
Abstract Many plants growing in polar and

alpine regions clearly solve serious problems of

life under extreme climatic conditions, as low

temperatures, strong winds, unstable soils and in

the North partly 24-h of light.
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Characteristics of the polar and alpine biomes

The most important environmental factor to re-

strict plant life in polar and alpine regions, both

having a short growing season, is low temperature

(Billings 1973). Permafrost in the ground, nor-

mally with a shallow active layer on top in sum-

mer, is common in most polar regions. It may also

occur in some alpine regions but this is less fre-

quent. Alpine areas are found in all parts of the

world, in both tropical and polar regions, in oce-

anic as well as in continental and often dry areas.

In the mountains of the equatorial zone there is

often an enormous diurnal temperature variation.

It may be said to be winter every night and

summer every day (Hedberg 1957). In polar re-

gions, the monthly mean temperatures in winter

may be below – 40�C (e.g. Obasi 1996; Chernov

and Matveyeva 1997), even lower in some of the

most continental areas, while commonly well

above 0�C during summer months in areas where

snow melts. Particularly because of these differ-

ences in the temperature conditions between po-

lar and alpine regions they are often said to have

greater dissimilarities than similarities (e.g.

Körner 1995), although there are also several

similarities (Billings 1973).

However, in both biomes few plants only can

stand the harsh temperature and other extreme

environmental conditions, e.g. strong wind, often

found there. Normally trees are missing both in

alpine and polar regions in the Northern Hemi-

sphere, and the absence of trees is often used as a

definition of these biomes. In some districts,

however, of both northern Russia and North

America, the melted soil top layer in summer is

deep enough to foster tree growth. Then, we get a

so-called Forest Tundra in areas with a thick

frozen layer further down in the ground. Detailed

division of the Arctic in bioclimatic/biogeo-

graphichal zones is presented by Bliss (1981) and

later defined by the CAVM Team (2003), while a

brief presentation of the Alpine division and the
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previous Arctic divisions is given in Wielgolaski

(1997a).

In temperate regions the summer temperature

in particular, is the limiting factor for tree growth

(Dahl 1986). Generally, the tree line is higher in

continental areas with large mountain massifs

than in more oceanic areas at the same latitude

(Fig. 1). It is found to be as high as above 4000 m

elevation in tropical areas of South America and

in continental Asia (Troll 1973a), while at 0 m

elevation e.g. along the coast of northern Norway

(e.g. Aas and Faarlund 2001; Karlsen et al. 2005).

In polar regions, soil may be unstable even on

relatively gentle slopes, also at low elevation, but

it might also be found at high elevations in lower

latitudes. Such soil movement (solifluction) easily

breaks plant roots, which, therefore, normally

prevents tree growth, and has been used as one

criterion to define alpine belts (Troll 1973b).

Strong wind under extreme environmental con-

ditions may also stop tree growth. Near the upper

tree line, groups of ‘‘krumholz’’ trees, particularly

of Picea abies (Fig. 2), are well known (e.g.

Wielgolaski 1997b; Kullman 1998). The outer

stems protect the inner ones against the most

extreme conditions, e.g. strong winds, in such a

way that the inner protected ones normally are

considerably taller than the border stems. Small

stands of trees at the tree line often show ‘‘flag-

ging’’ i.e. most the branches lacking at the wind

side, except near the ground where the buds and

branches are protected by snow during winter.

In alpine areas there are often strong regional

variations in the amount of precipitation. The

actual snow line in the tropical Puna of South

America is above 6000 m elevation, mainly as a

result of extreme aridity. Low precipitation and

deserts are also common at high altitudes in many

continental regions of Asia (Troll 1972). How-

ever, precipitation in many, normally somewhat

more humid regions of the world increases with

elevation, e.g. in the Rocky Mountains (Kittel

et al. 2002) and in western Fennoscandia (Aune

1993; Førland 1993), and then may cause a thick

cover of snow in winter. The melting of the snow

shows great local variations depending on the

topography, normally of greatest importance on

steep mountains, but always influencing the plant

growing season (e.g. Sonesson et al. 1975; Inouye

and Wielgolaski 2003).

Fig. 1 Elevation in metre (and feet) of timber lines, snow lines, and highest mountain peaks on a cross-section of global
alpine regions (after Swan 1967)
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Often, polar regions show a low annual pre-

cipitation, commonly < 100–400 mm (Bliss 1997;

Chernov and Matveyeva 1997). Due to the long

period of low temperature, most of it comes as

snow, which further delays the length of growing

season. The time for disappearance of snow cover

in spring is normally the primary factor for

growth start in cold regions, particularly in con-

tinental regions (Inouye and Wielgolaski 2003).

However, growth may start under some snow, if

the ground in more humid districts is insulated by

a heavy cover and then nearly free of frost in the

upper soil (Resvoll 1917; Bliss 1971; Wielgolaski

et al. 2004). Due to the generally low tempera-

tures at high latitudes also in summer, the

evapotranspiration is also often low but most

often approximating precipitation (Brown 1981).

Therefore, wet areas are often commonly tundra,

e.g. in the lowlands of polar regions (Rydén

1981).

In some cases permafrost in the tundra causes

part of the nearly flat areas to build up mounds

with ice-cores. This is common e.g. in more con-

tinental northern Europe (palsas), but may be

even more spectacular in other parts of the world

as in Polar parts of North America, where conical

ice-core hills may be several meters tall, the so-

called ‘‘Pingos’’ (Fig. 3). Under such conditions

the roots of plants growing on the surface easily

break, which only few species will tolerate, of

course.

Particularly the absence of trees both in polar

and alpine biomes can very often give a similar

visual impression (Wielgolaski 1986), and in both

biomes there are variations from wet sedge-moss

communities to dry dwarf-shrub heaths and rocky

fell-fields. Solifluction, mass-flow and patterned

ground, as e.g. polygons (Bliss 1997), are common

both in polar communities (Fig. 4) and in high

alpine or nival belts (also in the temperate re-

gion), which of course strongly influences the

sparse vegetation. The broad comparability in the

physiognomy of polar and alpine vegetation is

clearly stressed by Barry and Ives (1974). How-

ever, they also say that the extensive wet tundra

Fig. 2 ‘‘Krumholz ‘‘ of Norway spruce (Picea abies) at the
climatic tree line in south-eastern Norway, wind dominat-
ing from the left (west) of the picture. Most branches near
the snow cover. (Photo: F.E Wielgolaski)

Fig. 3 Several metre tall vegetated ‘‘Pingo’’, built up by
an ice core in North American wetlands (Photo: F.E.
Wielgolaski)

Fig. 4 Stone-open soil polygons in a nearly flat ground in
High Arctic at Spitsbergen, made by frequent ice forma-
tions in the soil, with vegetation in between. (Photo: F.E.
Wielgolaski)
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commonly found in the Arctic is largely lacking in

alpine areas, where a complex mosaic of more

mesic and xeric communities occur due to the

dissected nature of the terrain.

A very important dissimilarity between polar

regions and alpine regions further south is the

light regime. Whereas there are possibilities for

24 h of sunshine during at least parts of the

growing season in polar regions (Fig. 5), this is

not the case in temperate and tropical monta-

neous regions. This often causes different eco-

types or provenances to develop at various

altitudes and latitudes (Mooney and Billings

1961). It is also an important factor to find the

best fitted cultivar of agricultural species for var-

ious districts of polar regions.

Adaptation

Plants in polar region as well as in alpine tundra

are adapted by very rapid growth to the normally

short growing season (Savile 1972; Wielgolaski

1997c). Heide (1985) stated that the more severe

the environment, the more important survival

adaptations seemed to be, while biological

competition tended to be less important to the

vegetation. Some tundra plant species will under

extreme environmental conditions require several

years to finish their life cycle, while only one

season under better conditions (e.g. Sørensen

1941). A typical example of such adaptation is

found in species of the genus Salix. Dahl (1986)

stresses that in prostrate tundra species within the

genus (S. herbacea, S. polaris and S. reticulata) it

may take four growing seasons for development

of catkins, while in taller lowland species it nor-

mally takes only one year.

Transplantation of trees originating in a tem-

perate lowland area to a subarctic-subalpine re-

gion or between extreme environments of

different types (e.g. from a subalpine temperate

region to a high latitude area with 24 h daylight in

parts of the growing season) has been carried out

in many years. Often this has shown strong

influence in productivity and phenology of the

trees (Hagem 1931; Kalela 1938; Beuker 1994;

Wielgolaski and Inouye 2003; Ovaska et al. 2005).

Planting trees of a southern origin (provenance or

ecotype) in the north, often means that the trees

continue their growth late in summer and autumn

in their new growth place as they are adapted

normally to do on their southern district of origin.

This again may cause the trees to have a weak

hardening of their new shoots before an early

start of low temperature and winter in the more

extreme environment. Often that leads to frost

damage of the buds during winter or the new

shoots in spring.

If a southern provenance is transplanted to

northern latitude regions with 24 h daylight dur-

ing mid summer, that may also lead to growth

problems due to plant physiological responses by

the changes in spectral composition of the light.

The plants originating from northern latitudes are

for instance normally adapted to a low red to far

red ratio particularly at the end of an Arctic

summer (Nilsen 1986) compared to more south-

ern provenances. This may be one factor to in-

duce growth cessation of woody plants adapted to

northern latitudes, and is also found to influence

the shoot elongation (Håbjørg 1972a, b; 1978).

However, temperature variations e.g. day and

night may also induce senescence (Marchand

et al. 2004), and is therefore important in the

plant adaptation by a continued climate change

(see next section).

Normally, the well hardened buds of conifer-

ous trees (Beuker 1994) and leaf buds of moun-

tain birch (Ovaska et al. 2005) from the

northernmost ecotypes have an earlier break in

Fig. 5 Day length at various latitudes from 60�N north-
wards. Note the 24 h day for about 4 months in summer at
79�N (e.g. at Spitsbergen), and a similar period with sun
always below the horizon in winter
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spring than buds from trees of a more southern

ecotype. Many agricultural plants are found to be

adapted to use fewer days between various

growth and flowering stages when grown in long

days (Skjelvåg 1998). As temperature normally

decreases to the north, this also means that many

specific cultivars of agricultural plants can be

grown further north than otherwise would have

been possible.

The phenological transplant studies referred to

above clearly indicate that the latitude, i.e. the

light regime, is of strong importance for devel-

opment of plants in polar regions. Adaptation to

the growing condition at the place of origin in a

species is also clearly stated by studies in con-

trolled climate (e.g. in Betula by Myking 1999).

Plants originally growing in districts with mild and

unstable winters (as in the south and along the

coast) showed later bud burst, particularly after

only a short period of chilling (November) than

more northern and inland ecotypes with cold and

stable winters (Fig. 6). Differences in the date of

bud burst of mountain birch originating from

different elevations but approximately the same

latitude, indicate that also adaptation to certain

temperature regimes is of importance for start of

the growing season (Ovaska et al. 2005), which is

as expected.

The normally very rapid growth found in plants

of a short growing season, demands an adaptation

to a rapid and good supply in spring of both en-

ergy and nutrients from winter storage organs

(Wielgolaski 1984). The storage organs of polar

and alpine plants are commonly situated below-

ground, close to the growing points, which nor-

mally are just above, but also at the ground itself,

chamaephytes and hemicryptophytes according to

the life form classification by Raunkiaer (1934),

plant types dominating in these extreme climatic

conditions (Table 1). That is a good adaptation to

a short translocation distance to and from the

buds where the stored material is used for growth

in the short and very active growing season.

Particularly in monocotyledons of wet sedge

communities but also in forbs of mesic low alpine

and low Arctic tundra, the storage organs are

mainly found in the roots (Mooney and Billings

1960), resulting in a higher proportion of root

mass compared to shoot mass than in most other

plant communities even in tundra regions

(Table 2).

In some species of tundra forbs, sedges and

grasses parts of the leaves even stay green during

winter to speed up growth start in spring (but then

sometimes they die in early summer) (Wielgola-

ski 1997c). In evergreen dwarf shrubs, however,

there is a late bud break and a slow translocation

rate but in these species generally having a low

nutrient level (Wielgolaski et al. 1975), the life

form is probably more an adaptation to grow on

nutrient-poor soil than a direct adaptation to live

in climatic extreme conditions.

Generally, shrubs are close to their limit of

survival in tundra. The plants have to be creeping

to be protected by a snow cover against the lowest

temperatures and the strongest wind. Close to the

permanent snow cover of alpine regions and in

the High Arctic the conditions are too extreme

for formation of above-ground reserves in buds

and woody above-ground parts, and even dwarf-

shrubs are missing in these regions. Dahl (1986),

however, stressed that the hardiest plants are

pulvinate chamaephytes with buds just above the

soil. There, the close neighbouring between sev-

eral, densely tufted leaves makes the cushion to

exchange heat more like a single organ of the size

of the total cushion. It is normally important for

Fig. 6 Days to bud burst at 15�C in a short-day period
(8 h), after different periods of chilling at 5�C, in three
Betula pubescens ecotypes along two gradients, in a (left)
from three different latitudes of origin and in b originating
from various distances from the coast (reprinted from
Myking 1999)
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the polar and alpine plants to absorb as much

heat of the incoming radiation as possible via the

soil close to the plants or by the plants them-

selves. This is also reflected by the plant types

found and their morphological adaptations.

Very often tundra plants are covered by hairs

to protect against cooling wind and evapotrans-

piration, and in this way also directly absorb heat

for the hairy organs. They may be relatively dark

in colour as often in Draba spp. and Erigeron spp.

and the early emerging sepals of some polar/al-

pine Ranunculus (R. glacialis, R. nivalis, R. sul-

phurous). In other plants the hairs are light

coloured, silky or woolly, and light-transparent to

the dark and heat-absorbing organs inside the

hairs or bracts, as e.g. in cotton-grass, Eriopho-

rum spp. (Dahl 1986). In some willows (Salix

spp.), Krog (1955) observed a 15–25�C higher

temperature in the catkins than in the ambient

air. In these willows solar radiation penetrates the

silky hairs of the dark catkin scales, which are

heated also because of lower outward heat

transport due to the hairs, a really effective

adaptation to life in extreme environments.

It is also observed that both the orientation of

many plant leaves and flowers in polar/alpine

regions may be adaptations to the environmental

conditions of the biomes. The leaves e.g. of many

cushion plants at high altitudes (even at lower

latitudes) often have a nearly vertical position to

get the best reflection of incoming light to hit

other leaves instead of being reflected back to the

atmosphere (Dahl 1986). Better known is proba-

bly the parabolic form of many tundra flowers,

which increases the absorbed radiation by reflec-

tion to the centre of the flower (Kevan 1975;

Wielgolaski 1987). This is favourable to increase

the temperature for pollination of the flowers and

for development of the ovary. This adaptation

seems to be most common in plants with a high

reflection coefficient for incoming radiation by

having light coloured flowers e.g. white or yellow

(for instance in Dryas spp., Fig. 7, Papaver spp.

and Ranunculus spp.). Often the flowers also

change their direction during the day always to be

open towards the sun (Kevan 1975; Wielgolaski

1997c). Sometimes also the colour of the flowers

are adapted to change to be darker in colour after

Table 1 Number of vascular plant species and percentage of different life forms, based on the classification by Raunkiaer
(1934), at various alpine altitudes in southern Norway

Altitudinal
limit (m)

Number of
species

Life form

Phanerophyte
(%)

Chamaephyte
(%)

Hemicrytophyte
(%)

Geophyte
(%)

Helophyte
(%)

Hydrophyte
(%)

Therophyte
(%)

> 2000 29 44.8 55.2
1800–1999 39 25.6 66.7 2.6 2.6 2.6
1600–1799 75 8.0 32.0 48.0 4.0 5.3 2.7
1400–1599 63 4.8 9.5 65.1 11.1 1.6 3.2 4.8
1200–1399 138 6.5 10.1 51.4 10.1 10.1 2.9 8.7
1000–1199 109 2.8 5.5 55.0 10.1 11.9 5.5 9.2

Table 2 Different average ratios between plant parts of some tundra vegetation types (based on Wielgolaski et al. 2001)

Region Root/shoot
(live)

Non-green/green
live: vascular
plants

Dead/live
above-ground:
vascular plants

Desert and semi-desert 0.9 2.3 1.9
Wet sedge meadows 21 23 1.6
Mesic dry meadows 5.0 7.7 0.8
Dwarf-shrub tundra 3.1 12 0.6
Low shrub tundra 2.0 19 0.2
Forest tundra 0.8 15 0.1
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pollination by insects, which are attracted by

white colours, to absorb even more heat, e.g.

Ranunculus glacialis.

Climate change

Plants living in the extreme environments of polar

and alpine biomes are thus adapted to the con-

ditions there in many ways, but growth is always

modified, as in other climatic zones of the world,

by the nutrient availability. Although, normally

temperature is the dominant factor for growth in

cold regions, light is of course also very impor-

tant, particularly at increasing latitude and at the

end of the growing season (see e.g. references in

Arft et al. 1999). There will always be changes in

the climate during a period. Generally, it is esti-

mated that for the Northern Hemisphere annual

temperature during the last 150 years has

increased by 0.055� per decade (Overpeck et al.

1997; Jones and Moberg 2003). Both in northern

and southern Norway Klaveness and Wielgolaski

(1996) have observed earlier first flowering of

most plant species in the mid 20th century than

about 100 years earlier. However, warming has

accelerated in recent decades in the Northern

Hemisphere (IPCC 2001; ACIA 2004), which is of

extreme importance for plant growth particularly

in polar and alpine regions, especially if it con-

tinues also in the future. Most important is the

increase in temperature but also in precipitation,

both calculated to be stronger during winter than

summer and in models predicted to be strongest

in northern latitudes (Dickinson 1986; Maxwell

1997; ACIA 2004; Schwartz et al. 2006). In Eur-

ope the positive phase of North Atlantic Oscil-

lation (NAO) has increased clearly in the period

February–April during the last decades, leading

to prevailing westerly winds and, therefore,

higher temperatures and a more humid climate,

particularly since the end of 1980s (Post and

Stenseth 1999; Chmielewski and Rötzer 2001;

Wanner et al. 2001). In northern Norway it is

observed that Cornus suecica avoiding the most

continental districts recently has been common

more to the east, indicating a more humid climate

there than before (Tømmervik et al. 2004). In

high latitudes and altitudes of the Northern

Hemisphere the recent climate change has caused

higher winter precipitation as snow. Anyhow, in

most lowland areas, and particularly in coastal

regions, the increased temperature has caused

earlier snowmelt (Maxwell 1992), the growing

season to be longer (e.g. Bliss and Matveyeva

1992) and the plant population rates to be higher

(Carlsson and Callaghan 1994). In extreme cold

climates, however, as at the highest elevations

and in the continental parts of northernmost

Europe, winter temperatures have not increased

enough through the last decades of the 1900s to

foster earlier snowmelt. However, by continued

increase of the winter temperature during the

coming years, it is expected that this will change

(Shutova et al. 2005; 2006).

In autumn, on the other hand, it may be spec-

ulated that somewhat lower global radiation by

more cloudy weather and then also partly slightly

decreasing temperatures, will continue the earlier

end of the growing season calculated for parts of

the more continental northernmost Europe by

satellite images during the last two decades of

1900 as well as by 40 years of field phenological

studies of birch leaf yellowing at Kola Peninsula

(Shutova et al. 2005; 2006). The day length has

been found to be important for the time of end of

growing season, particularly at extreme high

latitudes. Håbjørg (1972a, b) found in controlled

climate (phytotron) studies that plants from

northern latitudes were stronger dependent in

cessation of growth by reduction in light than

more southern provenances. He concluded that

Fig. 7 Parabolic flowers of near white colour as Dryas
octopetala collect maximum of incoming heat to the ovary
in the centre of the flower. (Photo: F.E. Wielgolaski)
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this might be an adaptation in the northern

provenances to the markedly lowered red to far

red ratio at the end of the Arctic summer.

Low autumn temperatures and then particu-

larly low minimum values have for a long time

also been suggested to be triggering yellowing

and senescence of plants (Galakhoff 1938). In the

International Tundra Experiments (ITEX), the

temperature of intact ecosystems in the field have

been manipulated at 13 circumarctic and alpine

sites by using transparent open top chambers

through several years. The plants within these

1–3�C warmer chambers, generally, showed

somewhat later senescence than outside, but sig-

nificantly only at one alpine site (Arft et al. 1999).

This is in contrast to a significantly earlier start of

the growing season (Henry and Molau 1997) and

also of flowering at all sites by the warming.

However, Marchand et al. (2004) found in

experiments at Northeast Greenland, that plants

heated in the field during the growing season with

infrared radiation by about 2.5�C, showed a

higher maximum percentage of vascular plant

cover and a delay in yellowing in the autumn by

approximately 15 days (Fig. 8) compared to the

surrounding vegetation in NDVI analyses. They

concluded that also in High Arctic tundra, higher

temperatures postpone the senescence process.

This may cause longer growing seasons if tem-

peratures increases in the future. On the other

hand, many plant species may be less matured for

the winter, and also less fitted for the Polar light

regime.

In a paper summarising the ITEX results

(Walker et al. 2006), it is stressed that plant

diversity is reduced within the open top cham-

bers. However, the height and cover of deciduous

shrubs and monocotyledons have increased dur-

ing the experimental period, while the cover of

mosses and lichens has been decreasing (Fig. 9).

The changes are stronger in the Low than in the

High Arctic, maybe as an indication of less

nutrients being released by increased temperature

at the coldest sites. It is suggested in several

papers (e.g. Shaver et al. 2000) that if ‘‘soil organic

matter turnover is increased due to warming,

there is a high potential for redistribution of

nitrogen from soils to vegetation’’. This results in

higher production at least for a certain period.

Near the tree line in Fennoscandia this is ob-

served in the field particularly in mountain birch

growth (own unpubl. obs.). It is also obvious that

the tree line in the region has increased by 100–

150 m since the mid 1980s as a result of higher

temperatures (e.g. Kullman 2002), but for e.g.

Betula pubescens ssp. tortuosa in Fennoscandia

also by reduced browsing by livestock. The same

author (Kullman 1998) has also found that trees

increasing their growth after earlier temperature

Fig. 8 Percentage higher-plant cover at unheated (lower
curve) and heated in the field with infrared radiation
(upper curve) at Northeast Greenland. Note that senes-
cence is clearly delayed in the heated vegetation as studied
in NDVI analyses (Marchand et al. 2004)

Fig. 9 Response in several tundra plant forms on heating
in the field by keeping the vegetation within open top
transparent chambers. Mean of results from several ITEX
sites in the response on various community variables, as
e.g. on the species composition (ordination scores)
(Walker et al. 2006)
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rises (e.g. in the 1920–1930s) at the tree line lo-

cally died in the tops when there came a decrease

in winter temperature again afterwards.

The reduced cover of lichens in the ITEX-

experiments was found to be significant after

3 years, while the increased cover of vascular

plants was significant only after 4–6 years of

warming (Walker et al. 2006). The reduction in

lichen cover may be seen as a result of competi-

tion with increasing biomass of vascular plants

(Cornellisen et al. 2001) or of snow melt and

refreezing several times during the winter season.

Such conditions will cause an ice cover influenc-

ing the O2/CO2 conditions for the lichens under

the ice. In transplant studies of vegetation mats in

an alpine region from a nearly snow free lichen

heath to a near by Vaccinium myrtillus snow bed,

one of the authors (Wielgolaski 2001) found that

already after 1 year the lichen Cetraria nivalis had

changed colour to yellow-brown, and after

4 years nearly all arbuscular lichens were dead,

probably because of lack of oxygen under the ice

cover. Lichen death due to climate change will be

a serious problem for the survival of reindeers in

many northern areas, where lichens are the main

diet, particularly during winter. However, over-

grazing during the last decades also has caused a

dramatic decline of lichen cover in parts of

northernmost Norway (Johansen and Karlsen

2005).

Remote sensing has the potential to monitor

and give evidence of the ongoing climate change

in Arctic vegetation at a variety of spatial and

temporal scales (e.g. Stow et al. 2004). It can for

instance identify changes in the above-ground

production, structure and cover, in the pheno-

logical cycle, and changes in ecotone boundaries.

NOAA Advanced Very High Radiometer

(AVHRR) imagery is particularly valuable for

land cover studies at decadal time scales since

these data are available from the early 1980s to

the present. Studies based on the Normalised

Difference Vegetation Index (NDVI) from the

AVHRR instrument have found an extensive

greening trend at higher northern latitudes (e.g.

Myneni et al. 1997; Bogaert et al. 2002). In arctic

tundra and boreal forest there is a close rela-

tionship between temperature and NDVI (e.g.

Suzuki et al. 2001; Karlsen et al. 2006; Walker

et al. 2003), and the increased greenness is asso-

ciated with increased air-temperature (Buermann

et al. 2003; Gong and Ho 2003; Walker et al.

2003). However, the greening trend shows large

regional differences. Generally, in the 1990s the

North American greening trend was higher than

the Eurasian trend (Slayback et al. 2003). Locally,

a trend of slightly shorter length of the growing

season for the period 1982 to 1998 was found in

the most continental parts of northern Fenno-

scandia and Kola Peninsula in northwestern

Russia (Høgda et al. 2001) (Fig. 10), mostly as a

result of later onset of spring. A trend of changes

in the short Arctic growing season length over

decadal time scales is of key interest, since it

could be the first indication of a shift in the

above-ground production and cover. The time-

integrated NDVI during the growing season is

associated with the above-ground plant biomass

(e.g. Walker et al. 2003). Increased time-integrated

NDVI is found in northern Alaska the last

decades (Jia et al. 2003; Stow et al. 2003), and the

greenness increases most rapidly in areas of moist

non-acidic tundra (Jia et al. 2003).

The ongoing climate change with strongly

increasing temperatures particularly in the North

of the Northern Hemisphere may according to

Fig. 10 Changes in length of the growing season in
northernmost Europe during the period 1982–1998 as
analysed by the GIMMS-NDVI satellite dataset (reprinted
from Høgda et al. 2001 with permission from NORUT IT)

Rev Environ Sci Biotechnol (2007) 6:33–45 41

123



modelling scenarios cause a 40% reduction of the

current tundra by an expected temperature

increase of 4–7�C over the next 100 years (ACIA

2004). In many ways, this may cause less extreme

environments for plants with replacement of the

tundra by trees. However, many of these plants

will not be adapted to grow in 24 h daylight. Such

an adaptation takes many years, and in the

meantime many of the invading plant species to

the North probably will suffer seriously.

Concluding remarks

The examples given here clearly demonstrate

the serious problems of life for many plants

growing in Polar and Alpine Regions under

extreme climatic conditions, but other problems

may also occur. Low temperatures both during

winter and often also summer strongly limit the

diversity of plant species. Also high wind speed

(Fig. 11) and unstable soil are important for

many species. Both extremely low and high

precipitation is observed, often in combination

with temperature changes. In polar regions also

the light regime is special. Having 24 h of light

during parts of the growing season clearly causes

a need for adaptation in plants to such condi-

tions, both for growth, development and sur-

vival. In a changing climate with an expected

much higher temperature, many of the plant

species will not be mature by the end of the

growing season and will die back or freeze to

death during winter.
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Skjelvåg AO (1998) Climatic conditions for crop pro-
duction in nordic countries. Agr Food Sci Finl
7:149–160

Slayback DA, Pinzon JE, Los SO, Tucker CJ (2003)
Northern hemisphere photosynthetic trends 1982–99.
Global Change Biol 9:1–15

Sørensen T (1941) Temperature relations and phenology
of northeast greenland flowering plants. Medd Grønl
125:1–305

Sonesson M (2001) Ecology of some epiphytic lichens on
the mountain birch. In: Wielgolaski FE (ed) Nordic
mountain birch ecosystems. UNESCO, Paris and
The Parthenon Publ. Group, New York, London, pp
63–70

Sonesson M, Wielgolaski FE, Kallio P (1975) Description
of Fennoscandian tundra ecosystems. In: Wielgolaski
FE (ed) Fennoscandian tundra ecosystems, part 1
plants and microorganisms. Springer-Verlag, Berlin,
Heidelberg, New York, pp 3–28

44 Rev Environ Sci Biotechnol (2007) 6:33–45

123



Stow DA, Daeschner S, Hope A, Douglas D, Petersen A,
Myneni R, Zhou L, Oechel W (2003) Variability of
the seasonally integrated normalized difference veg-
etation index across the north slope of Alaska in the
1990s. Int J Rem Sens 24:1111–1117

Stow DA, Hope A, McGuire D, Verbyla D, Gamon J,
Huemmrich F, Houston S, Racine C, Sturm M, Tape
K, Hinzman L, Yoshikawa K, Tweedie C, Noyle B,
Silapaswan C, Douglas D, Griffith B, Jia G, Epstein
H, Walker D, Daeschner S, Petersen A, Zhou L,
Myneni R (2004) Remote sensing of vegetation and
land-cover change in arctic tundra ecosystems. Rem
Sens Environ 89:281–308

Suzuki R, Nomaki T, Yasunari T (2001) Spatial distribu-
tion and its seasonality of satellite-derived vegetation
iindex (NDVI) and climate in Siberia. Int J Climat
21:1321–1335

Swan LW (1967) Alpine and aeolian regions of the world.
In: Wright HE Jr, Osbura WS Jr (eds) Arctic and
alpine environments. Indiana Univ. Press, Blooming-
ton, pp 29–54

Tømmervik H, Johansen B, Tombre I, Thannheiser D,
Høgda KA, Gaare E, Wielgolaski FE (2004) Vege-
tation changes in the nordic mountain birch forests:
the influence of grazing and climate change. Arctic
Antarctic Alpine Res 36:323–332

Troll C (1972) Geoecology and the world-wide differen-
tiation of high-mountain ecosystems. In: Troll C (ed)
Geoecology of the high-mountain regions of Eurasia.
Franz Steiner Verlag, Wiesbaden, pp 1–13

Troll C (1973a) The upper timberlines in different climatic
zones. Arctic Alp Res A3–A18

Troll C (1973b) High mountain belts between the polar
caps and the equator: their definition and lower limit.
Arctic Alp Res A19–A27

Walker DA, Epstein HE, Jia GJ, Balser A, Copass C,
Edwards EJ, Gould WA, Hollingsworth J, Knudson J,
Maier HA, Moody A, Raynolds MK (2003) Phyto-
mass, LAI, and NDVI in northern Alaska: relation-
ship to summer warmth, soil pH, plant functional
types, and extrapolation to the circumpolar arctic. J
Geophys Res 108(D2):8169, doi: 10.1029/2001JD000986

Walker MD, Wahren CH, Hollister RD, Henry GHR,
Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP,
Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS,
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