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Abstract

The demand for new and sustainable systems for nitrogen removal has increased dramatically in the last
decade. It is clear that the conventional systems cannot deal with the increasing nitrogen loads in a cost
effective way. As an alternative, the implementation of the anammox (anaerobic ammonium oxidation)
process in the treatment of wastewater with high ammonium concentrations has been started. The compact
anammox reactors can sustain high nitrogen loads without any problems. The highest observed anammox
capacity is 8.9 kg N removed m)3 reactor day)1. The first 75 m3 anammox reactor is operating in Rot-
terdam, the Netherlands, combined with the partial nitrification process Single reaction system for High
Ammonium Removal Over Nitrite (SHARON). Partial nitrification and anammox can also be combined in
one reactor systems like Completely Autotrophic Nitrogen removal Over Nitrite (CANON) or Oxygen
Limited Ammonium removal via Nitrification Denitrification (OLAND) where aerobic ammonium-oxi-
dizing bacteria (AOB) and anammox bacteria cooperate under oxygen-limitation. These systems remove
about 1.5 kg N m)3 reactor day)1. In addition to ammonium, urea can also be converted in the CANON
system after a two-week adaptation period. The ecophysiological properties of the anammox bacteria make
them very well suited to convert ammonium and nitrite. The Ks values for ammonium and nitrite are below
5 lM. However, nitrite above 10 mM is detrimental for the anammox process, and oxygen reversibly
inhibits the process at concentrations as low as 1 lM. Acetate and propionate can be used by the anammox
bacteria to convert nitrite and nitrate, whereas methanol and ethanol severely inhibit the anammox reac-
tion. The enzyme hydroxylamine/hydrazine oxidoreductase (HAO), one of the key enzymes, is located in
the anammoxosome, which is a membrane bound organelle. The membranes of the anammox bacteria
contain unique ladderane lipids and hopanoids. The bacteria responsible for the anammox reaction are
related to the Planctomycetes. The first anammox bacteria were isolated via Percoll centrifugation and
characterized as Candidatus ‘‘Brocadia anammoxidans’’. Survey of different wastewater treatment plants
using anammox specific 16S rRNA gene primers and anammox specific oligonucleotide probes has revealed
the presence of at least three other anammox bacteria, which have been tentatively named Candidatus
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‘‘Kuenenia stuttgartiensis’’, Candidatus ‘‘Scalindua wagneri’’ and Candidatus ‘‘Scalindua brodae’’. A close
relative of the latter, Candidatus ‘‘Scalindua sorokinii’’ was found to be responsible for about 50% of the
nitrogen conversion in the anoxic zone of the Black Sea, making the anammox bacteria an important player
in the oceanic nitrogen cycle.

Abbreviations: ANAMMOX – anaerobic ammonium oxidation; AOB – aerobic ammonium-oxidizing
bacteria; CANON – completely autotrophic nitrogen removal over nitrite; NOB – nitrite-oxidizing bac-
teria; OLAND – oxygen limited ammonium removal via nitrification denitrification; RBC – rotating
biological contactor; SHARON – Single reactor system for high ammonium removal over nitrite; SBR –
sequencing batch reactor

1. Introduction

Over the last decade, growing populations and
industrialization increased the drinking and
potable water requirement and wastewater dis-
charge. Clearly the increase in the water demand
will put more pressure on the global water
resources. In order to protect the potable water
reservoirs from the discharge of the untreated
domestic and industrial wastewaters, the Euro-
pean Union has been implementing more and
more stringent directives (Directive 91/271/EEC).

Typical wastewater treatment plants are prin-
cipally designed to remove the carbonaceous
material from the waste streams and do not reach
the 10 mg l)1 discharge standard for total nitro-
gen. New and sustainable technologies are needed
to comply with the stringent discharge standards
(van Loosdrecht et al. 2004).

The anammox reaction, a microbial process
long overlooked, is emerging as an attractive
alternative to replace the nitrification and denitri-
fication processes that are primarily used to
remove nitrogen from wastewater (Jetten et al.
2001, 2002; Strous & Jetten 2004).

In the anammox process, chemolithoauto-
trophic bacteria convert 1 mol of nitrite and 1 mol
of ammonium directly to dinitrogen gas with
hydrazine as an intermediate (Jetten et al. 1998).
Due to extremely low growth rate, anammox
bacteria can only be cultivated with very efficient
biomass retention (Strous et al. 2002). The bacte-
ria responsible for the process have been physically
purified from highly enriched cultures by Percoll
density gradient centrifugation (Strous et al.
1999b). The first purified anammox bacterium is
named Candidatus ‘‘Brocadia anammoxidans’’
(Kuenen & Jetten 2001).

2. Properties of the anammox bacteria

The anammox bacteria are very well suited to
convert their substrates. They have Ks values for
ammonium and nitrite below 5 lM (Strous et al.
1999a). However, they are reversibly inhibited by
very low levels (<1 lM) of oxygen and irrevers-
ibly inhibited by high nitrite (>10 mM) concen-
trations (Strous et al. 1997, 1999a, 2002). The
anammox pathway has been elucidated using
15N-labelling experiments, which showed that
hydrazine is an important intermediate. As far as
we know, the occurrence of free hydrazine in
microbial nitrogen metabolism is rare, if not
unique (Jetten et al. 1998). The chemolithoauto-
trophic life style of the anammox bacteria has been
established by 14CO2 incorporation into the cells
and confirmed by mass balances (Strous et al.
1999b). In order to elucidate the pathway for
carbon dioxide fixation of the anammox bacteria,
13CO2 was supplied to an anammox Sequencing
Batch Reactor (SBR) culture. The labelling pat-
tern of the extremely 13C-depleted ()47%) lipids
showed that either the reductive pentose phos-
phate or the acetyl-CoA pathway was used
(Schouten et al. 2004). In recent studies it has been
shown that anammox bacteria are severely inhib-
ited by methanol and ethanol at concentrations
below 1 mM (Güven et al. 2004, 2005). However
the anammox bacteria are able to use acetate and
propionate as energy source for the reduction of
nitrite and nitrate (Hao et al. 2004; Güven et al.
2004; 2005). At C/N ratios above 1 the anammox
bacteria are no longer able to compete with het-
erotrophic denitrifying bacteria (Güven et al.
2005).

The HAO enzyme hydroxylamine/hydrazine
oxidoreductase was purified from Candidatus
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‘‘Brocadia anammoxidans’’ (Schalk et al. 2000).
Unique peptide sequences of tryptic fragments
have been used to locate the hao gene in the
Candidatus ‘‘Kuenenia stuttgartiensis’’ genome.
The purified enzyme has also been used to raise
polyclonal antibodies for localization studies
(Lindsay et al. 2001). Using immunogold electron
microscopic analysis, the enzyme has been found
to be present exclusively inside one of the mem-
brane bounded organelles (the anammoxosome),
that made up more than 30% of the cell volume
(van Niftrik et al. 2004) (Figure 1). This dedicated
intracytoplasmic compartment has been found to
be surrounded by a membrane nearly exclusively
composed of unique ladderane lipids (Sinninghe
Damste et al. 2002, 2004a, b; Schmid et al. 2003).
These lipids are composed of pentacycloanamm-
oxic acids, which contain five linearly concate-
nated cyclobutane rings (Mascitti & Corey 2004).
The ladderane lipids occur both as ether and ester
lipids in all three groups of anammox bacteria
(Jetten et al. 2003). Due to the very slow metab-
olism of the anammox bacteria a very dense and
impermeable membrane is required to maintain
concentration gradients during the anammox
reaction. Such a membrane also protects the cell
from the toxic intermediates. The anammoxosome
membrane, having a lower degree of rotational
freedom and being significantly denser
(1.5 kg dm)3) and impermeable than a conven-
tional membrane (1.0 kg dm)3), is perfectly suited
for both of the above-mentioned tasks (Sinninghe
Damste et al. 2002). The recent finding of hopa-
noids, which act as rigidifiers in the membranes of
the anaerobic anammox bacteria, gives further
support to the necessity of a very dense membrane
to limit diffusion of protons and intermediates

(Sinninghe Damste et al. 2004a, b; van Niftrik
et al. 2004).

3. Application of anammox bacteria

Both in natural and man-made ecosystems anam-
mox bacteria have to be provided with their sub-
strates ammonium and nitrite. Natural anoxic
ecosystems such as marine sediments can contain
substantial amounts (mM range) of ammonium
due to the degradation of organic matter (Kuypers
et al. 2003; Trimmer et al. 2003). In the case of
water columns and marine ecosystems, nitrate-
reducing bacteria are the most likely source of
nitrite (Dalsgaard et al. 2003; Kuypers et al. 2003).
Nitrite can also be produced by aerobic ammo-
nium oxidizing bacteria operating at the oxic-an-
oxic interface of many ecosystems (Schmidt et al.
2002)

The cooperation between the aerobic and
anaerobic ammonium oxidizing bacteria is the
microbial basis of the integrated reactor system
Completely Autotrophic Nitrogen removal Over
Nitrite (CANON) and Oxygen-Limited Auto-
trophic Nitrification-Denitrification (OLAND)
process. In these systems, aerobic ammonium-oxi-
dizing bacteria (AOB) and the planctomycete-like
anammox bacteria perform two sequential reac-
tions simultaneously (Kuai & Verstraete 1998; Phi-
lips et al. 2002; Pynaert et al. 2002a, b, 2003, 2004;
Schmidt et al. 2003; Sliekers et al. 2002, 2003; Third
et al. 2001; 2005; Wyffels et al. 2003a, b).

In the CANON reactor system, under oxygen
limitation, the supplied ammonium is partly oxi-
dized to nitrite by AOB. The produced nitrite is
utilized with the remainder of the ammonium by

Figure 1. Electron micrograph of the bacterium Candidatus ‘‘Brocadia anammoxidans’’ showing typical compartmentalization. The
bar is 100 nm.
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anammox bacteria and converted into dinitrogen
gas. The feasibility of the CANON concept has
been established by carefully introducing limited
amounts of oxygen into anammox SBR systems.
Within 2 weeks a new stable consortium of AOB
and anammox becomes operative (Sliekers et al.
2002). Fluorescence in situ hybridisation (FISH)
analysis of the CANON biomass shows that about
40% of the community consisted of AOB, also the
anammox cells constitute about 40% of the com-
munity. No aerobic nitrite oxidizing bacteria
(NOB, Nitrospira or Nitrobacter species) have ever
been detected. Activity tests confirm the absence of
NOB. The NOB are only able to develop in the
CANON reactor after prolonged exposure
(>1 month) to ammonium limitation (Third et al.
2001). The situation is quite different in Rotating
Biological Contactor (RBC) based systems where
the supply of ammonium and oxygen are difficult
to control. In these reactors all three groups of
bacteria, AOB, NOB and anammox can coexist
simultaneously (Egli et al. 2002; 2004; Pynaert
et al. 2003).

The upper limits of nitrogen loading of both
anammox and CANON processes were explored
in gas lift reactors (Sliekers et al. 2003; Dapena-
Mora 2004a–c) (Figure 2). In these reactors
anammox planctomycetes were able to remove
8.9 kg N m)3reactor day)1. In the same setup the
combined action of AOB and anammox
planctomycetes achieved 1.5 kg N remo-
val m)3 reactor day)1, which is more than suffi-
cient to start application trials. The 1.5 kg N m)3

reactor day)1 removal capacity was also reached
recently in a RBC system which contained both
the ‘‘Candidatus Kuenenia’’ anammox bacteria
and Nitrosomonas related AOB (Pynaert et al.
2003, 2004).

The distribution of AOB and anammox bac-
teria in a CANON system was investigated using
15N-labelled substrate and novel nitrite micro-
sensors (Nielsen et al. 2004; 2005). Under oxy-
gen-limited conditions (<5 lM O2), AOB were
restricted to the outer shell (<100 lm) of the
CANON aggregates, while anammox bacteria
were found in the central anoxic parts. The lar-
ger type aggregates (>500 lm) accounted for
about 68% of the anammox potential whereas
65% of the nitrification potential was found in
the smaller aggregates (<500 lm). Analysis with
O2 and nitrite microsensors showed that the

thickness of the activity zones varied as a func-
tion of bulk oxygen and nitrite concentrations
and flow rate. This is in good agreement with the
biofilm models developed by Hao et al. (2002a,
b; 2004).

In a separate study, urea was tested as an
alternative energy source for the microbial con-
sortium in the CANON reactor system (Sliekers
et al. 2004). Urea is a major source of nitrogen
input to both wastewater streams and natural
ecosystems. Human excretion and leachate from
agriculture fields are the two main sources of urea.
It has been proposed that a carbon source should
be supplied for complete urea hydrolysis by het-
erotrophic bacteria in wastewaters without organic
carbon (Rittstieg et al. 2001). Urea conversion by
CANON biomass is much more cost-effective
since it is evident that the system is completely
autotrophic and does not require additional
organic carbon (Sliekers et al. 2004). Tests with

Figure 2. CANON oxygen-limited gas lift reactor in which
aerobic ammonium-oxidizing bacteria and anammox bacteria
cooperate to remove ammonium directly into dinitrogen gas
(Sliekers et al. 2003).
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lab-scale reactors demonstrated that when urea is
supplied to the CANON reactor it is immediately
converted to dinitrogen gas and full capacity is
reached within two weeks of adaptation (Sliekers
et al. 2004). In these two weeks, the urease-positive
Nitrosomonas oligotropha and Nitrosomonas nit-
rosa become the dominant AOB in the urea-con-
verting CANON systems. Anammox bacteria do
not hydrolyse urea themselves, but rely on the N.
oligotropha and N. nitrosa urease activity to be
supplied with sufficient amounts of ammonium
and nitrite (Sliekers et al. 2004). Further tests have
clearly demonstrated that CANON or anammox
systems are well suited to treat separately collected
urine waste (Wilsenach & van Loosdrecht 2003;
Udert et al. 2003).

The possibility to use the SHARON (Single
reactor system for High rate Ammonium Removal
Over Nitrite) process in combination with anam-
mox has also been investigated. SHARON process
was developed for the removal of ammonium via
the so-called nitrite route (Jetten et al. 1997; Van
Hulle et al. 2004). It has been tested for 2 years in
the laboratory and successfully scaled-up from 2 l
to an 1800 m3 full- scale plant (Jetten et al. 1997;
2002; Mulder et al. 2001; van Dongen et al. 2001).
In the SHARON process, the ammonium is oxi-
dized for 53% to nitrite at 1.2 kg N m)3 day)1,
without pH control. The ammonium/nitrite ratio
in the effluent of the SHARON process can be
fine-tuned by adjusting the pH between 6.5 and
7.5. The effluent of this SHARON reactor is fed to
an anammox SBR that removes all nitrite. The
specific activity of the anammox biomass is rela-
tively high: 0.8 kg N (kg dry weight))1 day)1

and the load can be increased to more than
2 kg N m)3 day)1 (van Dongen et al. 2001; Fux
et al. 2002).

The SHARON-anammox process has been
patented and implemented in the wastewater
treatment plant in Rotterdam (Figure 3). Based on
the design of the combined SHARON-anammox
process a cost estimate of 0.75 kg)1 N is made
(van Dongen et al. 2001; van Loosdrecht et al.
2004). This is very low compared to the 2–5 kg)1

N that is calculated for other processes that have
been tested on pilot plant scale for N-removal
from sludge digestion liquors (van Dongen et al.
2001; Jetten et al. 2002).

As already mentioned anammox bacteria have
an extremely low growth rate, and thus only sys-

tems with very efficient biomass retention like the
SBR or RBC can be used to cultivate these
organisms (Strous et al. 1998; Dapena-Mora
2004a; Fux et al. 2002, 2004; Pynaert et al. 2003;
Wyffels 2003a, Schmidt et al. 2004). In addition
solid support materials like glass beads (Strous
et al. 1997), Kaldnes rings (Helmer et al. 2002) or
non-woven biomass carriers (Fujii et al. 2002;
Furukawa et al. 2003; Imajo et al. 2004) are good
alternatives to ensure that anammox biomass is
retained in the reactor systems. A comparison of
the various reactor systems was recently described
in detail (Schmidt et al. 2003; Sliekers et al. 2004;
Pynaert et al. 2004).

During the start up period of the 75 m3

anammox wastewater treatment plant in Rotter-
dam, biomass from the anammox reactor was
investigated for its potential nitrogen removal
capacity in a laboratory scale SBR. A 2 l SBR
reactor was inoculated with 800 ml sludge from
the 75 m3 anammox reactor in Rotterdam. FISH
studies showed that the anammox bacteria con-
stituted 0–1% of the initial biomass. The nitrogen
load was increased gradually from 0.14 kg m)3

Figure 3. Anammox reactor at Rotterdam WWTP (Courtesy
Paques and ZHEW) in EU-icoN project.
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reactor day)1 to 3 kg m)3 reactor day)1 in
96 days (Figure 4). At the end of this 96-day
period, 85% of the biomass consisted of anam-
mox bacteria (Figure 5), and the specific activity
of the biomass was 1.02 kg N (kg dry
weight))1 day)1. The 16S rRNA gene was ampli-
fied from DNA extracted from the reactor, and
the dominant 16S rRNA gene had a 96%
sequence identity to Candidatus ‘‘Brocadia
anammoxidans’’ (Figure 6).

A striking feature of this anammox bacterium
is its very bright autofluorescence. This seems to be
unique for this anammox species and may occur
due to the polysaccharides excreted by these
anammox bacteria for floc and aggregate forma-
tion. This phenomenon was the inspiration to
name this anammox bacterium Candidatus ‘‘Bro-
cadia fulgida’’ (Figure 6).
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Figure 4. Consumption of nitrite (�) and ammonium (¤),
production of nitrate (n) in anammox SBR reactor inoculated
with biomass from the Rotterdam plant.

Figure 5. FISH micrographs of the anammox biomass in lab-scale SBR after 80 days of enrichment. (a) phase contrast picture; (b)
Green FLUOS-AMX368 showing all anammox cells; (c) Purple Cy5-EUB338 showing nearly all bacterial cells; (d) Red Cy3-AMX820,
showing all Brocadia cells.
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4. Biodiversity of anammox bacteria

Many water treatment systems and fresh water
ecosystems also appeared to contain significant
populations of anammox bacteria, some of those
were only distantly related (Figure 6; less than
90% similarity on 16S rRNA gene) to the Can-
didatus ‘‘Brocadia’’ branch (Fujii et al. 2002;
Helmer et al. 2002; Toh & Asbolt 2002; Toh et al.
2002; Dong & Tollner 2003; Egli et al. 2003; Jetten
et al. 2003; Pynaert et al. 2003). These anammox
bacteria have been named Candidatus ‘‘Kuenenia
stuttgartiensis’’ (Egli et al. 2001; Schmid et al.
2000, 2005). Furthermore a new group of ‘Scalin-
dua’ anammox bacteria have been discovered in
the Black Sea (Kuypers et al. 2003) and in a UK
wastewater treatment plant (Schmid et al. 2003).
In this treatment plant about 20% of the popula-
tion consists of two new anammox species, named
Candidatus ‘‘Scalindua wagneri’’ and Candidatus
‘‘Scalindua brodae’’. Candidatus ‘‘Scalindua sor-
okinii’’ in the Black Sea is the first anammox
bacterium directly linked to the removal of fixed
inorganic nitrogen from a natural ecosystem.
Recent field experiments have revealed that
anammox can contribute as much as 70% to
dinitrogen gas production in marine ecosystems
(Kuypers et al. 2003; Thamdrup & Dalsgaard
2002). Other studies also indicate that marine
anammox bacteria play a very important role in

the oceanic nitrogen cycle (Dalsgaard & Thamd-
rup 2002; Dalsgaard et al. 2003; Trimmer et al.
2003; Ward 2003; Risgaard-Petersen et al. 2004;
Rysgaard & Glud 2004).

5. Conclusions

As a sustainable and low cost alternative to the
presently used nitrification-denitrification pro-
cesses, the combination of partial nitrification and
anammox is ready for full scale implementation in
nitrogen removal which will lead to substantial
savings in energy and resources. Both in natural
and man-made ecosystems anammox bacteria
contribute significantly to dinitrogen gas forma-
tion. Since anammox bacteria have many unique
properties, current and future research on the
biodiversity, physiology and the application of the
anammox bacteria are bound to reveal new and
interesting information that can be utilized for the
practical use of the process.
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Güven D, van de Pas-Schoonen K, Schmid MC, Strous M,
Jetten MS, Sozen S, Orhon D & Schmidt I (2004)
Implementation of the Anammox process for improved
nitrogen removal. J. Environ. Sci. Health Part A Tox. Haz.
Subst. Environ. Eng. 39(7): 1729–1738

Hao X, Heijnen JJ & Van Loosdrecht MC (2002a) Model-based
evaluation of temperature and inflow variations on a partial
nitrification-ANAMMOX biofilm process. Water Res.
36(19): 4839–4849

Hao X, Heijnen JJ & van Loosdrecht MC (2002b) Sensitivity
analysis of a biofilm model describing a one-stage completely
autotrophic nitrogen removal (CANON) process. Biotech-
nol. Bioeng. 77(3): 266–277

Hao XD & van Loosdrecht MC. (2004) Model-based evalua-
tion of COD influence on a partial nitrification-Anammox
biofilm (CANON) process. Water Sci. Technol. 49(11–12),
83–90

Helmer-Madhok C, Schmid M, Filipov E, Gaul T, Hippen A,
Rosenwinkel KH, Seyfried CF, Wagner M & Kunst S (2002)
Deammonification in biofilm systems: population structure
and function Water Sci. Technol. 46: 223–231

Imajo U, Tokutomi T & Furukawa K (2004) Granulation of
Anammox microorganisms in up-flow reactors. Water Sci.
Technol. 49(5–6): 155–63

Jetten MSM, Horn SJ & van Loosdrecht MCM (1997) Towards
a more sustainable municipal wastewater treatment system.
Wat Sci. Techol. 35: 171–180

Jetten MSM, Schmid MA, Schmidt I, Wubben M, van Dongen
U, Abma W, Sliekers AO, Revsbech NP, Beaumont HJE,
Ottosen L, Volcke E, Laanbroek HJ, Campos-Gómez JL,
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