew and produced alkaline

proteases at 5 and 30 �C and 1 bar pressure.

Aspergillus ustus (NIOCC #20) produced the highest

amounts of the enzyme. The fungus produced alkaline,

cold-tolerant protease when grown at 30 �C and 1 bar

pressure. The enzyme was active at combinations of 5,

30 and 50 �C with 300 bar pressure (Damare et al.

2006a, b). The presence of psychrophilic yeasts in

supra- and sub-glacial sediments, ice and meltwater

collected from two glaciers of the Italian Alps (Forni

and Sforzellina—Ortles-Cevedale group) was inves-

tigated. A significant proportion of isolated yeasts

exhibited one or more extracellular enzymatic activ-

ities (starch-degrading, lipolytic, esterolytic, prote-

olytic and pectinolytic activity) at 4 �C (Turchetti

et al. 2008).

Nutrient cycling

Low temperature fungi

Health

Exopolysaccharides

Environment

Bioremediation

Bio fertilizers Molecular biology

Detergent

Food, baking, 
cheese, wine 

Industry

Antibiotics

Oil recovery 

Pigments/lipids 

Anti-tumor activity

Hydrocarbons and 
fuel degradation

Pharmaceutical 

Cosmetic

Leather

Pulp bleach

Desizing denim jeans

Animal feed 

Immunosuppressive 

Fig. 3 Schematic

representation of

psychrophilic and

psychrophilic fungal

metabolites applications in

different fields
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Zucconi et al. (1996) isolated psychrotolerant G.

pannorum that hydrolyze starch and produce lipase,

urease, extracellular chitinase, that are active at lower

than 25 �C. Fenice et al. (1997) reported enzyme

production by screening various strains of fungi,

isolated from various locations of Victoria (continen-

tal Antarctica), including polygalacturonase, pecti-

nase, amylase, cellulose, chitinase, cellulases,

phosphatase, glucose oxidase, urease, protease, lipase,

RNase, DNase. Takasawa et al. (1997) isolated

polygalacturonase from Sclerotinia borealis psy-

chrophilic fungi. Various other fungal strains includ-

ing G. pannorum have been documented from

Antarctica that produce keratinases (Marshall 1998).

Similarly, the Cadophora, Penicillium, Geomyces and

Cladosporium species were documented for produc-

tion of extracellular endo-1, 4-b-glucanases at 15 and

4 �C (Duncan et al. 2006). Gawas-Sakhalkar et al.

Table 3 Fungal species with various cold-active enzymes production and their applications in different fields

Enzymes Temperature

(�C)
Fungal species Applications References

a-amylases 4–20 Thelebolus microsporus,

Rhodotorula glacialis and

Rhodotorula

psychrophenolica

1. Starch conversion

2. Detergent industry

3. Fuel alcohol production

4. Processed-food industry such as baking,

brewing, preparation of digestive aids,

production of cakes, fruit juices and starch

syrups

5. Pulp and paper industry

Turchetti et al.

(2008), Singh

et al. (2014)

Cellulases 4 Cladosporium oxysporum

and Geomyces sp.

1. Detergent industry

2. Fuel alcohol production

3. Textile industry

4. Bioremediation

Duncan et al.

(2006)

Glucose oxidases 20–25 Geomyces pannorum and

Verticillium lecanii

1. Food technology

2. Bioanalysis

Fenice et al.

(1997)

Lipases 20–25 Aspergillus versicolor,

Alternaria sp.,

Cladosporium

cladosporioides and

Phoma sp.

1. Production of fatty acids

2. Detergent industry

Fenice et al.

(1997)

Phosphatases 10–30 Aspergillus niger and P.

citrinum

1. Biofertilization Singh et al.

(2011),

Gawas-

Sakhalkar et al.

(2012)

Polygalacturonases 0–60 Sclerotinia borealis,

Cryptococcus liquefaciens,

and Aspergillus japonicus

1. Food industry

2. Pectin hydrolysis

Takasawa et al.

(1997), Abe

et al. (2006)

Proteases 2–50 Aspergillus ustus,

Cryptococcus gilvescens,

Mrakia gelida and

Rhodotorula laryngis

1. Detergent industry

2. Textile industry

Damare et al.

(2006a, b),

Turchetti et al.

(2008)

Xylanases 4–20 Criptococcus albidus 1. Bioconversion of lignocellulosic

materials

2. Higher-value products, such as fuel and

other Chemicals

3. Production of oligosaccharides

Amoresano et al.

(2000)
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(2012) analyzed fungal isolates from Arctic soils for

the production of phosphatase enzyme, among all the

isolates a Penicillium citrinum strain PG162 (a cold-

tolerant fungus) was documented as best producer of

intracellular acid phosphatase. Hassan (2015)

screened 77 fungal strains, isolated from Batura,

Passu and Siachen glaciers, Pakistan, were found to

produce six extracellular enzymes including amylase,

cellulase, deoxyribonuclease, lipase, phosphatase and

protease. Fungal isolates were good in producing

lipase and cellulose. Sporobolomyces ruberrimus was

able to produce 5 enzymes except phosphatase. For

instance, glucose oxidase has a significant application

in food technology and bioanalysis is produced by

species belonging to Aspergillus, Penicillium, Pleu-

rotus, Alaromyces and Phanerochaete. However, only

three strains like Aspergillus niger, P. chrysogenum

and Penicillium amagasakiense are responsible for

industrial scale production (Crueger and Crueger

1990).

For reduction of viscosity and clarification of fruit

juices at low temperature, cold active pectinases can

be used. Mukherjee and Singh (2011) documented that

the a-amylase activity were maximum at 20 �C,
signifying its use in food industry, in fabric treating

and as a detergent additive, baking industry, pulp

bleach, desizing denim jeans. Moreover, they can be

used in industrial ‘peeling’ of leather, detergents, food

industry, dough fermentation, cheese ripening, baking

industry, wine industry, animal feed and molecular

biology (Mayordomo et al. 2000).

5.2 Pharmaceutical products

The fungi from temperate and tropical habitats, have

been reported for pharmaceutical products production

(Schulz et al. 2002), although the metabolites isolated

from psychrophilic and psychrotrophic fungi are quite

rare. However, to some extent, this aspect of the

psychrophilic fungi has been investigated by many

researchers. Fungi have been found thriving in the

Pacific Ocean floor, where the nutrient availability is

low and the sediments are more than 100 million years

old. This finding leads to the idea that life is present

everywhere and at unusual places and it also creates an

opportunity for pharmaceutical companies which are

looking for new and more efficient antibiotics to

counter the increasing problem of emergence of drug-

resistant bacteria.

From point of view of pharmaceutical products,

the Penicillium species are of a great interest. The

Penicillium species such as Penicillium lanosum and

Penicillium soppii found in permanently cold soils,

can efficiently produce valuable secondary metabo-

lites e.g. griseofulvin and cycloaspeptide A (both are

antibiotic compounds with antimicrobial activity)

(Frisvad et al. 2006). Penicillium antarcticum, a

psychrotolerant to mesophilic and halotolerent spe-

cies (McRae and Seppelt 1999), can produce patulin

and asperentins. Several other species including

Penicillium ribium, Penicillium rivulorum and Peni-

cillium algidum can produce other secondary

metabolites. For instance, P. ribium are able to

produce a cyclic nitropeptide psychrophilin A as well

as cycloaspeptide A and D (Frisvad et al. 2006:

Dalsgaard et al. 2004a), while P. rivulorum can

effectively produce communesin G and H and

psychrophilin B and C (Dalsgaard et al. 2004b,

2005a). Similarly, P. algidum are capable of produc-

ing psychrophilin D and cycloaspeptide A and D

(Dalsgaard et al. 2005b). Interestingly, these cyclic

peptides are mostly produced by fungi harbor in low

temperature habitat. The cyclic peptides have been

found with varied biological activities, such as

antibacterial activity, immunosuppressive activity,

and anti-tumor activity (Joo 2012).

Brunati et al. (2009) revealed the antimicrobial

activity of filamentous fungi belonging to fifteen

diverse genera. Among 160 fungal strains, 47 fungi

exhibit activity against Staphylococcus aureus,E. coli,

Cryptococcus neoformans and Candida albicans,

although, the activity against filamentous fungi and

Enterobacteria was low. The skyrin and rugulosin

isolated from the Antarctic P. chrysogenum are very

fascinating and currently these are explored for

insecticidal and medical applications (Sumarah et al.

2005).

An antifungal protein, AfAFPR9, was isolated from

the Aspergillus fumigatus R9, isolated from the South

Atlantic sediment sample that possessed antifungal

activity against plant pathogenic Fusarium oxyspo-

rum, Alternaria longipes, Colletotrichum gloeospori-

oides, Paecilomyces variotii and Trichoderma viride

(Rao et al. 2015). In an another study, a novel

antifungal protein (Pc-Arctin) was purified from P.

chrysogenum A096 isolated from an Arctic sediment

that exhibited antifungal activity against P. variotii, A.

longipes and T. viride (Chen et al. 2013).
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Newly isolated fungal species, from Batura, Passu

and Siachen glaciers, Pakistan, were checked for their

antimicrobial activity against multi-drug resistant

(MDR) clinically isolated bacterial and fungal strains

such as E. coli (MDR), Klebsiella pneumonia (MDR),

S. aureus (MDR), Staphylococcus sp., Enterococcus

sp. (Vancomycin resistant Enterococcus), C. albicans

and A. niger, respectively. The fungal strains showed

good antimicrobial activity against Gram positive

bacteria as compared to Gram negative bacterial and

fungal strains (Hassan 2015).

5.3 Bioremediation potentials

It has been thought that psychrophilic microorganisms

might remediate the waste water and polluted soils in

winter season when the endogenous microbial

degradative capability is reduced by low temperature.

Although, not enough work has been done on the

bioremediation potentials of the psychrophilic fungi

but it is the need of the time that this aspect of cold-

tolerant fungi should be considered for much better

exploration. However, Hughes et al. (2007) have

studied the Antarctic fungi comprising genera Tricho-

derma, Phoma, Penicillium, Trichoderma, Mortier-

ella and Mollisia for hydrocarbons and fuel

degradation. It was also observed that Mortierella

species might be capable of using dodecane as sole

carbon source. This work indicates the future use of

Antarctic fungi for hydrocarbon degradation. Accord-

ing to Adams et al. (2006) fungi are important as

decomposers in Antarctic environment. Yergeau et al.

(2007) have described the genes responsible for

decomposition through microarray survey of the

Antarctic Peninsula and recommended that fungi are

the prevailing decomposers in the Antarctica.

5.4 Pigment/lipid production

Pigment/lipids produced by cold-tolerant fungi, are

usually used to tolerate and face the harsh temperature.

Many of the investigators have reported lipids like

polyunsaturated triglycerides and fatty acids from

fungi that thrive at low temperature mostly (psychro-

tolerant and psychrophilic) in increased quantity

(Weinstein et al. 2000; Weete and Gandhi 1999:

Istokovics et al. 1998). Singh et al. (2014) reported a

fungal strain, Thelebolus microsporus, as a cold

tolerant fungus, which can be used for fatty acid and

pigment production. Pigment was confirmed as

carotenoid through complete analysis. The commer-

cial application of such pigments/lipids is very vast.

For instance the linolenic acid is used for enhancement

of food for individuals suffering from diabetic

neuropathy, eczema and cardiovascular diseases

(Singh et al. 2014). Similarly, linoleic acid a key

aromatic compound is precursor of 1-octen-3-ol, has

been reported in most fungi including T. microsporus

(Singh et al. 2011, 2014).

5.5 Exopolysaccharide (EPS) production

The Antarctic strain P. herbarum Westend CCFEE

5080 was examined and investigated for the produc-

tion of exopolysaccharide (EPS) (Selbmann et al.

2002). The molecular structure of the EPS was

characterized as a b 1–3, 1–6 glucan of 7.4 9 106

Dalton. Commonly, the production of EPS by fungi

signifies as a response to harsh environmental condi-

tion i.e. it was found that embedded mycelium showed

higher ability to grow than the unembedded one after

exposing it to repeated freeze and thaw cycles

(Selbmann et al. 2002). It has been documented that

the meristematic black fungi from Antarctica produce

EPS externally to the hyphae or adjacent to conidia,

similar to Friedmanniomyces endolithicus (Selbmann

et al. 2005). Different microbes can produce EPS

which is independent of seasonal variations and EPS

recovery and purification is relatively easy (Suther-

land 1994). Due to their possible bioactive role

(Cheung 1996) and rheological behavior (Sutherland

1994), EPS are of great applicability in cosmetic and

pharmaceutical industries, food technology and oil

recovery (Hisamatsu et al. 1997; Blaicher and Mackin

1995).

5.6 Bio-fertilization capabilities

Phosphorus is a significant nutrient that plays vital role

in crop plant yields and development. In nature,

phosphorus is present in both organic and inorganic

forms. The insoluble inorganic phosphate present in

soil is not significant to plants until converted to

soluble form. The inorganic phosphorus converted to

organic form due to solubilization can be used by

plants upon mineralization. Numerous microorgan-

isms are responsible for the conversion of insoluble

phosphates to soluble form via chelation and exchange
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of reaction and acidification (Reyes et al. 2002;

Narsian and Patel 2000). A number of bacteria,

Actinomycetes and mesophilic fungi that are respon-

sible for phosphate solubilization have been docu-

mented from High Arctic glacier, Kanchanaburi

(Thailand) (Nenwani et al. 2010; Stibal et al. 2009;

Nopparat et al. 2007). Fungi produce organic acid for

phosphorus solubilization and have more solubiliza-

tion efficiency than bacteria (Nenwani et al. 2010).

Researchers have tried to encapsulate fungi that are

responsible for solubilization of phosphate that have

an agricultural and industrial importance (Vassileva

et al. 1998). Various microfungal genera including

Aspergillus, Penicillium and Fusarium are identified

that produce phosphatase (Yoshida and Tamiya 1971;

Nozawa et al. 1998; Vassileva et al. 1998; Haas et al.

1991). Similarly, species of Ectomycorrhizal Hebe-

loma (cold- tolerant fungi) has also been revealed to

produce cold active acid phosphatases (Tibbett et al.

1998). The cold tolerant phosphate solubilizing fungi

has been reported in Arctic soils for the first time by

Singh et al. (2011).

6 Conclusions

Psychrophilic and psychrotrophic fungi grow well at

low temperature. They have been extensively inves-

tigated in Antarctica and Arctic environments but less

significantly in non-polar habitats. Various studies

have shown that fungi are psychrotrophic in polar and

non-polar habitats. They are naturally exposed and

subjected to several extreme conditions of very low

temperature, high UV-B radiations, frequent freeze

and thaw cycles, low water and nutrient availability.

The life of fungi is impossible without an active

ecological niche constituting proper nutrient cycling

among autotrophic and heterotrophic entities. Cold

habitats are one of the most extreme environments for

survival. The presence of fungus in cod habitats is

quite interesting. The possibility of its presence on

glaciers can be hypothesized as, ‘to overcome the

extreme low temperature environment, fungi adopted

all the necessary equipment needed for survival at

such an extreme condition’. Under such circum-

stances, a most important question arises that from

where they obtain their food? It can be explained by

the fact that on the alpine glaciers, the main sources for

nutrition are plants, bacteria, archaea and viruses, and

their metabolites produced and released as a result of

their interactive ecological cycles. Another point to

consider in case of valley glaciers or mountain glaciers

is that during summers there is vegetation on the

mountain slopes or tops above the glacier valleys and

these plants erode with wind and rain and flow down

where they are embedded in the glacier body. The

microorganisms utilize this plant material as carbon

and energy source. Similarly, the rain drains the

surface soil of the mountain containing different

metals and trace elements down to the glacier, which

is then used up by fungus and chemolithotrophs in

their normal biochemical pathways. The most impor-

tant possibility is the interactive ecology of fungi,

bacteria, archaea and viruses, which creates an envi-

ronment, helping in the growth of some microorgan-

isms (including fungi). The viruses as well, in their

lytic cycles produce nutrients, for the heterotrophic

microorganisms (fungi) by killing other microbes

(bacteria etc.). The fungi adapted themselves to harsh

conditions of low nutrient and low temperature

through various mechanisms. Although, all the phys-

iological and ecological adaptive mechanisms still

need more exploration but such adaptability mecha-

nisms include alterations in membrane lipid or fatty

acid configuration, an increase production of cold-

active enzymes, compatible solutes, trehalose and

synthesis of melanin and mycosporine. It is a fact that

psychrophilic and psychrotrophic fungi have greater

potential of applications in various biotechnological

and pharmaceutical fields. They can provide the

production of cold-active enzymes, pharmaceutical

metabolites, EPS and having a good potential of

bioremediation and biofertilization capabilities.
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