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Abstract Anaerobic process modelling is a mature

and well-established field, largely guided by a mech-

anistic model structure that is defined by our under-

standing of underlying processes. This led to

publication of the IWA ADM1, and strong supporting,

analytical, and extension research in the 15 years

since its publication. However, the field is rapidly

expanding, in terms of new technology, new pro-

cesses, and the need to consider anaerobic processes

in a much broader context of the wastewater cycle as a

whole. Within the area of technologies, new processes

are emerging (including high-solids and domestic

wastewater treatment). Challenges relating to these

new processes, as well as the need to intensify and

better operate existing processes have increased the

need to consider spatial variance, and improve

characterisation of inputs. Emerging microbial pro-

cesses are challenging our understanding of the role of

the central carbon catabolic metabolism in anaerobic

digestion, with an increased importance of phospho-

rous, sulfur, and metals as electron source and sink,

and consideration of hydrogen and methane as

potential electron sources. The paradigm of anaerobic

digestion is challenged by anoxygenic phototrophism,

where energy is relatively cheap, but electron transfer

is expensive. These new processes are commonly not

compatible with the existing structure of anaerobic

digestion models. These core issues extend to appli-

cation of anaerobic digestion in domestic plant-wide

modelling, with the need for improved characterisa-

tion, new technologies having an increased impact,

and a key role for the linked phosphorous–sulfur–iron

processes across the cycle. The review overall finds

that anaerobic modelling is increasing in complexity

and demands on the modeller, but the core principles

of biochemical and physicochemical processes, meta-

bolic conservation, and mechanistic understanding

will serve well to address the new challenges.
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1 Introduction

Probably the most common technical question since

publication of the IWA Anaerobic Digestion Model

No. 1 (Batstone et al. 2002) has been ‘‘When will the

ADM2 be published?’’. Indeed, it was asked during

presentation of the ADM1 in Brussels in 2010 at AD

IX. At that time, it was due to apprehension that the

model would be replaced in 1–2 years, but since then

(and in the 13 years since publication), there has been

genuine interest as to what should replace, eventually,

the ADM1.

So far, there has been no compelling reason to

release an ADM2 as such. The ADM1 itself was based

on a broad range of other, largely comparable models

(Angelidaki et al. 1999; Costello et al. 1991b;

Kalyuzhnyi and Fedorovich 1998a; Siegrist et al.

1993; Vavilin et al. 1997), which did not vary

substantially in concept, only implementation. Its

strengths were broad basis and concept compatibility

with the IWA ASM series (Henze et al. 2000), a clear

and complete presentation of all model elements, as

well as reference implementations, and importantly

(given the large numbers of parameters), a complete

and consistent parameter set. However, given the

amount of previous model development work, it is

unlikely that model structure would change substan-

tially, unless core alternative processes (e.g., acetate

oxidation) were found to have (Wett et al. 2014) a far

higher incidence than thought, or to be inadequately

described by extensions, there is no current need for a

re-release of the core model. Indeed, the main

(structural) part of the ADM1 which was original,

has caused some problems, and is input of complex

particulates as Xc, which is undefined and generally

causes continuity issues when coupled to other models

(Nopens et al. 2009). This is discussed further in

Sect. 4.

While there is limited need for changes in bio-

chemical structure (and this need can be largely

addressed by plugins), or the underlying COD-uptake-

yield structure (note there has been some discussion of

this (Kleerebezem and van Loosdrecht 2006), a

number of limitations have emerged, particularly over

the last 5 years, which the aggregate modelling

literature is not addressing sufficiently, or in a

sufficiently comprehensive way. This review focuses

on identifying and discussing these fairly disparate

issues, and proposes initial approaches to address

them. Scope is limited to mechanistic and semi-

mechanistic models, with stochastic models (e.g.

Garcı́a-Gen et al. 2015; Pullammanappallil et al.

1998) including multi-order empirical, regressive, and

expert systems models forming another class of

models, with generally a focus on system character-

isation for control and soft sensors, and system

optimisation, rather than understanding and funda-

mental characterisation as is used in mechanistic

models.

2 New technologies

The last 10 years have seen substantial expansions in

the range of technologies utilised in anaerobic diges-

tion. This is further reviewed recently (Batstone and

Rodriguez 2015; Batstone and Virdis 2014; Jensen

et al. 2014b), but broaden the scope of anaerobic

technologies to new applications. These utilise

improved understanding of the underlying process,

and its kinetic or metabolic limitations [e.g., plug-flow

anaerobic digestion (Dvorak 2012)], or advances in

associated wastewater treatment technologies such as

aerobic membrane bioreactor processes to enable

high-solids wastewater treatment through anaerobic

membrane bioreactors (Liao et al. 2006). A summary

is shown in Fig. 1. This shows historic processes such

as mixed digesters and traditional high-rate processes

(UASB reactors, internal circulation, EGSB), as well

as anaerobic lagoons and waste stabilisation lagoons,

which remain very common for tropical and subtrop-

ical (and even temperate) climates (Shilton and

Harrison 2003).

Modelling goals are also shown in Fig. 1, with

those around historic processes being relatively

mature, and focused on specific problems, and those

around emerging processes focused on elementary

process description.

2.1 Anaerobic lagoons/waste stabilisation ponds

Anaerobic lagoons are generally deeper and often used

for primary wastewater treatment (Shilton and Har-

rison 2003) and industrial wastewater treatment

(Jensen et al. 2014b). Key operational problems are

hydraulic design (Shilton and Harrison 2003), includ-

ing the response of hydraulics to changes in ambient

temperature, and accumulation of solids, also
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including the effect of temperature (Papadopoulos

et al. 2003).

Non-biological, hydraulic modelling only has been

extensively used to address the issue of hydraulic

design (see review in Shilton and Harrison 2003), but

these have not generally been combined with biolog-

ical models, mainly due to numerical complexity and

model stability when coupling biological rate equa-

tions with CFD equations. Simplified hybrid models

have been used (Alvarado et al. 2012), as a stirred-tank

hydraulic combined with biological kinetics would be

inappropriate given the complex hydraulics.

So far the problem of sludge accumulation has been

addressed only through simple stirred tank or com-

partmentalised reaction (1st order) accumulation

models (Saqqar and Pescod 1995).

The two problems of sludge accumulation and

hydraulics are complex and linked. As lagoons are

covered to capture methane, costs of desludging and

methane loss will increase, which increases the

motivation to model. At the same time, the ability to

simultaneously model hydraulics, biological transfor-

mations, and distributed behaviour of sludge (as well

as sludge-hydraulic coupling) will continue to

improve by the use of reactive CFD. The difficulty

has been noted above, but this is quite realisable given

current techniques, and hence represents an opportu-

nity. This is a primary example of a problem where

multi-phase reactive distributed parameter modelling

is core to the overall problem.

2.2 Liquid mixed digesters

Anaerobic sludge digestion was original focus of

kinetic modelling of anaerobic processes (Gossett and

Belser 1982; Pavlostathis and Gossett 1986) as well as

a key focus for the ADM1 and similar models

(Batstone et al. 2002; Siegrist et al. 2002). This is

hence one of the most mature applications of anaer-

obic process modelling, and remains a key focus.

The key challenge in this area is that of input

characterisation (kinetics and stoichiometry), as prin-

cipal issue in system and parameter identification,

especially with particulate substrates where hydrolysis

coefficient, energy density, and degradable fraction

define performance under the majority of operating

states (Donoso-Bravo et al. 2011; Jensen et al. 2011).

Due to fundamental limitations, the complex
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particulate concept (Xc) in the ADM1, or analogous

states in other models (Siegrist et al. 2002) has been

generally discarded (see discussion in Sect. 4), and

inputs defined as inerts (XI), and degradable, either

aggregate, or separated into carbohydrates, lipids, and

proteins (the latter approach enables energy density

and nitrogen fraction to be defined).

Approaches to characterisation have either been

biological, using a batch test or on-line data to enable

estimation of parameters (Batstone et al. 2009; Girault

et al. 2012; Jensen et al. 2011), direct chemical

measurement, either inferential (e.g., COD, N, VS), or

directly (Buffiere et al. 2008; Zaher et al. 2009), or by

empirical techniques (e.g., spectroscopy and correla-

tion analysis) (Jimenez et al. 2014). Another approach

is upstream model based analysis (or continuity based

on whole plant modelling (De Gracia et al. 2011;

Nopens et al. 2009). This is a highly active area that is

only now seeing some consolidation into a defined

approach, and a key issue is translation and compar-

ison between different approaches, as well as valida-

tion in full-scale systems, with, often kinetics being

difficult to estimate (Jensen et al. 2011).

Another emerging focus in mixed-digester mod-

elling has been the emergence of mixed feed digestion

(Mata-Alvarez et al. 2011), and codigestion with

sewage sludges, particularly of opportunistic feeds

such as glycerol (Jensen et al. 2014a) and fats, oils, and

greases (FOG) (Razaviarani and Buchanan 2015). The

use of modelling to enable mechanistic analysis of

mixed feed digestion is particularly important (Astals

et al. 2014), potentially to identify the underlying basis

for synergistic (Pagés-Dı́az et al. 2015), or antagonis-

tic (Long et al. 2012) responses. Many of the

underlying mechanisms are well represented in struc-

tured models such as the ADM1, which particularly

include the balance between pH depression caused by

increased carbohydrate degradation, and elevation

(and potential ammonia inhibition) caused by

increased protein degradation. Mechanisms such as

LCFA and glycerol inhibition may need to be added,

and there is some evidence that threshold style rather

than non-competitive is a more appropriate function,

even for biostatic inhibitors such as ammonia, salts,

and organic acids (Astals et al. 2015; Pratt et al. 2012).

Physicochemical and hence pH modelling is under-

going revision, including complex chemistry, precip-

itation, and the linked phosphorous-sulfur cycles, and

this is discussed further in Sects. 3 and 4.

Computational fluid dynamics has been widely

used to evaluate digester mixing efficiency, but

distributed parameter models are now being coupled

to reactive models such as the ADM1 (Gaden 2014;

Van Hulle et al. 2014), mainly to investigate the

impact of non-ideal mixing on process performance.

Other emerging areas of anaerobic modelling

mainly related to the increased use of pretreatment

to enhance degradability speed and extent. To date,

this has mainly focused on characterising the effect of

enhancement [reviewed extensively in (Carrère et al.

2010)], but there is further work identifying how new

pathways such as acetate oxidation (Rivera-Salvador

et al. 2014; Wett et al. 2014) may influence response

from pretreatment, or play a role in high-rate, high

temperature anaerobic digestion (Ho et al. 2014).

2.3 Biofilm high-rate anaerobic digestion

This analysis focuses on biofilm high-rate anaerobic

digestion, which includes biofilters and granular high-

rate systems, including upflow anaerobic sludge

blanket (UASB), attached film fixed and fluidized

bed, expanded granular sludge bed (EGSB), and

internal circulation reactors (IC). It should be noted

that granular systems from a biofilm modelling

perspective are simply self supporting biofilms, and

approaches are generally common. These systems

have an extensive history of modelling, mainly

focused on process modelling, particularly process

modelling of the balance between acid producing and

acid consuming processes (Costello et al. 1991a), but

also (for example), competition for electrons (Ka-

lyuzhnyi and Fedorovich 1998a). A further review of

classic anaerobic biofilm process modelling (granular

and non-granular) is provided in (Saravanan and

Sreekrishnan 2006). There has been more recent work

in combined hydraulic-reactive modelling, for exam-

ple, particularly novel reactor designs such as the

spiral granular process (Chen et al. 2012), but also in

conventional granular systems (Batstone et al. 2005),

expanding from 1-D to multidimensional (Ren et al.

2009). Consideration of degradable substrate as media

(a shrinking core combined with growing biofilm)

expands application to solids substrates (see Sect. 2.6;

da Rocha et al. 2013). Another historic focus has been

modelling biofilm structure [reviewed in (Saravanan

and Sreekrishnan 2006)], with this extending to multi-

dimensional analysis to evaluate the microscopic
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effects of interspecies (Batstone et al. 2006). An

emerging field has been on modelling new applica-

tions for this technology, with a key application being

domestic wastewater treatment. This requires effec-

tive description of low-temperature operation

(Donoso-Bravo et al. 2013), inclusion of sulfate as

an electron acceptor, and inclusion of methane solu-

bility (Batstone 2006). This has now translated

particularly to application of emerging high-rate

processes.

2.4 Emerging non-biofilm High-Rate (ABR,

AnMBR)

Anaerobic baffled reactors (ABR) have been exten-

sively used as an alternative to biofilm systems,

particularly for low strength wastewater (Barber and

Stuckey 1999), and this analysis has extended to

model based analysis, both of hydrodynamics, and

kinetics [see recent review (Zhu et al. 2015)]. ABRs

are particularly interesting where each stage is mea-

sured, as kinetics are exposed by the relatively short

hydraulics in the first stage, which enables effective

parameter identification.

However, the major development in high-rate

systems over the last 5 years has been widespread

application of anaerobic membrane bioreactor

(AnMBR) systems, particularly for domestic wastew-

aters. This is now a very large field, and full coverage

is beyond the scope of this review, a number of

reviews have been done, all of which highlight low-

strength wastewater treatment, including applications

(Liao et al. 2006), issues (particularly technical

extensions) (Stuckey 2012) as well as a review

specifically on domestic wastewaters (Ozgun et al.

2013). These together provide an excellent review of

the scope, applications, and issues in anaerobic MBR

systems, which commonly are flux management,

dissolved methane control, optimal design and con-

figuration, and generation of byproducts and beha-

viour of recalcitrant components. They also highlight

the advantages of AnMBR systems, which are inher-

ent decoupling of hydraulic and solids retention times,

production of high-quality effluent, ever-decreasing

energy consumption (Shin et al. 2014), and the ability

to apply to a broad range of novel processes (Batstone

and Virdis 2014). Evolution of AnMBR designs have

been evident, towards the now dominant design of

hollow fibre submerged AnMBR systems.

The reviews have not extensively assessed mod-

elling of AnMBRs, but it is an active area, with a

current focus that aligns with the outcomes of the

reviews above. The strongest focus of modelling has

been on fouling prediction and control, with particu-

larly the work of Robles addressing this problem in

developing a mechanistic cake accumulation model

(Robles et al. 2013b) and applying both mechanistic

and empirical models for cake accumulation control

(Robles et al. 2013a, 2014). Cake accumulation

models have also been combined with CFD in a

multi-dimensional domain (Boyle-Gotla et al. 2014).

However, these have not generally considered biolog-

ical reactions. Reactive models have been applied to

general AnMBR issues, considering accumulation of

soluble inerts (Benyahia et al. 2013), general perfor-

mance modelling (Spagni et al. 2015). However, what

has not been done is reactive modelling to link

accumulation and presence of particular constituents

such as colloidal organics, fats, and SMP, as well

particulate and reactive membrane cakes to fouling

(Dereli et al. 2015).

There is clearly strong scope for increased coupling

of reactive process modelling and reactor design, with

a particular focus on coupling hydraulics, membrane

physical interactions, and multiphase reactions to

further optimise this promising process.

2.5 Plug flow reactors (PFR)

Plug glow reactors are increasingly being used,

particularly in North America for high-solids manure

digestion system. Plug flow anaerobic digestion feeds

sludge at a high concentration (8–12 %) with the

solids moving progressively along a rectangular or

circular cross-section trench and reducing to 3–6 % at

the outlet. Hydraulic retention time is normally

[20 days, but space use is effective due to high

solids concentration and the enhanced kinetics of plug

flow digesters. The very high ammonia concentrations

(3–5 gN L-1) enabled by high feeds solids provide

inherent protection against low pH failure, such that

the key consequence is an elevated organic acid level

([1000 mg COD L-1). There is very limited formal

literature on plug flow reactors, with some found on

microbial community (Li et al. 2014). Designs can be

relatively simple, or more complex and engineered

e.g., the DVO design has a sophisticated U-shaped

digester design, with gas induced corkscrew mixing,
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ammonia recovery by pH and temperature elevation

(to 70 �C), and use of high-pH effluent to scrub gas of

CO2 and H2S (with the gas being used to reduce

effluent pH due to supply of CO2 as an acid) (Frear and

Dvorak 2013). Ammonia stripping is enabled by high

temperature and high pH applied during ammonia

stripping by DVO.

Plug flow reactors are subject to an interesting set of

process constraints. The hydraulics allow better util-

isation of the volume, but increases risk of overloads,

where less effective buffering is provided by the

digester volume. Put simply, if the digester fails near

the start, that failure can progressively spread to the

remainder of the digester. However, the very high

ammonia concentrations (3–5 gN L-1) enabled by

high feeds solids provide inherent protection against

low pH failure, such that the key consequence is an

elevated organic acid level ([1000 mg COD L-1).

This is a problem that can be addressed readily through

anaerobic process modelling and dominant mecha-

nisms of convection-reaction. Designs also utilise

potentially gas lift radial mixing, which could benefit

from CFD (or coupled CFD-kinetics).

2.6 Leach bed reactors (LBR)

Leach bed reactors (LBRs) apply a reactive percola-

tion liquid to digest a solid phase at high concentra-

tions. The liquid can be simply recirculated, or further

treated through a high-rate anaerobic process (e.g.,

biofilter (Linke et al. 2015)), or chemical process such

as ammonia removal. The leach bed is most com-

monly operated in batch or semi-batch mode (Gehring

et al. 2015), but continuous mode operation is also

possible (Linke et al. 2015). LBRs have been widely

applied to grass, straw, and maize silage (Gehring

et al. 2015; Linke et al. 2015), municipal solid

bioreactors (la Cour Jansen 2011), animal manures

(Saritpongteeraka et al. 2014), and is generally

applicable to any structured solid substrate. They are

also applicable to generation of alternative products

such as hydrogen and organic acids (Lei et al. 2015).

Leach bed systems are complex to operate, with the

feeds being largely carbohydrates (i.e., poorly buf-

fered), often having high ammonia levels from the

outset, and existing in multi-stage configuration with

mixed batch-continuous processes. They generally do

not achieve the full methane potential of the under-

lying substrates (Lei et al. 2015).

Fundamentally, LBRs are also one of the most

complex systems to simulate effectively, containing

gas, liquid and reactive solid phases, as well as

complex interactions between biologically active

solids and liquid and gas flows (qL, qG in Fig. 2).

Particularly as a batch process, the hydraulics and

effective volume of the solid bed can change, which

then has an integrated impact on concentration in the

liquid phase. An outline of the interacting processes is

shown in Fig. 2. Modelling is limited, and approaches

can be divided into those that apply a lumped

parameter approach to identify process characteristics

(Nopharatana et al. 2003), and those that attempt to

represent the full mechanistic process. The latter are

impressive, and generally develop strong insight into

how these fundamentals interact. ADM1-style models

have been applied, including simulation of the high-

rate leachate treatment process (e.g., (Thamsiriroj

et al. 2012), CFD and changes in bed porosity have

been considered (Shewani et al. 2015). Municipal

landfills represent a large scale leachbed, with mod-

elling largely focused on the water balance (Berger

et al. 1996), since this predicts leachate generation, but

also with some process modelling (Kim et al. 2007).

However, with the emergence of engineered landfills

and in-vessel municipal digestion (Chugh et al. 1999),

transport/reaction

X ,  S

convective/diffusive 
transport

gas phase

convective/diffusive 
transport

diffusive 
transport

VL hydraulics of 
     liquid flow

VG hydraulics of 
     gas flow

biochemical reactions

Fig. 2 Mechanisms for modelling in a leach bed system,

including mass transport, and multi-phase reaction between

particulate phase (X) and the soluble phase (S) [modified from

(Batstone and Rodriguez 2015)]
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this will be an increased target for mechanistic

modelling.

One of the reasons that mechanistic modelling is

useful is that leach bed reactors fully expose potential

imbalances between acid producing processes and

acid consuming, as these are generally separated

between the bed and the high-rate reactor, and this

requires a mechanistic modelling approach. The

balance of factors can vary substantially between crop

residues (which are carbohydrate dominated, and

represent souring behaviour), and manures and munic-

ipal solids waste, which have higher ammonia levels,

and hence can be dominated by ammonia inhibition.

Particularly coupling dynamic long-term changes in

bed physical characteristics with mass transport,

reaction, and the relatively short term changes that

occur in the high-rate anaerobic reactor is a challeng-

ing problem that offers the potential for insight into

how to optimise these processes towards the perfor-

mance of mixed digesters.

2.7 Conclusions: technologies

Anaerobic modelling has now evolved to the point

where evaluation of existing processes, as well as the

requirements of new reactors is exposing the limits of

treating the digester as a completely mixed process.

This is most evident in emerging processes such as

leach bed reactors and plug-flow reactors. However, it

is also becoming more important in systems such as

sludge digesters, high-rate anaerobic systems, and

anaerobic MBRs, where aggregate performance can

be adequately simulated by a mixed tank, but

challenging situations such as high-solids, co-feeds,

or membrane-fluid coupling require consideration of

spatial variance. This is increasing the importance of

including spatial variance (including potentially cou-

pling CFD and reactive models), and techniques are

either developing, or on the cusp of being available to

properly consider and apply modelling to achieve

fundamental insight into- and improvements that

would not otherwise be enabled. We also note that

anaerobic processes are not limited to engineered

systems, and in fact, the principles of anaerobic

modelling can be applied to the natural environment

(with soil and marine methane cycles being critical—

see Sect. 3 discussing environmental anaerobic

cycles). Another fascinating (and advanced applica-

tion) is simulation of gut processes, from a basic

analytical perspective (Muñoz-Tamayo et al. 2010),

but also from an advanced perspective, using mech-

anistic modelling to determination variation in both

processes and physical configuration (Godon et al.

2013), which can provide clues as to how to poten-

tially build a better anaerobic digester.

3 Emerging anaerobic processes

Anaerobic digestion modelling has been extensively

applied to investigate the core processes themselves

(nominally those that appear in the ADM1), but also a

variety of alternative organic substrates such as lactate

(Hinken et al. 2014) and ethanol (Peiris et al. 2006).

Alternative electron acceptors are another key topic

(see below). However, modelling problems associated

with novel processes are now emerging that need a

rethink as to what constitutes an ‘‘anaerobic’’ process.

The classical scheme of the anaerobic digestion

pathway should be particularly transformed into

another concept where the major electron flows from

inorganic sources would be depicted. Figure 3 shows a

mechanistic scheme of the anaerobic transformations

occurring in a digester where the emerging anaerobic

processes are included. A summary of key aspects of

these emerging processes is reviewed in Table 1.

3.1 Electrons without organics: chemo and

lithotrophic processes (nitrogen, sulfur,

metals, and hydrogen)

3.1.1 Anaerobic nitrogen conversions

Anaerobic digestion is characterised by a lack of

electron acceptors, such that the substrate itself

becomes the terminal electron acceptor. In practice,

this occurs by the major intermediates carbon-dioxide

(CO2) and hydrogen (H2), such that excess electrons

are used (via H2) to reduce carbon-dioxide to methane.

This has been extensively discussed in the ADM1

report (Batstone et al. 2002) and elsewhere, and

hydrogen transfer to methanogens is energetically and

diffusively limited, and one of the governing mech-

anisms in anaerobic processes. Anaerobic processes

are inherently electron-rich, and hence alternative,

more favourable electron acceptor molecules are

readily utilised. The key alternative electron acceptors

are sulfate and nitrate/nitrite.
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Both inhibition and utilisation of nitrate in general

anaerobic digester conditions has been comprehen-

sively assessed (Tugtas et al. 2010), and oxidised

forms of nitrogen are short-lived in the aggregate

digester. However, more complex problems are now

emerging. Methane has generally been regarded as

inert under anaerobic conditions, but is known to be

(slowly) reactive under aerobic condition (Lieberman

and Rosenzweig 2004). The focus for this has been

biomanufacturing of polymers using methane as

substrate. However, oxidised nitrogen has also been

found to act as electron acceptors for the anoxic

oxidation of methane (denitrifying anaerobic methane

oxidation, DAMO process) (Raghoebarsing et al.

2006). This is further complicated by the fact that

two domains respectively reduce nitrate to nitrite

(archaea) and nitrite to nitrogen gas (bacteria) (Chen

et al. 2014). The process is obviously of interest in

wastewater treatment due to the ability to use methane

to denitrify, and nitrate/nitrite to remove methane

from mainline anaerobic treatment (McCarty et al.

2011). A simple model has been proposed that

encompasses the two DAMO processes as a sole

mechanisms and also includes substrate inhibition by

nitrite (He et al. 2013). Another model encompases

archeal DAMO only but also incorporates alternative

electron acceptors such as Fe3?, Mn4? or SO4
2-. The

model is geochemically-oriented but the mechanisms

are similar to those appearing in DAMO reactors. It

does not include inhibition processes (Lopes et al.

2011), which are very important for the nitrite

producing archaeal DAMO. A challenge in investi-

gating this are that the organisms are extremely slow

growing, and in fact, the bacteria can be outcompeted

for nitrite by anammox organisms (Chen et al. 2014), a

mechanism which has been considered in the Chen

model (Chen et al. 2014). Modelling the complex

interaction between DAMO and anammox organisms
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Fig. 3 Emerging metabolic processes in anaerobic digestion,

including photo-anaerobic processes, sulfur-cycle (which inter-

acts with the phosphorous cycle), metal oxidation–reduction

cycles, alternative nitrogen cycles, and the action of methane

and hydrogen as electron donor. The ADM1 representation of

composites is shown as contested (?) due to issues raised in

Sect. 4
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is important, since denitrifying archaea can coexist

with either DAMO bacteria or anammox, but the latter

two compete for nitrite.

Another key anaerobic N process is the anaerobic

ammonium oxidation (Anammox). Modelling of

Anammox in general is undergoing challenge and

revision. A suitable model for Anammox conversions

was published early (Koch et al. 2000), and has been

widely applied. However, the catabolism is complex

due to physical and inorganic interactions and the

complex internal organization of the anammox cell.

Additional inhibitory factors include the effect of pH,

especially in underload situations(Carvajal-Arroyo

et al. 2014a), and inhibition due to both unionized

acids (free nitrous acid –FNA– and free ammonia –

FA–) as well as ionized nitrite, which has an acute

inhibitory effect on anammox activity (Puyol et al.

2014). Added to this is the ability of the organisms to

store polymers (van Niftrik et al. 2008a), and main-

tenance requirements in challenging conditions (Car-

vajal-Arroyo et al. 2014a, b). Metallic interactions

have also been found, with Fe(III) deposits accumu-

lating in the anammoxosome complex (van Niftrik

et al. 2008b), which may be a product of reduction

reactions, or possibly related to FNA oxidation to form

free radicals that help explain the role of FNA.

Overall, the anaerobic nitrogen cycle is complex,

involving multiple competing organisms mediating

multiple processes, and important, in both anaerobic

and anoxic environments. This area requires more

work, particularly in consolidation and analysis of

mixed population systems.

3.1.2 Anaerobic sulfur conversions

Anaerobic sulfur cycling includes both sulfate reduc-

tion to sulfide, as well as potentially sulfide oxidation

to both elemental sulfur and sulfate due to nitrate and

fugitive (or intentionally) added oxygen or air. It is

metabolically diverse, and connected to carbon,

phosphorous, and even Fe and As cycles (Rodriguez-

Freire et al. 2014) in anaerobic, and general wastew-

ater treatment (see Sect. 4).

The classical key process in the sulfur cycle is the

biological sulfate reduction performed by sulfate

reducing bacteria (SRB) (Hao et al. 2014). These

chemotrophic bacteria are able to anaerobically reduce

the sulfate both autolithotrophically (using H2 as

e-donor and CO2 as C source) and heterorganotroph-

ically (using organic compounds as e-donor and C

source). Sulfate reduction was not incorporated in the

original ADM1 but it is relatively easy to implement as

a side or main process (Fedorovich et al. 2003). SRB

generally outcompete acetogens for organic substrate

and with hydrogenotrophic methanogens for hydrogen

(Kalyuzhnyi and Fedorovich 1998b). The produced

sulfide is inhibitory (Utgikar et al. 2002). Strategies for

inclusion are either to only include competition for

Table 1 Key catabolic mechanisms of emerging anaerobic processes

Process Key catabolic equation Modeling challenges

Anaerobic ammonium

oxidation

NH4
? ? NO2

- ? N2 ? 2H2O Complex substrate inhibition

Catabolism uncoupled to anabolism

Denitrifying anaerobic

methane oxidation

CH4 ? 4NO3
-? CO2 ? 4NO2

- ? 2H2O

3CH4 ? 8NO2
- ? 8H? ? 3CO2 ? 4N2 ? 10

H2O

Very slow growth rate requires almost perfect

biomass retention

Two-domain model with archaea utilizing nitrate

Sulfide oxidation HS- ? 2O2 ? SO4
2- ? H?

HS- ? H? ? � O2 ? S0 ? H2O

Two-step process mediated by oxygen

concentration

Sulfate reduction (H2 only

shown)

4H2 ? SO4
2- ? H? ? HS- ? 4 H2O Competition with acetogens and methanogens

Sulfide production can bind metals

Photoheterotrophic uptakea C4H6O4 ? 2NAD- ? Light ? 2NADH

? H? ? C4H4O4

Very complex metabolism

Competence and mutualism with other

microorganisms makes models complex

Light harvesting makes the models highly complex

High nutrient uptake make uses highly dependent

on growth

Anoxygenic

photosynthesisa
H2 ? NAD- ? Light ? NADH ? H?

a Other substrates and electron donors are omitted for the sake of simplicity. Metals oxidation/reduction not included
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hydrogen (Batstone 2006), or to include also compe-

tition with acetogens (Kalyuzhnyi and Fedorovich

1998b). The latter substantially increases model

complexity efforts. Where the influent sulfate:COD

ratio is relatively low, a reduced model (Batstone

2006) offers a fair representation of the S transforma-

tion processes. At high sulfate levels, it is possible that

hydrogen is depleted and SRB use organic acids as

source of electrons, and the sulfate reduction model

should be upgraded with these additional biochemical

routes (Barrera et al. 2015) (see also Barrera et al.

2013). Sulfate reduction is being increasingly assessed

in metal sulfide interactions, and as a potential

platform for metals recovery (Weijma et al. 2002).

Relevant metals are Fe2?,3?, Zn2?, Cu2?, Pb2?, Cr2?,

Ni2? or Cd2? with particular application to mining

wastewater flows (Tang et al. 2009). Apart from metal

partitioning, there are also biological effects in

reduction of metals toxicity (Gonzalez-Estrella et al.

2015), and metabolic interactions (Bridge et al. 1999).

Sulfide oxidation throughmicroaerobic treatment is

a low cost method to remove sulfides through addition

of small amounts of air or oxygen into gas or liquid

phases (Diaz and Fdz-Polanco 2012; Jenicek et al.

2008). When sulfide is oxidised in a digester at limited

oxygen levels, it reacts to elemental sulfur (requiring

only 0.5 mol O2 per mole S2-). Availability is then

limited for further biological reduction, which means

air injection is effective for sulfide control. A new

recent process has been discovered relating the sulfur

cycle with the phosphorous cycle which is particularly

interesting in enhanced biological phosphorus

removal (EBPR) processes (Wu et al. 2013). This

process leads to recover S as S0 globules production in

a syntrophic association between EBPR and S-cycle

bacteria, theoretically allowing to recovery also P as

Poly-P and C as PHA and to eliminate N in a

nitrification/autotrophic denitrification step (Wu et al.

2014). This process has been recently proposed and

still needs more confirmation about the complete

biological mechanisms, so there is a clear opportunity

associated to the development of a model to describe

accurately this complex bacterial association.

3.1.3 Other metallotrophic and lithotrophic

processes

While many metallotrophic processes involve the

sulfur cycle [that of arsenic being particularly

fascinating (Rodriguez-Freire et al. 2014)], there are

many examples of direct metal reduction, including of

naturally iron (Lovley et al. 1987) but also exotics

such as uranium (Lovley et al. 1991) and chromium

(Focardi et al. 2013) as covered in the biogeochemical

literature. This is also important to processes such as

anaerobic biocorrosion, with sulfate reducers known

to directly accept electrons from metallic iron surfaces

(Chen et al. 2015), and the produced hydrogen sulfide

acting as electrochemical catalyst (Enning and Gar-

relfs 2014). Paradoxically, the mechanism of iron

sulfide precipitation attenuates, rather than accelerates

corrosion due to the loss of the catalyst. Modelling

metal-microbe interactions, particulary in the wastew-

ater sector is limited, given its importance on the

phosphorous and sulfur cycles.

The other important non-carbon emerging sub-

strate is hydrogen. Hydrogen as an alternative product

to methane (via particularly fermentation) has histor-

ically been a research target, including detailed

modelling (Penumathsa et al. 2008). In particular,

variable stoichiometry fermentation models have

been a strongly researched field (González-Cabaleiro

et al. 2015), with broader applicability to biotechnol-

ogy and understanding of microbial metabolism and

electron management (Hoelzle et al. 2014). However,

a new focus for hydrogen is emerging with the

increasing need to store peak electricity from renew-

ables, and the ease of generating hydrogen electro-

chemically, and need to upgrade methane for vehicle

and grid use, hydrogen to methane is now of interest.

This has been shown to be relatively simple, with

digesters generally having excess capacity and fast

response to hydrogen addition (Dı́az et al. 2015;

Zhang et al. 2013). The key issues are availability of

bicarbonate and managing pH. While references to

modelling this have not been found, the ADM1 in

stock form is capable of modelling the bulk processes

and controlling mechanisms. Electrogenic methane

production in the reactor on carbon cathodes is also of

interest (Cheng et al. 2009) (though configuration is a

challenge), and there is still debate as to whether this

occurs via cathodic hydrogen production (enhanced

by biological catalysts), or by direct electron transfer.

The basic principles of electron addition (via hydro-

gen or other) can of course be extended to VFA

synthesis (Zhang et al. 2013), which requires exclu-

sion of archaea but is an important area for the

emerging biorefinery field.
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3.2 Energy without electrons: anoxygenic

phototrophic bacteria (purple phototrophic

bacteria)

The use of biological light-consuming processes for

wastewater treatment is not new (Munoz and Guieysse

2006) with a focus on algae and photosynthetic

bacteria (which reduce CO2 to organics producing

oxygen as electron sink). However, non-photosyn-

thetic treatment has been promoted in recent years

driven by the extraordinary and complex metabolism

of phototrophic bacteria, which are among the most

metabolically diverse organisms existing (Hunter

2008). They also mediate biogeochemical cycles of

C, N, P, S, H and Fe (Hunter 2008). Recently, purple

phototrophic bacteria (PPB) have been proposed as an

alternative to aerobic waste activate sludge (WAS)

processes in mainline domestic wastewater treatment

via assimilative, rather than reactive carbon and

nitrogen removal (Batstone et al. 2015), with com-

plete, single step domestic wastewater treatment

demonstrated in principle (Hülsen et al. 2014). This

adds to research on the use of PPB for treating

industrial wastewater in pure (Kim et al. 2004) and

mixed culture (Chitapornpan et al. 2013) systems. One

of the important aspects of PPB is the ability to operate

without sterile systems due to use of infrared light,

which enables PPB to outcompete other heterotrophic

and methanogenic organisms (Hülsen et al. 2014).

Because PPB grow anoxygenically there is an

excess of electrons to dispose, but they only can sink

electrons via biosynthesys or, alternatively, by hydro-

gen production via the nitrogenase complex (Fang

et al. 2005), and hence the COD (electron) balance

between catabolism and anabolism is almost 1

(McKinlay and Harwood 2010). Since they are

phototrophic but also chemotrophic, fermentative

and anaerobic oxidation mechanisms can be applied

to model their metabolism. But the most important

mechanism of PPB is photoheterotrophy (Gordon and

McKinlay 2014; McKinlay and Harwood 2010),

which involves the coupling of the TCA and Calvin-

Benson cycles with an ETC fuelled by light energy in a

cyclic electron re-use (anoxygenic cyclic phosphory-

lation). PPB cannot source electrons from water

(photosynthetic organisms) but can oxidise reduced

compounds such as Fe2?, HS-/S2-, S2O3
- or H2

(Overmann and Garcia-Pichel 1998). Further compli-

cating this, PPB bacteria can storage poly-P as well as

carbon PHA and polysaccharides (Brandl et al. 1991;

Klein et al. 1991; Liang et al. 2010; Melnicki et al.

2009). However, unlike other polymer and poly-P

organisms, energy for accumulation is derived from

light, which means they can store under anaerobic

conditions. This means that the ASM2d (Henze et al.

2000) is not applicable to PPB.

Metabolic models have been developed for PPB

oriented to explain the complex metabolism of these

bacteria (Golomysova et al. 2010; Klamt et al. 2002)

but these are unsuitable for wastewater applications.

Such a model needs inclusion of photoheterotrophy on

different substrates, photoautotrophy by using hydro-

gen, chemotrophy of simple organics with concomi-

tant hydrogen production, and also incorporate

hydrolysis of particulates and biomass decay. Other

potential mechanisms include, especially for

polyphosphate accumulation, potentially nitrogen fix-

ation where this is limiting, and engagement in the

sulfur cycle. This is clearly a challenge for which

existing modelling paradigms are unsuitable.

3.3 Conclusions: processes

We now need to expand substantially our understand-

ing of what constitutes an ‘‘anaerobic’’ process, with

new processes not focused on the core carbon

metabolism, and emergence of anaerobic processes

(such as phototrophic growth), where energy, trans-

lated directly to ATP is cheap, but electron transfer is

expensive. While most of these processes are not

catered for by the existing structure of anaerobic

digestion models, the core principles of biochemical

and physicochemical processes, metabolic conserva-

tion, and mechanistic understanding are applicable,

and the same approach used to analyse these exciting

new processes.

4 Whole wastewater treatment plant modelling

Plant-wide modelling of wastewater treatment has

been a key focus particularly in development of

commercial software (for example, Biowin is inher-

ently a plant-wide model, while other packages enable

plant-wide modelling), and this includes modelling of

the sludge digester, as not only does generation of

methane and digestion of solids influence operating

costs, but performance also influences the rest of the
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plant through release of nitrogen and phosphorous in

the reject water. The goal of integrating the ADM1

within plant wide modelling was done very early by

the benchmarking taskgroup (Rosen et al. 2006), and

this development (and further development) have

highlighted a number of compatibility issues between

the ASM series (Henze et al. 2000) and the ADM1,

and some core limitations of the IWA models in

general. The Benchmark Simulation Model No. 2 has

recently been released (Gernaey et al. 2014), and

contains plant wide nitrogen and carbon cycle simu-

lation, but not phosphorous. This section reviews

needs for plant wide modelling (one of the key focuses

for anaerobic process modelling), in conjunction with

other needs identified above.

4.1 Input translation: the problem with Xc

When different models with different states are linked,

a translator is needed that preserves state continuity

between the different models. That is, translates ASM

states such as XS, SS etc. to ADM1 states such as Xch,

Ssu, Sac. This translator should also ensure elemental

continuity (CHONSP) and maintain a consistent

physicochemical state, even though acids and bases

may be removed or transformed through the interface

(i.e., pH). The alternative is plant wide state continuity

through a commonmodel such as used in the ASDM in

Biowin (see also Grau et al. 2009).

Development of the interface within the BSM2

identified that the complex organics state (Xc) was

unsuitable as a primary input (which was its intended

purpose), due to a number of reasons, including:

(a) Fixing of nitrogen content, and carbon oxida-

tion state, and degradability (to the underlying

value of Xc), without the ability to readily and

separably vary for primary and activated sludge.

This also has the potential to violate continuity

in a plant wide model.

(b) Implementation of the two step process of

disintegration followed by hydrolysis means

that the overall solubilisation process becomes

two-step, in opposition to evidence (Batstone

et al. 2009; Vavilin et al. 1996). This can be

artificially addressed by artificially raising the

hydrolysis rate (or disintegration rate), but is an

otherwise unnecessary circumvention and un-

mechanistic. It also results in artefacts around

anaerobic decay.

It is therefore ironic that the Xc state is somewhat

unsuitable for use in its primary purpose to charac-

terise wastewater sludges. For the reasons above, the

BSM2 interface model used carbohydrates, proteins,

and lipids as primary input (Nopens et al. 2009), and

we also recommend this approach in general (i.e.,

substrates in general should be characterised on this

basis using the methodologies outlined in Sect. 2.2.

4.2 Phosphorous modelling

Plantwidephosphorousmodelling has been a challenge

in general, and particularly where different models are

used for activated sludge and anaerobic digestion

processes. Only the group at University of Cape Town

(Ekama et al. 2006) has addressed the problem in a plant

wide context. Phosphorous modelling is however, an

essential requirement of future models, particularly

considering the focus on phosphorous load in many

catchments, need to recovery phosphorous, and its new

transformations in emerging processes (Batstone et al.

2015). It is noted that this is not just a problem relating

to activated sludge BNR processes, but also all

emerging processes identified in Sect. 2, particularly

high-strength, domestic, ormanure, and links intomany

of the new processes identified in Sect. 3.

Considering plant wide modelling, both ASM

(specifically the ASM2d for phosphorous) and ADM1

models are inadequate to consider plantwidemodelling.

Part of this is because the physicochemistry models in

both do not consider more complex effects such as ion

activity and ion pairing, which strongly influence

phosphate availability, and hence its partitioning in

precipitates (Batstone et al. 2012). Indeed, plant-wide P

description requires continuous ionic strength tracking;

extensive consideration of non-ideality (including ion

activities instead of molar concentrations) and consid-

eration of complexation processes (Flores-Alsina et al.

2015). The other issue is additional biological transfor-

mation of phosphorous (see Sect. 4.2.2 for details).

Finally, as outlined in S3.1.1 and S4.2.3 there is a strong

interaction with the sulphur and iron cycle. Hence both

physicochemical and biological process extensions are

needed in a plant wide context. A summary of the

processes is included in Fig. 4.
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4.2.1 ASM/ADM interface

The first interface between ASM and ADM is based on

the methodology described in Nopens et al. (2009).

When including P and a plant wide physicochemical

approach (see Sect. 4.2.2), this approach should further

expanded with the Continuity-BasedModel Interfacing

principle (CBIM) (Volcke et al. 2006) ensuring

elemental conservation principles. It is important to

highlight that depending how P is modelled in the AD,

Phosphorus Accumulating Organisms (PAOs), poly-

hydroxy-alkanoates (PHA) and poly-phosphates (PP)

will be treated differently. Methods may include

instantaneous decay and translation in the interface, or

dynamically (via uptake/decay processes) within the

AD model. In any case, the total COD, C, N, P, S, K,

Mg, Fe… load would at both sides of the interface will

be the same, but the distribution amongst the different

state variables will be different.

4.2.2 Physicochemical

The physicochemical problem is readily addressed by

implementation of a plant-wide common physicochem-

ical model, which also addresses the interface problem.

This is justified on the basis that acid–base active

components (particularly elemental ions) are generally

present throughout the process, and that reasonable and

consistent plant-wide pH prediction is a core require-

ment. The case for a generalized plant-wide pH model

has been extensively made previously (Batstone et al.

2012), and resulted in formation of the IWA Taskgroup

for a Generalized Physicochemical Model (PCM).

Taskgroup activities have resulted in proposals for

implementation of pH (including activity and ion

speciation/pairing) in the ASM/ADM series (Flores-

Alsina et al. 2015; Solon et al. 2015), generalized

precipitation using this model (Kazadi Mbamba et al.

2015a, b), and application of a generalized physico-

chemical approach including precipitation (Lizarralde

et al. 2015) in the plant wide biological model of Grau

et al. (2007).

4.2.3 Biological

The ASM2d effectively considers the role PAOs in the

line (Henze et al. 2000). Similar processes should be

included in the sludge line (Ikumi et al. 2011)

describing the effect that PAOs, PHA, PP might have

on the anaerobic digestion products (biogas,

INFLUENT
WASTEWATER

ACTIVATED SLUDGE REACTORS
SECONDARY

CLARIFIER

THICKENER

ANAEROBIC
DIGESTER

DEWATERING

STORAGE
TANK

BYPASS

EFFLUENT
WATER

SLUDGE
REMOVAL

ASM/ADM
INTERFACE

ADM/ASM
INTERFACE

GAS

STORAGE/HYDROLYSIS

OXIDATION

REDUCTION

PRECIPITATION

Fe+3 Fe+2

SO4
-2 S-2

PO4
-3 KMgPO4

Fe+2 Fe+3

S-2 SO4
-2

PO4
-3 FePO4

PRIMARY
CLARIFIER

KMgPO4 PO4
-3

Fe+3 Fe+2

SO4
-2 S-2

S-2 FeS
PO4

-3 Ca3(PO4) 2
MgNH4(PO4)

Fig. 4 Plant wide P transformations, including flow of phosphorous in the system

Rev Environ Sci Biotechnol (2015) 14:595–613 607

123



phosphorus precipitates). However, these models do

not consider the interaction with sulfur and iron under

aerobic or anaerobic conditions. This metal-phospho-

rous-sulfur interaction is complex, and affects the

whole water cycle (Pikaar et al. 2014). In brief, sulfate

is reduced to sulfide in the sewer and primaries, with

the sulfide binding with Fe2/3?, which causes phos-

phorous to release. The sulfide is biologically reoxi-

dised to sulfur and sulfate in the activated sludge

process, and iron oxidised to Fe3?. This releases iron

to bind with phosphorous (iron phosphate), at the same

time as biological assimilation and poly-P (PP)

accumulation occurs. In the anaerobic digester, sulfate

is again reduced to sulfide. Both precipitated (iron

phosphate) and biological phosphorous (PP, biomass)

might be chemically and biologically released through

both re-dissolution of iron phosphate and hydrolysis of

PP (Ge et al. 2013). Because of a pH increase, calcium

and magnesium phosphates are formed/precipitated.

At the same time, Fe3? is reduced to Fe2? (using

hydrogen or sulphide as electron donors). The latter

can precipitate in form of FeS reducing the overall

sulfide inhibition of the AD bacteria and potential

corrosion/odour problems. Some of these processes

have been discussed in Sect. 3, and require a consid-

erable extension to the base models, depending on (for

example) the complexity of the phosphorus/sulphur/

iron model used.

4.3 Conclusion on whole wastewater treatment

plant models

Plant wide P modelling has a profound impact,

particularly at physico-chemical level. As a key

wastewater treatment objective, it will require a major,

but unavoidable, additional degree of complexitywhen

representing cationic/anionic behaviour in activated

sludge (AS)/anaerobic digestion (AD) models. An

important factor to consider is the close interaction

between the S and the Fe system. Therefore, reliable P

plant wide model predictions should also consider

including these elements (Se, Fe) when describing the

fate of the different pollutant at plant wide level.

5 Conclusions

The consistent themes throughout this review are

increased demands on modelling, in terms of

complexity, particularly in anabolic processes, need

to consider complex behaviour (including distributed

parameter and non-linear characteristics in space), and

the need to better characterise inputs and their primary

conversion processes, as well as supporting models

such as the chemistry models. There are commonal-

ities between the challenges in all three areas exam-

ined, particularly the emerging importance of non-

carbon metabolisms (especially sulfur), and its inter-

actions with other cycles, including that of the iron and

phosphorous cycles. While the problems have

increased in complexity, the approaches used so far

are highly compatible with these new challenges, and

application of the existing methodologies will enable a

consistent and transparent approach. As to the original

question: Is an ADM2 required? It is evident that

modelling is currently being used in a productive way

to support science and engineering, but the models

being used are still in a state of flux. While there are

readily justifiable and uniform modifications (such as

removal of the Xc state), to move forward with a

common basis for an ADM2, a uniform approach to

the many challenges andmechanisms is needed, which

may require still further development of the underly-

ing research.
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