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Abstract
We develop a stochastic dynamic model of dividend optimization under the conditions of a posi-
tive recovery, in which shareholders can recover a portion of their capital, and nonterminal bank-
ruptcy due to private capital infusion or government bailout. In the presence of a recovery, the 
optimization problem becomes a mixed classical impulse stochastic control problem. We provide 
a closed-form solution for optimal dividend payout and timing under nonterminal bankruptcy. 
We take the model to the real data and show that this model explains the dividend puzzle during 
the financial crisis when the US government bailed out insurance companies and banks.

Keywords Diffusion models · Optimal dividend policy · Nonterminal bankruptcy · Capital 
injection

JEL Classification G12 · G13

1 Introduction

Corporate dividend policy has long engaged the attention of financial economists. One of 
the most important decisions for a firm is to set an optimal dividend payout strategy. Miller 
and Modigliani (1961) provides a valuation model of dividends for an infinite-horizon 
firm under perfect information. Later studies extend the model to account for information 
asymmetry, agency cost and other issues (see, for example, Bhattacharya 1979; Miller and 
Rock 1985; John and Williams 1985; Jensen 1986; Hausch and Seward 1993; Guttman 
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et al. 2010; Baker et al. 2016). Traditional models of optimal dividend decisions for the 
firm typically build on the non-stochastic framework which is difficult to apply to a more 
realistic situation of controllable business activities in a stochastic environment. In con-
trast, stochastic dynamic programming provides a powerful tool for studying intertemporal 
optimization under uncertainty (see Merton 1990). This approach is ideal for solving the 
complicated problems of determining the optimal dividend policy in an uncertain world.

The dividend policies of banks and insurance companies during the financial crisis have 
received considerable attention from academic researchers and practitioners. These com-
panies distributed a large amount of dividends even as losses were mounting. During this 
period, aggregate dividends paid by banks exceeded aggregate earnings by about 30% (see 
Floyd et al. 2015). One possible explanation for the dividend policy during the early stages 
of the financial crisis is that it reflected a form of agency problems. Agency theory suggests 
that risk shifting, or asset substitution, is a moral hazard problem between shareholders 
and creditors. After raising debt, shareholders have incentives to transfer wealth away from 
creditors. The dividend payout policy during the financial crisis may simply reflect that 
banks engaged in risk shifting by paying dividends to dilute the value of creditors’ claims. 
An alternative explanation for the large dividend payouts during the financial crisis is these 
firms were concerned that cutting dividends may induce a run by their short-term credi-
tors and trigger bankruptcy (see Acharya et al. 2012). By maintaining large dividend pay-
outs, banks and insurance companies send out a signal that they have the ability to survive, 
thereby increasing the confidence of short-term creditors and financial stability.

A number of studies have proposed different models to explain the dividend puzzle dur-
ing the financial crisis. These studies typically adopt static agency theoretic or signaling 
models, which is difficult to apply to firms in an uncertain world. In this paper, we develop 
a stochastic dynamic model of optimal dividend policy to describe the dividend behav-
ior of financial firms facing a bankruptcy risk. This stochastic model is more suitable for 
studying the intertemporal optimization of dividend payout under uncertainty. Using this 
approach, we solve the complicated problems of determining the optimal dividend pol-
icy in a stochastic environment with bankruptcy risk and recovery, and provide a rational 
explanation for firms’ dividend behavior during the subprime crisis.

Optimizing dividend payout is a classical problem in actuarial mathematics dated back to 
de Finetti (1957). In past decades, there has been an increasing interest in diffusion models 
with controllable risk exposure and optimal dividend distribution (see Cadenillas et al. 2006; 
Kulenko and Schimidli 2008; Wang and Zhang 2010; Avanzi and Wong 2012; Jin and Yin 
2013). While past studies have improved our knowledge of managing risk, the financial sys-
tem is constantly evolving, and firms have faced new problems never encountered in the tra-
ditional dividend optimization models. As an example, a number of large insurance compa-
nies were on the verge of collapse and had to be bailed out by the government through capital 
injections. How to develop a stochastic model of optimal dividend payouts in such an envi-
ronment is a challenging task. In this paper, we address this issue by constructing a diffusion 
model with nonterminal bankruptcy to generate an optimal dividend distribution strategy for 
firms under uncertainty. While our model is very general and applicable to firms of all busi-
ness types, the framework we propose is particularly suitable for a large insurance company 
facing obligations of a stream of payouts to policy holders. A key feature in our model is 
that an adoption of the nonterminal bankruptcy setting in this diffusion framework enables 
us to capture the unique dividend behavior during the financial crisis when the government 
injected capitals into financial companies to avert the catastrophe of systemic defaults.

Numerous studies have applied the methods of stochastic control to model the optimal 
dividend payout problem (see, for example, Sethi et  al. 1984; Radner and Shepp 1996; 
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Asmussen and Taksar 1997; Højgaard and Taksar 1998a, b; Cadenillas et al. 2006; Paulsen 
2007, 2008; Belhaj 2010; Yao et  al. 2011; Avanzi and Wong 2012; Jin and Yin 2013). 
In most studies, the firm’s liquid asset process is characterized by a Brownian motion in 
which the drift term corresponds to the expected profit per unit of time, and the diffu-
sion term captures risk exposure. Some studies have allowed firms to replenish their cash 
reserve through external capital infusion when they are under financial stress (Sethi and 
Taksar 2002).1 In these models, firms go bankrupt when their profits fall short of expenses, 
and bankruptcy is typically assumed to be terminal with zero recovery value. This assump-
tion is unrealistic because in reality when firms go bankrupt, they may recover some asset 
value, and can also resurrect from the bankruptcy proceeding (nonterminal bankruptcy) 
through external capital injection. Even in the models with capital infusion, regardless of 
whether firms can raise capital by issuing new shares or not, the value functions in tradi-
tional models are typically defined on cumulative dividends less predetermined cumulative 
capital inflows under firms’ control. However, in reality, when firms are in distress, they 
face tremendous uncertainty and have little control over the amounts of capital they can 
raise. In this paper, we relax these assumptions to make the diffusion model of dividends 
more general. With less restrictive assumptions, we develop a stochastic dynamic model 
of dividends to assess the effects of capital infusion on the firm’s optimization of dividend 
payout, and use this model to explain the dividend puzzle during the financial crisis that 
the distressed firms distributed large amounts of dividends shortly after receiving the gov-
ernment bailout money.

However, relaxing these assumptions comes with a price. Specifically, it results in a 
nonzero boundary condition and a nonlinear value function in the diffusion dividend model 
and as a consequence, the closed-form solution is difficult to obtain. To overcome this dif-
ficulty, we treat the amount of capital inflow at the state of bankruptcy as an external exog-
enous variable in the value function. Specifically, we permit a capital injection by exter-
nal funding or bailouts when firms face a possibility of bankruptcy, and the amounts of 
these aids are beyond their control. This assumption is very realistic because in reality the 
amounts of government bailout grants are exogenously determined by the political process, 
which is beyond firms’ control. Bankruptcy is thus not necessarily terminal because the 
government can step in to bail out ailing big firms as observed during the subprime cri-
sis. Moreover, even if some smaller firms were allowed to bankrupt with no government 
aids, they typically had positive residual values after they were liquidated, which depend 
on the circumstance.2 Imposing these more realistic assumptions, i.e., nonterminal bank-
ruptcy, politically charged external grants, and positive recovery, will increase the ability 
of the stochastic dividend model to predict future outcomes. Given this setup, we obtain 
an analytic solution for the value maximization problem with the aid of an auxiliary prob-
lem, in which a terminal model with a residual value at bankruptcy is considered. A can-
didate solution of the latter problem can be constructed by a series of quasi-variational 
inequalities with a non-negative boundary condition. Using these procedures, we provide 

1 For example, a diffusion model with random returns has been considered in Sethi and Taksar (2002) for a 
company that can issue new equity when the surplus becomes negative. Along a similar line, Kulenko and 
Schimidli (2008), Yao et al. (2011) and Jin and Yin (2013) analyze the optimal dividend problem with capi-
tal injections and derive closed-form solutions.
2 For example, given the too-big-to-fail attitude held by the government, the government did not let big 
financial companies fail during the financial crisis because it can have huge consequences on the economy. 
While some monoline insurance companies and regional banks were allowed to bankrupt during the sub-
prime crisis, they were liquidated with residual values distributed to stockholders.
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a closed-form solution for the original dividend optimization problem with nonterminal 
bankruptcy, and determine the optimal dividend strategy and timing of payout in the pres-
ence of capital infusion.

Besides the closed-form solution for the diffusion model, we present and verify the con-
cise sufficient and necessary condition for a dividend distribution after the capital infusion. 
Numerical simulation and empirical tests are provided to verify the model predictions. We 
employ confidence intervals to determine if a firm’s dividend behavior is rational, instead 
of taking rationality as given, as in most previous studies. The confidence intervals can 
reveal the often high sampling error in the statistics, and so are more direct and transparent 
than standard errors. Another advantage of reporting confidence intervals is that it avoids 
the tricky problem of deciding on a null hypothesis by simply showing the range of true 
parameters.

The model generates policy implications for regulators. A concern of the government 
bailout for troubled firms during the financial crisis is that these firms may use government 
grants to pay dividends to stockholders or bonuses to management and therefore, induce a 
risk shifting problem. Our model suggests that to prevent such problem, the capital injec-
tion rate should be set at a level lower than the average growth rate of the firm’s future cash 
flow. Alternatively, the government can impose a penalty on the firm that distributes exces-
sive dividends after receiving financial aids, or put a cap on the dividend payment when the 
firm is still on the bailout program.

We take the model to the real data to explain the dividend behavior in the subprime 
crisis. The US government bailed out a number of troubled firms during the crisis to help 
them continue their operation. However, many of these companies on the government bail-
out program continued or even increased dividends while they were still on life vest. As 
an example, AIG incurred heavy losses in providing credit insurance to collateralized debt 
obligations (CDOs). It took a massive government bailout to help the company remain sol-
vent. However, instead of preserving cash to increase its chance of survival, the company 
used the government bailout money to actually pay out a total of $218 million dividends 
and bonuses in March 2009. Many other firms under the government support did the same 
thing. For example, 19 banks on the Supervisory Capital Assessment Program (SCAP) 
distributed about 80 billion for dividends and bonuses which represented nearly 50% of 
the Capital Purchase Program (CPP) funds used to recapitalize banks in the fall of 2008. 
An important question is whether these firms’ dividend decisions are rational. To answer 
this question, we test the hypothesis of rationality in firms’ dividend behavior using the 
confidence interval derived from the dividend optimization model. Interestingly, we find 
that that firms’ dividend behavior during the crisis period is consistent with rationality and 
the value-maximization principle. Our study demonstrates that the stochastic dynamic pro-
gramming model is a valuable tool that can be used to design an optimal payout policy and 
evaluate firms’ dividend decisions even in a highly uncertain environment as the subprime 
crisis.

Our paper is related to a growing literature on dividend payouts of financial firms, espe-
cially during a financial crisis, and the optimal policy response to external shocks (Hir-
tle 2014; Floyd et al. 2015; Cziraki et al. 2016; Acharya et al. 2017; Juelsrud and Nenov 
2020). Acharya et al. (2017) develop a model of bank dividend payout, whereby the risk 
shifting incentive of the bank stockholders affects bank dividend payments. They show 
that when banks are connected through an interbank market, the interaction of risk shift-
ing with a dividend externality may set off a systemic crisis. Juelsrud and Nenov (2020) 
study the informational role of dividends when banks are exposed to a coordination-based 
run. They show that banks can use dividends to both risk shift and signal their available 
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liquidity to short-term lenders and influence the lenders’ actions. They suggest that with 
dividend signaling, there is an additional informational externality that banks fail to inter-
nalize in addition to the risk-shifting inefficiencies. Jacob and Michaely (2017) investigate 
how dividend taxation affects payout. Exploiting an exogenous shock to dividend taxation, 
they show that absent any frictions, dividend taxation has a large impact on payout. As 
agency issues and shareholder conflicts increase, the impacts of owners’ tax preferences on 
dividend payout significantly decrease. Our work complements these studies. Similar to the 
Jacob and Michaely (2017) study, we consider the effects of taxes on dividend payments. 
Like the studies of Acharya et al. (2017) and Juelsrud and Nenov (2020), we examine the 
dividend payout issue during the financial crisis. Our paper differs from these studies in 
several aspects. First, we employ a stochastic dynamic programming approach to model 
the dividend behavior under uncertainty. Our modeling considers the effects of bankruptcy 
risk and differentiates the effects of terminal and nonterminal bankruptcies on firms’ stra-
tegic dividend payouts. Second, we construct a model of dividend payout policy that better 
accommodates the business operation of insurance companies, which were at the center 
stage of the subprime crisis. Third, we derive the optimal dividend payment strategy with 
taxation under symmetric information, and show that an optimal payout policy exists with-
out having to deal with the incentive issue related to information signaling.

This paper contributes to the current literature on corporate dividend policy. A num-
ber of recent papers have examined various issues of dividend policy related to informa-
tion, corporate governance, and environmental and social responsibility. Amberger (2023) 
examines whether the volatility of tax payments is associated with dividend payouts and 
finds that firms with more volatile tax payments are less likely to pay dividends. An et al. 
(2022), Chen et  al. (2022), and Rubio et  al. (2023) investigate the fundamental reasons 
behind firms’ dividend payments. Corgnet et  al. (2023) examine how securities mar-
ket aggregate the information in dividends and Mazouz et al. (2023) explore the relation 
between dividend policy, liquidity risk and the cost of equity capital. Aziz et al. (2022) and 
Wang (2022) examine the effect of ESG concerns on corporate dividend policy. Sikalidis 
(2022) and Tayachi (2023) investigate the effect of ownership structure on dividend policy. 
This paper complements these studies by examining how government policy may affect 
dividend payouts by financial and non-financial firms.

Our work is also related to a recent paper by Lindensjö and Lindskog (2020), which pro-
poses a dividend model that allows for capital injection when insurance companies face the 
possibility of bankruptcy. Our paper differs from Lindensjö and Lindskog (2020) in several 
major aspects. First, our paper focuses on the effect of the bailout from the government 
when the firm faces bankruptcy. Because bailout decisions are largely a political process, 
we treat the capital injection from the government as an external variable that is beyond the 
firm’s control. This setup contrasts sharply with Lindensjö and Lindskog (2020) that views 
the capital injection as an internal control variable, which enters into the objective function 
of their model. In their model, the firm can control outside funding, e.g., determining how 
much financing is from issuing new bonds or stocks. In their paper, the capital injection is 
primarily raising equity capital from the firm’s owners and they do not explicitly consider 
government bailout. In contrast, we focus on government bailout as the main source of 
capital injections and aim to explain the dividend puzzle during the period of government 
intervention. We specifically recognize that when the firm is on the verge of bankruptcy, 
it is extremely difficult for the company to issue new bonds or new stocks as implied by 
the Laffer theory. Second, in Lindensjö and Lindskog (2020), the dividend payout barrier 
is preset, that is, the dividend payment time is not a control variable in their model. In 
contrast, in our paper, both dividend time and amount are control variables. The optimal 
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dividend payment time and amount are determined by our model through the value optimi-
zation, and the dividend payout time is not a preset barrier. This setup is important as we 
want to investigate whether the dividend payout timing observed during the financial crisis 
is consistent with rationality. Third, our paper focuses on the effects of capital injections on 
dividend timing and amount. We construct the model and design empirical tests to inves-
tigate whether the dividend decisions are rational during the subprime crisis and govern-
ment bailout periods, whereas Lindensjö and Lindskog (2020) did not address these issues. 
Fourth, our paper considers the reinsurance problem, and the proportion of reinsurance is 
an optimal control variable in our model, whereas Lindensjö and Lindskog (2020) ignore 
the issue of the proportion of reinsurance. In their model, the proportion of reinsurance is 
set to zero. Our model is therefore more general and particularly suitable to describe the 
behavior of insurance companies such as AIG and MBIA, which were at the center of the 
subprime crisis. Finally, our dividend model can be used to explain the dividend behavior 
of not only insurance companies but also other financial institutions and firms, while Lin-
densjö and Lindskog (2020) focus on the problems of insurance companies and their paper 
does not provide empirical tests.

Our paper makes two major contributions to the dividend literature. First, we develop 
a rational dividend model based on the stochastic dynamic programming approach. Our 
generalized optimal stochastic dividend model accounts for the effects of bankruptcy risk 
and the possibility of capital infusion and recovery from bankruptcy, which have not been 
considered in traditional financial models. We provide a closed-form solution for this gen-
eralized model for the first time. Past studies have not been able to develop a stochastic 
dividend model so general and yet obtain the closed-form solutions. Second, we provide 
both numerical simulations and empirical results to support the prediction of the diffusion 
dividend model. We show that the dividend payout by troubled banks and insurance com-
panies are consistent with the prediction of our dividend model. The empirical evidence 
uncovered in this paper suggests that the dividend payout policy during the subprime crisis 
is consistent with rationality and the signaling equilibrium that dividends are used to signal 
financial firms’ available liquidity and managers’ confidence for resolving their financial 
problems.

The remainder of this paper is structured as follows. In Sect. 2, we propose a model with 
bankruptcy for the optimal dividend strategy with capital injections. An auxiliary model is 
proposed to help solve the complicated optimization problem. In Sect. 3, the relationship 
between the auxiliary model and the original model is discussed. In Sect. 4, the smooth 
solution of the original problem is given and in Sect. 5, an explicit form for the optimal 
dividend policy is listed out along with the closed-form solution for the optimal timing of 
dividend payments. In Sect.  6, numerical simulations are conducted to provide implica-
tions of the theoretical model and in Sect. 7, empirical tests are performed using real data. 
Finally, Sect. 8 summarizes the main findings and concludes the paper.

2  Dividend optimization models

In this section, we set up the stochastic dividend optimization model and solve for the 
close-formed solution. In the model, the liquid asset value process of the firm is repre-
sented by a Brownian motion with drift and diffusion terms. The drift term corresponds 
to the expected profit per unit of time generated from firms’ investment and operation, and 
the diffusion term captures risk exposure. Capital infusion is primarily through government 
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bailout. Firms in our model may retain part of the injected funds and pay out the rest as 
dividends when there is lack of a profitable investment opportunity. The manager maxi-
mizes the expected present value of future dividends from the perspective of shareholder 
wealth maximization. The value function specified in the model is net of taxes and transac-
tion costs, and capital injection is permissible when a firm faces bankruptcy. This setup 
paves the way to obtain the solution for the model with nonterminal bankruptcy later.

Let (Ω,F,P) be a probability space, and a process {Wt}t≥0 be a standard Brownian 
motion adapted to a filtration {Ft}t≥0 defined on this space. The reserve process {X(t)}t≥0 
is a state variable, which denotes the value of a firm’s liquid assets and its changes, 
ΔX(t) = X(t) − X(t − 1) , follow a normal distribution with mean � and variance �2 . The 
firm can invest or reduce risk through risk management using available funds. In such case, 
we can accommodate simultaneous decreases in the drift and diffusion terms of X(t) by 
multiplying them by u(t) ∈ [0, 1] , in which profits and risk are reduced concurrently by 
expending part of reserves (see also Højgaard and Taksar, 1998b). For insurance firms, the 
term 1 − u(t) represents the proportion of re-insurance actions taken to reduce the risk on 
liquid assets. Let the stream of dividends be described by a series of increasing stopping 
times �i, (i = 1, 2, ...) and the amounts of dividends paid to shareholders be denoted by a 
random variable �i, (i = 1, 2, ...) . In addition, we define the time of bankruptcy by

Upon bankruptcy, the firm may receive an x amount of external capital. After a capital 
infusion, the reserve process has a jump, Λb ∶= X(b+) − X(b) = x . Let � = x∕Δt , where Δt 
is the unit time of injection period. In the continuous analogue,

where � is the rate at which the firm receives a capital at the state of bankruptcy.
While we assume the amount of bailout grant is constant, it does not literally mean that 

capital injection amount is always the same in each bankruptcy case and for each firm. The 
assumption of a constant x is consistent with the reality that the bailout grant is a lump sum 
amount determined by the political process. In actuality, the amount of the bailout money 
in the government capital injection varies by firm and is often positively related to firm 
size. A bailout is not guaranteed. Whether a firm can receive a bailout grant or not is deter-
mined by the political process. Thus, the value of x can be zero. We permit x to vary by 
firm in our analysis. In empirical investigation, we use the actual amount of bailout grants 
and frequency, and occurrence for each firm in our tests and these values vary by firm.

To ascertain the relationship between capital injections and its subsequent optimal divi-
dends, we employ a discrete model for dividend events as in Cadenillas et al. (2006). Note 
that we do not consider the continuous form of dividend events in Asmussen and Tak-
sar (1997) and Sethi and Taksar (2002) here as the optimal dividend time is an important 
variable to be determined later in this study to explain the timing of dividend payout events 
during the subprime crisis. The process X(t) after capital injections and before the next 
bankruptcy can be represented by

where dX(t) = �dt at b, and IX(t)=0 is an indicator function at X(t) = 0.

b ∶= inf{t ≥ 0 ∶ X(t) = 0}.

(1)dX(t) = �dt, at X(b) = 0,

(2)X(t) =∫
t

b

𝜇u(s)ds + ∫
t

b

𝜎u(s)dWs −

∞∑
i=1

I(b<𝜏i<t)𝜉i + x ⋅ IX(t)=0,
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Remark 2.1 To focus on the relationship between capital injection and subsequent dividend 
events, we posit that the amount of capital injection x is a constant at the time of bank-
ruptcy. The capital injection is a fixed amount determined externally by the political pro-
cess and the value of x is beyond the firm’s control. Under this condition, it is suitable for 
us to consider the dividend process as (2), which is the process defined during two bank-
ruptcy states, and so is {�i} . The process (2) starts from the time point b, and we set b ≥ 0 
for generality.

Each dividend event involves transaction cost and taxes. The net amount of money 
that shareholders receive is denoted by a function g ∶ [0,∞) → (−∞,∞) as

where K > 0 is a fixed transaction cost that includes all expenses associated with dividend 
distribution (except taxes), and 1 − k ∈ (0, 1) is the tax rate at which dividends are taxed, 
and � is a real value variable with respect to the amount of liquid assets withdrawn.

Define a control policy � by

where 0 ≤ �i ≤ X(�i−) . The class of all admissible controls is denoted by A(x) . Under each 
admissible control � , we define a performance value functional J for the process (2) by

which represents the total expected discounted value received by shareholders and � is the 
discount rate. For capital injection, as it is a debt and the receiver has to pay it back, we 
deduct the discounted capital injections in the above function. In this paper, we assume 
that the amount of capital injection is out of the firm’s control at the state of bankruptcy. 
In the present case, capital injections mainly come from the bailout of government or other 
investment firms and the amount of injection is determined by these lenders. Therefore, we 
assume that capital infusion is an external variable, which is a parameter that can be varied 
to examine the sensitivity of results.

Based on J(x,�) , we define a value function V(x) by

We posit that the manger has control over the dividend payments and act for the best inter-
est of shareholders by choosing a policy to maximize the expected value of future divi-
dend payments or equivalently, to maximize the shareholder value. Miller and Modigli-
ani (1961) provide the valuation formula for the firm by discounting dividend payments 
at an infinite horizon using a similar discount function in a perfect market with certainty 
and no bankruptcy risk. But in an imperfect market, transaction costs and taxes exist for 
dividend payments and there is a possibility of bankruptcy. In this paper, we maximize the 
expected future dividends for shareholders net of transaction costs and taxes in a stochastic 
environment.

The optimal control �∗ = (u∗, T∗, �∗) is a policy for which the following equality is 
satisfied:

g(�) ∶= k� − K,

� ∶= (u, T, �) = (u; �1, �2, ..., �i, ...; �1, �2, ...�i, ...)

J(x,𝜋) ∶= �x

[ ∞∑
i=1

e−𝜆𝜏i g(𝜉i) ⋅ I(𝜏i>b) − e−𝜆b ⋅ x

]
,

(3)V(x) ∶= sup
𝜋∈A(x)

J(x,𝜋) = sup
𝜋∈A(x)

�x

[ ∞∑
i=1

e−𝜆𝜏i g(𝜉i) ⋅ I(𝜏i>b) − e−𝜆b ⋅ x

]
.
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There is an optimal dividend strategy when the company has excess liquid capitals, which 
have priority to cover current liabilities. An external capital injection is an installment 
debt for a firm, and the amount of external capital injection x will affect the optimal divi-
dend payout. Therefore, we cannot just simplify the objective in (3) to solve the problem 
sup𝜋∈A(x) �x

�∑∞

i=1
e−𝜆𝜏i g(𝜉i) ⋅ I(𝜏i>b)

�
 by deriving its HJB equation as in classical dividend 

problems. In addition, an important task is to find out the relationship between the capital 
injection and the next dividend event. To tackle these issues, we adopt the strategy of con-
structing an auxiliary problem to approach the original value function in (3).

We first consider the case of terminal bankruptcy, and employ the cash reserve pro-
cess before bankruptcy as

to define an auxiliary performance function Ja as

where the definitions of �i , b, � and g(⋅) are the same as in J(x,�) , but a is the residual value 
that has accrued from the sale of non-liquid assets at bankruptcy and the bankruptcy time 
in this case may be not zero. The control policy �a is defined by

The class of all admissible controls �a is denoted by Aa(x).
As mentioned, the assumption of a recovery value upon bankruptcy and the uncon-

trollable capital infusion amount leads to a nonzero boundary condition and a nonlinear 
value function in the diffusion dividend model, making it difficult to obtain the closed-
form solution of the value function V(x). To facilitate solving the original optimization 
problem, we define an auxiliary optimal value Va(x) as

Note that in past studies, it is usually assumed that a = 0 , which implies no value left for 
shareholders at the bankruptcy state. But in reality, firms often have a residual value upon 
bankruptcy. Thus, we set the condition that a ≥ 0.

3  Relationship between V(x) and V
a
(x)

In this section, we demonstrate the relationship between the true value function V(x) 
and the auxiliary optimal value Va(x) , which is used to obtain the solution of V(x). We 
first present the inequalities satisfied by Va(x) and then verify that the solution of Va(x) 
can be used to obtain the solution of V(x).

V(x) = J(x,�∗).

(4)X(t) = x + ∫
t

0

𝜇u(s)ds + ∫
t

0

𝜎u(s)dW
s
−

∞∑
i=1

I(𝜏
i
<t)𝜉n,

Ja(x,𝜋a) ∶= �x

[ ∞∑
i=1

e−𝜆𝜏i g(𝜉i)I(𝜏i<b) + e−𝜆ba

]
,

�
a
∶= (u, T, �) = (u; �1, �2,… , �

i
,… ; �1, �2,… , �

i
,…).

(5)Va(x) ∶= sup
�a∈Aa(x)

Ja(x,�a).
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For a function � ∶ [0,∞) → ℝ , we define the maximum utility operator M of it by

Then, MV(x) is a local optimal policy, which is equal to or less than the global optimal 
policy V(x). That is, the following relationship holds,

in which the equality holds when x is a globally dividend intervening point.
Next, we define a differential operator Lu as

By the dynamic programming principle (e.g., Højgaard and Taksar 1998a, b), in the con-
tinuation region, which is a region not optimal to intervene, it follows that V(x) satisfies the 
Hamilton-Jacobi-Bellman (HJB) equation:

By the same argument, Va(x) defined in (5) also satisfies (6) and (7). However, the equation 
in (7) is not sufficient to find the solution of Va(x) . Besides (7), the boundary condition of 
Va(x) is required. The discussion above and the arguments in (6) and (7) give us an intuition 
that one analytic form of Va(x) satisfies the following statement.

Statement 3.1 Assume that function v(x) ∶ [0,∞) → [0,∞) . For every x ∈ [0,∞) and 
u ∈ [0, 1] , if we have

we claim that v(x) satisfies the quasi-variational inequalities (QVI) of the control problem.

In the following we provide a clue to obtain the form of V(x) by demonstrating that the 
solution of V(x) can be expressed by Va(x) with the boundary condition �V �

a
(0) − �Va(0) = 0

Lemma 3.1 Let V(x) be a solution of (3) and v(x) be a solution of (QVI). Assume that there 
exists a positive number P, such that v(x) is a nonnegative C2-function on (0, P) with v�(x) 
bounded, v(x) is linear on [P,∞) and v(x) has a mixed boundary condition

M𝜙(x) ∶= sup
𝜔
{𝜙(x − 𝜔) + g(𝜔) ∶ 0 < 𝜔 ≤ x}.

(6)V(x) ≥ MV(x),

L
uv(x) =

1

2
�2u2v��(x) + �uv�(x) − �v(x).

(7)max
u∈[0,1]

L
uV(x) = 0.

(8)v(x) ≥ Mv(x),

(9)L
uv(x) ≤ 0,

(10)(v(x) −Mv(x)) ⋅ max
u∈[0,1]

L
uv(x) = 0,

(11)v(0) = a,
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Then, it follows

Proof Denote by X(t) = X(u,T,�) the trajectory determined by an admissible control (u, T, �) 
and (2). In view of the boundedness of v�(x) on [0,∞) , then

For dividend events, let n be a positive integer and b < 𝜏1 . Denote �0 ∶= b . In the follow-
ing, we denote the minimum of any two numbers o1 and o2 by o1 ∧ o2 = min{o1, o2} and 
the maximum by o1 ∨ o2 = max{o1, o2} . After the bankruptcy time b, it follows that

Here and
In addition, for i ≥ 2 , applying Itô ’s formula and combining with Lusv(X(s)) ≤ 0 , we 

have

At the dividend time �i , i = 1, 2,… , it implies from (8) that

At time b, some capitals can be injected into X(t). Then it follows that

On the other hand,

(12)�v�(0) − �v(0) = 0.

(13)v(x) ≥ V(x).

Ex

[
∫

∞

0

(e−𝜆tv�(X(t)))2dt

]
< ∞.

(14)

e−�(t∧�n)v(X(t ∧ �n)) − e−�(t∧�0−)v(X(�0−))

=

n∑
i=1

{
e−�(t∧�i)v(X(t ∧ �i−)) − e−�(t∧�i−1)v(X(t ∧ �i−1))

}

+

n∑
i=0

e−��i

{
v(X(�i)) − v(X(�i−))

}
I(t≥�i).

(15)

e−�(t∧�i)v(X(t ∧ �i−)) − e−�(t∧�i−1)v(X(t ∧ �i−1))

= �
t∧�i

t∧�i−1

e−�s
{

1

2
�2u2v��(X(s)) + �uv�(X(s)) − �v(X(s))

}
ds

+ �
t∧�i

t∧�i−1

e−�sv�(X(s))�usdWs

= �
t∧�i

t∧�i−1

e−�sLusv(X(s))ds + �
t∧�i

t∧�i−1

e−�sv�(X(s))�usdWs

≤ �
t∧�i

t∧�i−1

e−�sv�(X(s))�usdWs.

(16)e−��i{v(X(�i)) − v(X(�i−))} ≤ −e−��i g(�i).

(17)e−��0 (v(X(�0)) − v(X(�0−))) = e−��0 ⋅ x.
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Combining inequalities and equalities (14)–(18), and taking expectations, we obtain

It can be shown (see also Cadenillas et al. 2006) that �n → ∞ a.s. (otherwise, v(x,�) = −∞ ). 
Thus, P(�n → ∞) = 1 , which implies that for n → ∞ , we have

Then taking supremum over all trajectories with admissible control, v(x) ≥ V(x) is verified 
as t → ∞ .   ◻

Theorem 3.1 Let V(x) be the solution of (3). Suppose that va(x) is the optimal value func-
tion for the problem (5) and let u(⋅) and {�i}∞i=1 be corresponding optimal control functions. 
Let � be provided by

and let X�∗

t
 be the solution of (2) with � given by (19), u�∗ (t) given by u(X�∗

t
) and ��∗

i
 given 

by �i(X�∗

t
) . Then, va(x) presents the optimal value function V(x) with the capital injection 

rate, �.

Proof As va(x) is the optimal value function (5), the corresponding u(x) forms the arg-
maxima of Eq. (7). Consequently, it follows that Luva(x) = 0 and by the definition of (19), 
we have �v�

a
(0) − �va(0) = 0 . Repeating the argument used in the proof of Lemma 3.1, we 

have

As t → ∞ , by monotone convergence

(18)

e−𝜆(t∧𝜏1−)v(X(t ∧ 𝜏1−)) − e−𝜆⋅𝜏0v(X(𝜏0))

= �
t∧𝜏1−

𝜏0

e−𝜆sLusv(X(s))I(X(s)>0) + e−𝜆s
[
v�(0)𝜂 − 𝜆v(0)

]
I(X(s)=0)ds

+ �
t∧𝜏1−

𝜏0

e−𝜆sv�(X(s))𝜎usI(X(s)>0)dWs

≤ �
t∧𝜏1−

𝜏0

e−𝜆sv�(X(s))𝜎usI(X(s)>0)dWs.

v(x) − Ex[e
−𝜆(t∧𝜏n)v(X(t ∧ 𝜏n))]

≥ Ex

[ n∑
i=1

{
e−𝜆𝜏i g(𝜉i) ⋅ I(t≥𝜏i) − �

t∧𝜏i

t∧𝜏i−1

e−𝜆sv�(X(s))𝜎usdWs

}]

− Ex

[
�

t∧b

0

e−𝜆sv�(X(s))𝜎usI(X(s)>0)dWs + e−𝜆b ⋅ x

]

= Ex

[ n∑
i=1

e−𝜆𝜏i g(𝜉i) ⋅ I(t≥𝜏i) − e−𝜆b ⋅ x

]
.

v(x) − Ex[e
−�tv(X(t))] ≥ Ex

[ ∞∑
i=1

e−��i g(�i)I(t≥�i) − e−�b ⋅ x

]
.

(19)� =
�va(0)

v�
a
(0)

,

(20)va(x) − �x[e
−�tva(X

�∗

t
)] = �x

[ ∞∑
i=1

e−��i g(��
∗

i
)I{�i≤t} − e−�b ⋅ x

]
.
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In the following, we show that �x[e
−�tva(X

�∗

t
)] → 0 for t → ∞ and then from (20), the fol-

lowing inequality holds:

From the boundedness of v�
a
(x) , it follows that there exists a constant Θ > 0 , such that 

va(x) ≤ Θ(1 + x) . Consequently,

In addition, for the process X�∗

t
 , we have

Therefore,

As such,

and (21) follows. Additionally, from Lemma 3.1, we have

Thus, Va(x) can represent the form of V(x) to obtain the solution for the terminal bank-
ruptcy model.   ◻

4  Smooth solutions of (QVI) and V(x)

In this section, we provide a general closed-form solution of (QVI). Then, based on it and 
Theorem 3.1, we derive a solution of V(x) for the nonterminal bankruptcy model.

4.1  A smooth solution to (QVI) properties

In this subsection, we construct a solution of (QVI) using a method similar to that in Cad-
enillas et  al. (2006), Chen and Li (2017). In Cadenillas et  al. (2006), (QVI) has a zero 
boundary condition, that is, v(0) = 0 . However, for the nonzero boundary condition as in 
this paper, (QVI) is a nonlinear problem, and the solution can’t be obtained just by shifting 
the solution of (QVI) with the zero boundary condition. This is verified in the following, 
and we show that the case v(0) = a > 0 is much more complicated than the case a = 0 . 
Nevertheless, the ideas in Cadenillas et al. (2006) are useful and give us a powerful heuris-
tic tool to search for the solution of (QVI) under a > 0.

First, we define a dividend intervention point as

�x

[ ∞∑
i=1

e−��i g(��
∗

i
)I{�i≤t} − e−�b ⋅ x

]
↑ �x

[ ∞∑
i=1

e−��i g(��
∗

i
) − e−�bx

]
= V�∗ (x).

(21)va(x) = V𝜋∗ (x) ≤ V(x), x > 0.

e−�tva(X
�∗

t
) ≤ Θ ⋅ e−�t ⋅ (1 + X�∗

t
).

�(X�∗

t
) = �

[
x + �

t

0

�u(X�∗

t
)ds + �

t

0

�IX�∗

t =0ds

]
≤ x + �t + �t.

�[e−�tva(X
�∗

t
)] ≤ e−�tΘ(1 + x + (� + �)t) → 0, as t → ∞.

lim
t→∞

�x[e
−�tva(X

�∗

t
)] = 0,

Va(x) ≥ V(x), x > 0.
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Then, at the interval (0, x1) , from (QVI), the following equation is satisfied:

Let u(x) ∈ ℝ be the maximizer of Luv(x) . It follows that Luv(x) reaches its maximum at

Combining (24) with (23), Eq. (23) can be reduced to

A general solution of (25) under the boundary condition v(0) = a is

where � is presented by

and C is a free positive constant. � can be interpreted as a discount factor adjusted for the 
mean and variance of the cash flow (reserve) process or the squared Sharpe ratio. Substitut-
ing (26) into (24), u(x) has the form as

If 𝜇 > 0 , obviously u(x) in (28) is an increasing linear function; so u(x) ≤ 1 if and only if 
x ≤ x0 , where

and

Thus, if x0 > 0 , which implies that for x0 < x < x1 , then u(x) ≥ 1 . But since the range of 
u(x) is [0, 1], we must have u(x) = 1 for x ∈ (x0, x1) . Consequently, (23) becomes

One general solution to (31) can be written as

(22)x1 = inf{x ≥ 0 ∶ v(x) = Mv(x)}.

(23)max
u∈[0,1]

L
uv(x) = 0, 0 < x < x1.

(24)u(x) = −
�v�(x)

�2v��(x)
.

(25)−
�2[v�(x)]2

2�2v��(x)
− �v(x) = 0.

(26)v(x) = (C
1

� x + a
1

� )� ,

(27)� =
�

� +
�2

2�2

,

(28)u(x) =
�

(1 − �)�2

[
x +

(
a

C

) 1

�
]
.

(29)x0 ∶=
(1 − �)�2

�
−

(
a

C

) 1

�

= X0 −

(
a

C

) 1

�

,

(30)X0 ∶=
(1 − �)�2

�
.

(31)
1

2
�2v��(x) + �v�(x) − �v(x) = 0, x ∈ (x0, x1).

(32)v(x) = C1e
�+(x−x0) + C2e

�−(x−x0), x ∈ (x0, x1),
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where C1 and C2 are free constants, and �+ and �− are given by

Continuity of the function v(x) and its derivative v�(x) at the point x0 implies that C1 = Ca1 , 
C2 = Ca2, and a1 and a2 are defined by

It can be shown that a1 > 0 and a2 < 0.
On the other hand, if x0 ≤ 0 , then u(x) = 1 for any x ∈ [0, x1) , and (23) becomes

with the boundary condition v(0) = a . Solving (35), the general solution can be obtained as 
follows:

with C1 + C2 = a.
We now summarize the possible structure for the solution of (23) on [0, x1) . If x0 > 0 , then

where C is a free positive constant. If x0 ≤ 0 , then the structure of v(x) on [0, x1) is given 
by (36).

Remark 4.1 The existence of x0 and x0 > 0 , is equivalent to that of C, such that

In addition, x0 → 0+ is equivalent to C → (aX
−�

0
)+ . For v(x) in (36) and (37), they are con-

sistent at x0 = 0 . Thus, it follows that C1 = Ca1 . In addition, if the solution (36) exists, 
it implies C ≤ aX

−�

0
 . There is no conflict to denote C1 by Ca1 when C ≤ aX

−�

0
 . So, we let 

C1 = Ca1 for C ≤ aX
−�

0
.

4.2   Smooth solution of (QVI) properties at x
1

We next discuss the properties of the smooth solution at x1 , which is the critical point for the 
dividend event. From the definition of x1 , we have that v(x1) = Mv(x1) . In addition,

Then at x1 , the supremum on Mv(x) can be taken over � ∈ [�, x1] for some 𝜖 > 0 . Thus, 
there exists �(x1) ∈ (�, x1] , such that

(33)�+ =
−� +

√
�2 + 2��2

�2
, �− =

−� −
√
�2 + 2��2

�2
.

(34)a1 =
�X

�−1

0
− �−X

�

0

�+ − �−
, a2 =

�+X
�

0
− �X

�−1

0

�+ − �−
.

(35)
1

2
�2
v
��(x) + �v�(x) − �v(x) = 0, x ∈ [0, x1),

(36)v(x) = C1e
�+x + C2e

�−x, x ∈ [0, x1),

(37)v(x) =

{(
C

1

� x + a

1

�

)�

, x ∈ [0, x0),

Ca1e
�+(x−x0) + Ca2e

�−(x−x0), x ∈ [x0, x1),

(38)C > aX
−𝛾

0
.

lim
𝜂→0

(v(x1 − 𝜂) + k𝜂 − K) = v(x1) − K < v(x1).
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Let x̃ = x1 − �(x1), then 0 ≤ �x < x1 and

From (39), it follows that

and

4.3  Uniqueness for the unfixed parameters

In the above discussion, some parameters, such as C, C1 and C2 , are unfixed numbers. In 
this section, we discuss the uniqueness of these parameters by two useful integral func-
tions, which can be used to obtain a solution of (QVI).

4.3.1  Two cases of x
0
 and two corresponding integral functions

Case I: x0 > 0.
Let HC(x) be a function, with constant C, constructed by

where x0 is also defined in (29) with C > aX
−𝛾

0
.

Define

where xC
1
 and x̃C are two nonnegative roots of the equation k − CHC(x) = 0 with �xC < xC

1
 , 

and x̃C ∨ 0 denotes max{x̃C, 0} . If x̃C doesn’t exist on [0,∞) , then set x̃C ∨ 0 = 0.
From the definitions of HC(x) , it is easy to see that CHC(x) is a continuous and increas-

ing function of C and HC(x) has convexity on x ∈ [0,∞) by (HC)��(x) > 0 . It follows that 
xC
1
 is a decreasing function of C and x̃C is an increasing function of C. Thus, we have the 

following proposition.

Proposition 4.1 For HC(x) defined by (41), we have that I1(C) in (42) is a strictly decreas-
ing function with respect to C on (aX−�

0
a1,+∞) . Moreover, there exists C∗ ∈ (aX

−�

0
a1,+∞) , 

such that I1(C∗) = 0.

Case II: x0 ≤ 0.

v(x1) = v(x1 − �(x1)) + k�(x1) − K.

(39)v(x1) = v(̃x) + k(x1 − x̃) − K.

v(x1) − v(̃x) = ∫
x1

x̃

v�(x)dx = k(x1 − x̃) − K,

(40)∫
x1

x̃

(k − v�(x))dx = K.

(41)HC(x) ∶=

{
�[(

a

C
)
1

� + x]�−1, x ∈ [0, x0),

a1�+e
�+(x−x0) + a2�−e

�−(x−x0), x ∈ [x0,∞),

(42)I1(C) = ∫
xC
1

x̃C∨0

(k − CHC(x))dx,
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Let

where 0 < C1 ≤ aX
−𝛾

0
a1.

Define

where xC1

1
 and x̃C1 are two nonnegative roots of the equation k − HC1 (x) = 0 with �xC1 < x

C1

1
 . 

If x̃C1 doesn’t exist on [0,∞) , then let x̃C1 ∨ 0 = 0.
For (44), taking the derivative of I2(C1) with respect to C1 gives

For any positive C1 , I�2(C1) < 0 due to the fact 𝜃+ > 0 and 𝜃− < 0 . Thus, we have the fol-
lowing result.

Proposition 4.2 For HC1 (x) defined by (43), we have that I2(C1) in (44) is strictly decreas-
ing function with respect to C1 on (0, aX−�

0
a1] . Moreover, it follows that limC1→0 x

C1

1
= ∞, 

and limC1→0 I2(C1) = ∞.

4.3.2  Property of two integral functions at x
0
= 0

At x0 = 0 , there are some common properties of I1(C) and I2(Ca1) . First, C1 = Ca1 and 
C = aX

−�

0
 . Then from

we find that at x0 = 0 , the integrands of I1(C) and I2(C1) are the same. Consequently, we 
can conclude that if xC1

1
 exists at C1 = aX

−�

0
a1,

As I1(C) is a decreasing function of C, the existence of C, such that C > aX
−𝛾

0
 , is equivalent 

to that I2(aX
−𝛾

0
a1) > 0 is satisfied. To judge whether I2(aX

−𝛾

0
a1) > 0 , we have the following 

result.

Proposition 4.3 We have that I2(aX
−𝛾

0
a1) > 0 if and only if

where M∗ is given by

(43)HC1 (x) = C1�+e
�+x + (a − C1)�−e

�−x, x ∈ [0,∞),

(44)I2(C1) ∶= ∫
x
C1
1

x̃C1∨0

(k − HC1 (x))dx,

(45)I�
2
(C1) = ∫

x
C1
1

x̃C1∨0

(
− �+e

�+x + �−e
�−x

)
dx.

a − C1 = a − aX
−�

0
a1 = a(1 − X

−�

0
a1) = aX

−�

0
(X

�

0
− a1) = aX

−�

0
a2,

(46)I2(aX
−�

0
a1) = I1(aX

−�

0
).

(47)a < k∕M∗,

(48)M∗ =

(
−

�−

�+

) �−
�+−�−

⋅

(
2�

�
− �−

)
.
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Proof Let B(x) ∶= aX
−�

0
a1�+e

�+x + aX
−�

0
a2�−e

�−x. Notice that B��(x) > 0 , and so B(x) has 
convexity. One equivalent condition of I2(aX

−𝛾

0
a1) > 0 is that

Solving B�(x) = 0 , we have

It can be shown that −a2𝜃
2
−

a1𝜃
2
+

> 1 and x > 0 in (50).
Substituting (50) into B(x), we have

By simplification, we can obtain

From (49), (51) and the equality above, it follows that one equivalent condition of 
I2(aX

−𝛾

0
a1) > 0 is a < k∕M∗.   ◻

Then, if a < k∕M∗ , the solution of (QVI) is

On the other hand, if a ≥ k∕M∗ the solution of (QVI) is given by

where C1 is a positive parameter.

(49)min
x∈[0,∞)

B(x) < k.

(50)x =
1

�+ − �−
ln

(
−a2�

2
−

a1�
2
+

)
.

(51)

min
x∈[0,∞)

B(x) =aX
−�

0

[
a1�+

(
−a2�

2
−

a1�
2
+

) �+

�+−�−

+ a2�−

(
−a2�

2
−

a1�
2
+

) �−
�+−�−

]

=aX
−�

0

(
−a2�

2
−

a1�
2
+

) �+

�+−�−

[
a1�+ −

a1�
2
+

�−

]

=aX
−�

0

(
−a2�

2
−

a1�
2
+

) �+

�+−�−

⋅

a1�+(�− − �+)

�−
.

aX
−�

0

(
−a2�

2
−

a1�
2
+

) �+

�+−�−

⋅

a1�+(�− − �+)

�−
= a

(
−

�−

�+

) �−
�+−�−

⋅

(
2�

�
− �−

)
= aM∗.

(52)v1(x) ∶=

⎧⎪⎨⎪⎩

�
C

1

� x + a
1

�

��

, x ∈ [0, x0),

Ca1e
�+(x−x0) + Ca2e

�−(x−x0), x ∈ [x0, x
C
1
),

v1(x
C
1
) + k(x − xC

1
), x ∈ [xC

1
,∞).

(53)v2(x) ∶=

{
C1e

�+x + (a − C1)e
�−x, x ∈ [0, x

C1

1
),

v2(x
C1

1
) + k(x − x

C1

1
), x ∈ [x

C1

1
,∞),
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4.4  Solution of the nonterminal bankruptcy model

We are now in a position to solve the optimization problem for the nonterminal bankruptcy 
model of dividends. The key is to exploit the relationship between Va(x) and V(x) in Sect. 3. 
Specifically, we employ the solution of the auxiliary value function Va(x) to construct the 
solution of V(x) in the nonterminal bankruptcy model.

From the preceding analysis, we know that va(x) can be given by v1(x) in (52) or v2(x) in 
(53). By (52), it is easy to show that

where C > aX
−𝛾

0
 . On the other hand, from (53), we have

where C ≤ aX
−�

0
 . Let � =

�va(0)

v�
a
(0)

 , then from (54) and (55), we can see that � is an increasing 

function of the ratio a
C
 . Consequently, for any � ∈ (0,∞) , there exists a unique ratio a

C
, such 

that � =
�va(0)

v�
a
(0)

. So, for a fixed a, the parameter C is unique, corresponding to the given 
value of �.

From (54), we have � =
�

�
(
a

C
)
1

� . It follows that

or a = C(
��

�
)� . From C > aX

−𝛾

0
 , it implies � ∈ (0,

�X0

�
) . In reduction, �X0

�
=

�

2
 . On the other 

hand, for � ∈ [
�

2
,∞) and from (55), � =

�

�−+a1(�+−�−)∕(
a

C
)
. Consequently,

For simplicity, we denote p� =
a1(�+−�−)

�

�
−�−

 . Then, for any given 𝜂 > 0 , we have the following 

results.

Proposition 4.4 If � ∈ (0,
�

2
) , then the solution v(x) of the nonterminal bankruptcy model 

with a capital injection � is uniquely given by

where x0 = X0 −
��

�
 . On the other hand, if � ∈ [

�

2
,∞) , the solution v(x) of the nonterminal 

bankruptcy model with a capital injection � is uniquely given by

(54)
va(0)

v�
a
(0)

=
1

�

(
a

C

) 1

�
,

(55)
va(0)

v�
a
(0)

=
a

Ca1�+ + (a − Ca1)�−
=

1

�− + a1(�+ − �−)∕
(

a

C

) ,

a

C
=
(��
�

)�

,

a

C
=

a1(�+ − �−)

�

�
− �−

.

(56)v(x) =

⎧⎪⎨⎪⎩

C(x + ��∕�)� , x ∈ [0, x0),

Ca1e
�+(x−x0) + Ca2e

�−(x−x0), x ∈ [x0, x1),

v(x1) + k(x − x1), x ∈ [x1,∞),
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4.5  Determination of parameter C

The analysis above shows that the solution of the nonterminal bankruptcy model depends 
on parameter C. We next discuss how to determine the value of this parameter.

Let x̃+ denote max{x̃, 0} . For the optimal strategy v(x), there exists a point x̃+ , such that

It follows that

Define I(C) = ∫ x1

x̃+
(k − v�(x))dx, then according to the two different cases of v(x) in (56) and 

(57), we can write I(C) as I1(C) and I2(C) as follows:

and

where

and x1 and x̃ are two roots of equation k − CH1(x) = 0 or k − CH2(x) = 0 with �x < x1 . If 
�x < 0 , we use x̃+ to replace x̃ . In Appendix A.1, the steps to calculate C are given. The 
value of x1 − x̃+ represents the amount of dividend payout and I(C) denotes net dividends 
received by shareholders.

5  Dividend policy and payout timing

Given the results in the preceding sections, we now formally present the optimal dividend 
policy. in this section, we discuss the time between the bankruptcy state and the subsequent 
dividend payout predicted by the model and present some useful results.

(57)v(x) =

{
Ca1e

�+x + C(p� − a1)e
�−x, x ∈ [0, x1),

v(x1) + k(x − x1), x ∈ [x1,∞).

v(x1) − v(̃x+) = ∫
x1

x̃+
v�(x)dx = k(x1 − x̃+) − K.

∫
x1

x̃+
(k − v�(x))dx = K.

I1(C) = ∫
x1

x̃+
(k − CH1(x))dx,

I2(C) ∶= ∫
x1

x̃+
(k − CH2(x))dx,

(58)
H1(x) ∶=

{
�
(
x +

��

�

)�−1

, x ∈ [0, x0),

a1�+e
�+(x−x0) + a2�−e

�−(x−x0), x ∈ [x0,∞),

H2(x) = a1�+e
�+x + (p� − a1)�−e

�−x, x ∈ [0,∞),
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5.1  Dividend policy

The optimal policy for the nonterminal bankruptcy model is presented below.

Policy 5.1 Suppose that � , � , k, K, � and � are estimated from empirical data. It follows 
from Proposition 4.4 that parameter values, C, x0 , x1 , and x̃ can be calculated. Let �∗

0
= 0 

and x0 = X0 −
��

�
 , then the control �∗ = (u∗, T∗, �∗) is defined by

where X∗ is the solution of the stochastic differential equation:

which is the optimal control associated with the function v(x) defined by (56) and (57).

5.2  The expected time between bankruptcy and its subsequent dividend payout

In this part, we firstly provide the expected time between bankruptcy state and its subse-
quent dividend payout after achieving external capital injections. Then, based on this result 
we illustrate an interesting application on the explanation of paying dividend immediately. 
Moreover, we present a sufficient and necessary condition for this event.

5.2.1  Expected time for dividend distribution

If � ∈ [0,
�

2
) , from Proposition 4.4, we have x0 = X0 −

𝜂𝛾

𝜆
> 0 . But for � ∈ [

�

2
,∞) , it 

implies x0 ∨ 0 = 0 . For convenience, we use x+
0
 to denote x0 ∨ 0 . If x+

0
= 0 , then all the fol-

lowing functions defined on [0, x+
0
) do not exist. Hence, we just need to consider the case 

defined on [x+
0
,∞) . We define the stochastic process Y(t) by

where u∗ ∶ [0,∞) → [0,∞) has the following function:

and �, �, � and � are as defined before. In [0, x+
0
) , the process Y(t) is

u∗(t) ∶=

{ 𝜇

(1−𝛾)𝜎2
(X∗(t) + 𝜂𝛾∕𝜆), if X∗(t) ∈ [0, x+

0
),

1, if X∗(t) ∈ [x+
0
,∞),

𝜏∗
i+1

= inf{t > 𝜏∗
i
∶ X∗(t) = x1}, i = 0, 1, 2,…

𝜉∗
i
= x1 −�x+, i = 1, 2, 3,…

X∗(t) =X∗(0) + ∫
t

0

𝜇u∗(X∗(s))ds + ∫
t

0

𝜎u∗(X∗(s))dWs

− (x1 −�x+)

∞∑
i=1

I{𝜏∗
i
<t} + 𝜁 (t)I{X∗(t)=0},

Y(t) = x + ∫
t

0

�u∗(Y(s))ds + ∫
t

0

�u∗(Y(s))dWs,

u∗(x) ∶=

{
�

(1−�)�2

(
x +

��

�

)
, if x ∈ [0, x+

0
),

1, if x ∈ [x+
0
,∞),
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whereas in [x+
0
,∞) , the process Y(t) behaves like a Brownian motion

Define a stopping time by

For both processes in (59) and (60), they may first reach the upper boundary x1 or the 
lower boundary 0, and we let �x1 and �0 be the corresponding times for these two cases. Let 
x ∈ (0, x1] . We consider auxiliary functions �x1

(x) and �0,x1
(x) defined by

Here, �x1
(x) is the probability that the process Y(t) reaches the boundary x1 prior to time 0, 

and �0,x1
(x) is the expected time that the process Y(t) exits from the interval (0, x1].

Let �∗
x1
= inf{t|X(t) = x1,X(0) = 0} . For the dividend policy with capital injections, we 

denote the expected time duration between bankruptcy state and the next dividend time by 
�

x1
0
(x) = Ex(�

∗
x1
) , where x is the position after the capital is injected at the bankruptcy state. 

In Appendix B.1, for every x ∈ [0, x1] , we derive the closed form of �x1
0
(x):

where the closed forms of �0,x1
(x) and �x1

(x) are also obtained.
In addition, in Appendix B.2, the variance of �∗

x1
 is given and denoted by �2

�x1
 . This ena-

bles us to set the confidence interval for �∗
x1

 under the assumption of normal distribution for 
�∗
x1

 at a given significant level. For instance, under the 5% significance level (or 95% confi-
dence level), the confidence interval of �∗

x1
 is

By Itô ’s formula, log(Y1(t) + ��∕�) is a linear Brownian motion with drift

Thus, if 1 − 2𝛾 < 0 and Y1(0) ∈ [0, x+
0
) , then there is a positive probability that Y1(t) never 

reaches x1 (see Section  7.5, Karlin and Taylor 1975), which implies �x1
0
(x) = ∞ . But if 

x+
0
= 0 , the constraint 1 − 2𝛾 > 0 is not needed. So, in numerical simulations (see below), 

we only consider the case x+
0
= 0 and the case x+

0
> 0 with condition 1 − 2𝛾 > 0 . In empir-

ical investigation, we find that all � values are large and satisfy the condition of 𝜂 >
𝜇

2
 , 

which leads to x+
0
= max{X0 −

��

�
, 0} = 0 . Similarly, for the process of Y2(t) , the feasible 

condition is 𝜇 > 0 , which is also satisfied as shown later in our numerical simulations and 
empirical examples.

(59)dY1(t) =
�2

(1 − �)�2

(
Y1(t) +

��

�

)
dt +

�

(1 − �)�

(
Y1(t) +

��

�

)
dWt,

(60)dY2(t) = �dt + �dWt.

�0,x1 ∶= inf{t ∈ [0,∞) ∶ Y(t) ∉ (0, x1)}.

(61)𝜙x1
(x) ∶=Px{𝜏x1 < 𝜏0},

(62)�0,x1
(x) ∶=Ex[�0,x1 ].

(63)�
x1
0
(x) =

�0,x1
(x)

�x1
(x)

,

[
�x1

(x) − 1.96��x1
,�x1

(x) + 1.96��x1

]
.

�2

(1 − �)�2
−

1

2

�2

(1 − �)2�2
=

�2

2(1 − �)2�2
(1 − 2�).
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5.2.2  The condition of immediate dividend payment after the bailout

When the reserve process X(t) reaches the bankruptcy state, some amounts of capital are 
expected to be injected in the nonterminal bankruptcy model. A question of interest is how 
large the injection rate � should be so that a dividend is paid immediately (e.g., as done by 
banks during the subprime crisis). For clarity, we explain below the statement of dividends 
being paid immediately.

We set the condition of “immediately” by an arbitrarily small threshold value 𝜖i > 0 for 
a shareholder i. Specifically, for any shareholder i there exists a �i , such that �x1

0
(x) ≤ �i , 

where �x1
0
(x) is the expected dividend payment time after the bailout given by (63). Thus, 

we can define the event of an immediate dividend payment mathematically as follows.

Statement 5.1 For any shareholder i, there exists an expected value 𝜖i > 0 such that divi-
dends are paid immediately. When the condition �x1

0
(x) ≤ �i holds, we say dividends are 

paid “immediately”.

From Sect. 5.1, we know that if the process X∗(t) reaches the point x1 , dividends are dis-
tributed. Therefore, the value of x1 determines dividend payout time. If x1 is a large num-
ber, then there is a high probability that the process X∗(t) would approach the bankruptcy 
state many times before reaching x1 ; that is, it would take a long time for a dividend event 
to occur. Thus, for large x1 , the probability for the firm to pay dividends immediately is 
small. Conversely, if x1 is small, then it is relatively easy for the process X∗(t) to reach x1 , 
or the probability that dividends are paid immediately would be high.

From the analytic solution of �x1
0
(x) given in Appendix B, we notice that �x1

0
(x) is an 

increasing function with respect to x1 and �x1
0
(x) = 0 at x1 = 0 . Consequently, for any given 

�i , x, � , � , k, � and K, there exists a unique solution x1 , such that �x1
0
(x) = �i . Moreover, 

from I1(C) = K or I2(C) = K we can obtain a unique C under given �i , x, � , � , k, � , K and 
x1 . Therefore, for any immediate dividend time of �i , we can obtain a unique solution of the 
optimal dividend payment.

From the perspective of a rational individual shareholder, an important question is under 
what parameter condition, especially for the parameter � , the optimal immediate dividend 
payment will occur. In the following, we answer this question.

Theorem 5.1 If the parameters � , � and k are given, then x1 → 0 if and only if � ≥ � and 
K → 0.

Proof For any given � ∈ (0,
�

2
) , x0 = X0 −

𝜂𝛾

𝜆
> 0 is a fixed number given parameters � , 

� and k. As x1 is the right root of H�
1
(x) = k , which makes x1 > x0 . It follows that there is 

a lower bound x0 for x1 such that x1 ↛ 0 for any K > 0 . So, in the following we only con-
sider the case � ∈ [

�

2
,∞) , which implies x+

0
= 0 . Then, the optimal dividend strategy can 

be expressed by H2(x).
As x1 is the right root of H�

2
(x) = k it implies that x1 > xmin , where xmin = argmin

x≥0 H2(x) . 
Then from the convexity of H2(x) and I2(C) = K , we have that x1 → 0 if only if xmin = 0 
and K → 0.

We next explore the sufficient and necessary condition of xmin = 0. From (43) the deriv-
ative of H2(x) is
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Let H�
2
(x) = 0 , then the criterion for xmin = max

{
1

�+−�−
ln
(

(a1−p� )�
2
−

a1�
2
+

)
, 0
}
= 0 can be 

shown as

Simplifying the inequality of the right equivalence above, we have

The discussion above suggests that

Thus, the equivalent condition of immediate dividend payment has been proved.   ◻

Conversely, if 0 ≤ 𝜂 < 𝜇 , then x1 ↛ 0+ , meaning that the event of immediate dividend 
payment will never occur. This result has a policy implication. It suggests that to prevent 
the occurence of immediate dividend payment, the government can reduce the capital 
injection rate � to a low level, or impose a penalty on dividend distribution, which effec-
tively increases the cost of dividend payout K. In the following, we derive a closed-form 
solution for the expected dividend payout time.

6  Numerical examples

In the preceding section, we derive the theoretical results of dividend payout time �x1
0
(x) 

and the dividend amount �i given a bailout rate � at the bankruptcy state. In this section, 
we provide numerical simulations to assess the effects of model parameters on the optimal 
time and amount of dividend payout.

H�
2
(x) = a1�

2
+
e�+x + (p� − a1)�

2
−
e�−x.

xmin = 0 if and only if
(a1 − p�)�

2
−

a1�
2
+

≤ 1.

(a1 − p�)�
2
−

a1�
2
+

≤ 1 if and only if � ≥ �.

x1 → 0 if and only if � ≥ � & K → 0.

Table 1  Multipliers for base 
parameter values

In this table, the maximal and minimal multipliers of the base values 
of �0 = 0.1812 , �0 = 0.2586 , �0 = 0.0775 , k0 = 0.85 , �0 = 2.4431 and 
K0 = 0.1 are listed out. In numerical analysis, the ranges of parameters 
� , � , � , k, � and K are the base value times the corresponding maximal 
and minimal multipliers

Multipliers � � � k � K

Min 1.0 0.25 0.25 0.75 0 0.2
Max 2.5 2.0 2.0 1.125 0.2 5.0
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We use the following parameter estimates for Fannie Mae in February 2012 as the base 
values for � , � , � , k, � and K in numerical simulations. These base values are �0 = 0.1812 , 
�0 = 0.2586 , �0 = 0.0775 , k0 = 0.85 , �0 = 2.4431 and K0 = 0.1 , respectively.3

To examine the sensitivity of dividend time and dividend amount to parameter values, 
we set the ranges of these parameters by the minimum and maximum multipliers in Table 1 
times their base values. For the base value �0 = 2.4431 , it is much larger than �0 = 0.1812 . 
To show the dividend event near the line � = � , we set the smallest and largest multipli-
ers of � as 0 and 0.2, respectively in Table 1. For the value of k, the proportion of div-
idends left for shareholders is not small, we set the multipliers as 0.75 and 1.125. This 
gives a k interval of [0.75k0, 1.125k0] , which is equal to [0.6375, 0.9563]. For the condition 
1 − 2𝛾 > 0 , it is equivalent to 𝜇 >

√
2𝜆𝜎 . As mentioned earlier, if x+

0
= 0 is satisfied, the 

condition 1 − 2𝛾 > 0 is not needed. We carefully select the multipliers of parameters � , � , 
and � listed in Table 1 so that at least one of these two conditions is satisfied, which makes 
the multipliers of � larger than those of the other two parameters. K also has a large impact 
on the dividend payment time and amount. We choose the smallest multiplier of K as 0.2 
so that 0.2K0 is around zero. To accommodate the effects of K at plausible values, we set 
the largest multiplier to 5.0.

Fig. 1  The base number of � , � , � , k, K and � are � = 0.1812 , � = 0.2586 , � = 0.0775 , k = 0.85 , K = 0.10 
and � = 2.4431 respectively. The range of K is formed by the lower and upper bounds which are the base 
number multiplied by 0.2 and 5

3 The estimation of these parameters is discussed in Sect. 7. Here, 1 − k0 is the tax rate and K0 is the trans-
action cost of dividends.
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Given different � , K and fixed values � = �0 , � = �0 , � = �0 and k = k0 , Panels A and B 
of Fig. 1 plot the expected dividend time �x1

0
(x) and its lower bound of confidence interval 

at the 95% level. To save space, the upper bound is omitted. As shown in Panel A, for any 
� near the transition layer [ �0

2
,�0) = [0.0906, 0.1812) , the value of �x1

0
(x) changes sharply. 

For instance, at point (K, �) = (0.4631, 0.0752) , the dividend time is 9.9978,4 while at its 
neighboring point (0.4631,  0.1128), the dividend time changes to 5.3533. For any � in 
(0,

�0

2
) , the dividend time remains high with the minimum value 2.4571 and the maximum 

value 10.4178, both are far from zero. An interesting result in Panel A is that dividend pay-
out time approaches zero as K → 0+ under the condition � ≥ �0 = 0.1812 . This finding is 
consistent with the theoretical result in Theorem 5.1, that is, x1 → 0+ as K → 0+ if � ≥ � . 
As K gets larger in Panel A, the expected dividend time becomes larger. The result suggests 
that to generate an immediate dividend payment, K has to be small. Panel B shows that the 
variance of dividend time becomes larger as K is larger and the value of the lower bound at 
large K is close to zero. This implies that although the expected dividend time is high at a 
large K value theoretically, the dividend time may actually approach zero under the condi-
tion 𝜂 > 𝜇.

Panels C and D of Fig.  1 present the corresponding dividend amounts and the lower 
bound of the confidence interval at the 95% level. At the first glance, the whole sur-
face in Panel C looks much smoother than that in Panel A. Even at the transition layer 
� ∈ [

�0

2
,�0) , the change of dividend amount is not large. For instance, corresponding to the 

points (0.4631, 0.0752) and (0.4631, 0.1128) in Panel A, the dividend amounts are 2.0254 
and 1.9499, respectively. The change in the dividends of these two points is only 3.87% , 
whereas the change in dividend time is 86.76% . Thus, the sensitivity of dividend payment 
to � is not as high as that of dividend time. The dividend amount increases as K becomes 
bigger or � becomes smaller in Panel C. As shown in Panels A and C, dividend payment 
time and amount have the same trend as K and � , suggesting that if the dividend is paid 
less often, the dividend amount will increase to make up the difference. In Panels B and 
D, there are some values below zero, which is caused by large standard deviation or the 
significance level. But it also implies that the dividend can be distributed immediately with 
a very small amount. Panel B shows that the confidence interval of dividend time at large 
K or small � is wider than that at small K or large � . This result shows that the width of the 
confidence interval depends on K and � . For small K and large � , the confidence interval of 
dividend time is quite narrow.

Other parameters of the model also affect the expected dividend payout time and 
amount. Panels A and D in Fig. 2 show the effects of parameters � , � , � and k on payout 
time. In Panel A, dividend payout time changes greatly along the line, � = � . When 𝜂 > 𝜇 , 
the dividend time is around zero (paid almost instantly) and much smaller than when 
𝜂 < 𝜇 . This is consistent with the argument in Theorem 5.1 that if and only if the condition 
𝜂 > 𝜇 is satisfied at small K, then the dividend payment time is close to zero. As revealed 
in Panel B, volatility � is another important determinant of payout time. When � and � 
are large, dividend payout time is much shorter than when � and � are small. This finding 
implies that if volatility is larger, it is sooner to reach the upper bound x1 . This means when 
it is more uncertain (larger volatility), it is more likely for firms to pay dividend quickly to 

4 In this and next section, the unit of dividend time we use is a day.
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signal the firm’s probability of survival.5 The parameters, � and k, are another two impor-
tant factors. In Panel C, when � approaches zero, it takes longer for firms to pay dividends 
than when � is larger. When � is larger, the discount factor e−��i becomes smaller at each �i . 
To maximize the shareholder value, it is optimal to pay dividends sooner, which is consist-
ent with the case with large � in Panel C. In Panel D, as k becomes larger or the tax rate 
is smaller, the dividend payout time is shorter. If the income tax is low, shareholders will 
prefer to receive dividends earlier.

Panels A to D of Fig. 3 plot the expected dividend amounts for different parameters, 
� , � , � and k. Comparing with Fig.  2, we find that dividend time and amount have the 
same trend under the same parameters. Moreover, the surface of dividend amounts is much 
smoother than that of dividend time duration. In addition, from Figs. 1, 2 and 3 we find that 
� has the largest effects on dividend time and amount. When � = �0 , sensitivity of dividend 
time and amount to � is high. Overall, simulation results generate a pattern of dividend tim-
ing and payout consistent with the intuition and theoretical predictions.

Fig. 2  The base number of � , � , � , k, K and � are � = 0.1812 , � = 0.2586 , � = 0.0775 , k = 0.85 , K = 0.10 
and � = 2.4431 respectively. To see the relationship of � and � , we shorten the maximal multiple of � to be 
0.2 in this figure. From Panel  A–D, it shows that along the line � = � , the dividend times are divided into 
two parts with obviously different magnitudes

5 Paying dividends more quickly sends out a signal that firms have the ability to survive, thereby increasing 
the confidence of short-term creditors.
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7  Empirical tests

We next take our model to the real data to investigate why firms in financial distress con-
tinue to pay dividends when they are on the bailout program. A number of recent paper has 
tried to answer this question (see, for example, Acharya et al. 2012, 2016, 2017). To our 
knowledge, no empirical test based on the real data has been performed on the optimal div-
idend policy generated from the stochastic dynamic programming models. In this section, 
we provide empirical tests on the timing �x1

0
(x) of dividends using the data for a sample of 

firms bailed out by the US government during the sub-prime crisis in 2008–2009.

7.1  Empirical data

The information for bailouts and subsequent events, such as payout of dividends, are pro-
vided in a public website.6 The bailout events in our empirical test cover the repurchase 
program and the loan program. We collect the data for the names of companies receiving 
capital injections, the amount of cash grants, the time and amount of dividend distributions 
and other related information. We match the bailout data with the firm’s financial statement 
data in Wharton Research Data Services (WRDS). This matching results in 96 companies 

Fig. 3  The base numbers are given as in Fig. 2. From Panel A–D, it shows that along the line � = � , the 
dividend amounts are divided into two parts with obviously different magnitudes. But the surfaces look 
much smoother than those in Fig. 2

6 https:// proje cts. propu blica. org/ bailo ut/ list/ index.

https://projects.propublica.org/bailout/list/index
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with the required data. The sample includes 91 banks, 2 financial service companies, 2 
insurance companies and 1 auto company. The sample period runs from January 1980 to 
February 2012.

While our main purpose is to explain the dividend puzzle during the financial crisis 
in 2008–2009, our sample period is longer. There are two reasons that our sample period 
is longer than the subprime crisis period. First, we need to estimate model parameters 
using historical data. We set the estimation period from 1980 to the onset of the sub-
prime crisis. Setting the sample period for the data to start in January 1980 gives us suf-
ficient observations to obtain reliable parameter estimation. Second, although the sever-
ity of the crisis is largely over in the summer of 2009, the government bailout program 
goes well beyond it. As an example, one of the most important bailout programs, the 
Troubled Assets Relief Program (TARP) was authorized by the US Congress in October 
2008. While the authority to make new financial commitments under TARP ended on 
October 3, 2010, the government support continued on. For example, the US govern-
ment continued to hold AIG shares even after 2010, and Fannie Mae received govern-
ment bailout until February 2012. Therefore, we extend the sample period to February 
2012 to capture the full effect of the government bailout program.

Among all firms on the bailout programs, Fannie Mae received the largest number of 
of government bailout grants, which were multiple times of a typical bank aided. The 
government injected capitals into Fannie Mae for about three years beginning in March 
2009. Panel A of Fig. 4 plots the frequency of capital injections into Fannie Mae from 
March 2009 to February 2012. In Panel B of Fig. 4, we separately plot the frequency of 

Fig. 4  In Panel A–B above, capital injections refer to the federal purchase of the preferred shares from 
firms. The unit of time intervals for Panel A–D is one quarter. All of the units of vertical axis of Panel A–D 
are $1.0 billion



940 S. Zhang et al.

1 3

total capital injections for other firms included in our portfolio each month from Octo-
ber 2008 to July 2009. Panel B shows an interesting contrast in that capital injections for 
other firms mainly occur from October 2008 to January 2009, which is dramatically dif-
ferent from the case of Fannie Mae. Also, the frequency of capital injections for each of 
these firms (omitted for brevity) is low, on average only one or two injections for each 
firm. The low frequency of capital injections makes it difficult to estimate the parameter 
� (annualized injection rate) precisely for the firm with a smaller number of data points. 
To overcome the issue of infrequent injections, we form the portfolio on these firms to 
test the implications of our dividend model. This portfolio approach is quite common in 
financial research. The results based on the portfolio represent the average of the sample 
firms selected for our test. Since we are testing the implications of the dividend model 
for the bailout firms as a whole, this portfolio approach serves well for our purpose. In 
testing the model implications, we provide the tests using both the portfolio approach 
and individual firm data, and find that our results are robust.

Panels C–D of Fig.  4 display the total dividend amounts for Fannie Mae and other 
firms in the portfolio, respectively. In 2009, Federal Reserve Bank conducted the “stress 
tests” for the 19 largest banks. During this test period, dividends were accumulated and 
eventually declared on May 31, 2009 for most of these banks. However, dividends were 
announced regularly over most of our sample period. To measure the dividend time more 
accurately during this “stress test” period, we collect the regular dividend dates from the 
website of Yahoo and we divide the total amount of dividends that each firm announced on 
May 31, 2009 over these dates. Panels C–D of Fig. 4 show that dividend distributions are 
close to the time that capitals were injected by the government in Panels A–B.

We next use the item of Cash and Short-Term Investments in Compustat as a meas-
ure of cash reserve X(t). The discount rate � can be estimated by the Gordon model: 
�t = Dt∕Pt + gr where gr is the growth rate of dividends, and Dt and Pt are the dividend 
and stock price per share at time t, respectively. The growth rate can be estimated from the 
dividend process Dt = D0e

grt . Taking the log on both sides, we have logDt = logD0 + grt 
where t is the time indicator. Running a regression against t, we can get an estimate of the 
growth rate gr for each firm. Then, substituting gr in the Gordon model, we can obtain the 
firm’s discount rate �t for each t. Further, we can calculate an average � over the estimation 
period for each firm, and average them across firms to represent an average discount rate 
for the firms in the whole sample.

Dividend tax rates change over time. The Jobs and Growth Tax Relief Reconciliation 
Act7 (JGTRRA) of 2003 allows qualified dividends to be taxed at the same rate as long-
term capital gains, which is 15%. We set the tax rate 1 − k to 15% as the tax rate over the 
bailout period. The 15% dividend tax rate was introduced by the Bush Administration and 
carried over to the Obama Administration over the period between 2008 and 2012. Thus, 
this tax rate is the right rate to test the model implications.

The transaction cost of dividends is the cost related to the distribution of dividends. The 
cost of dividend distribution is not just the cost of cutting and mailing checks to sharehold-
ers. It also includes opportunity cost of paying dividends. The literature has suggested that 
dividend distribution can incur costs associated with foregone investments and issuing new 
shares, and increased cost of capital. These costs are hard to measure and can vary substan-
tially across firms. To resolve this difficulty, we assume that the firm’s dividend behavior 

7 https:// en. wikip edia. org/ wiki/ Divid end_ tax.

https://en.wikipedia.org/wiki/Dividend_tax
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returns to normal as the economic situation becomes stable toward the end of the sam-
ple period. We then back out the transaction cost implied by the optimal condition of the 
dividend model and use this cost estimate in the empirical test. Finally, we use the item of 
Capital Surplus in CRSP as a measure of x for individual firms which reflects the amount 
of capital injection.

7.2  Estimates of � , � and �

The annualized mean and standard deviation of the difference series {Xt − Xt−1} are used as 
measures of � and � . The cash flow (reserve) process of the portfolio is constructed by 
Xp(t) =

1

nt

∑nt
i=1

Xi(t) , and the difference series of reserve Rp(t) = Xp(t) − Xp(t − 1) can be 
written as

where nt is the number of firms at time t, Ri(t) = Xi(t) − Xi(t − 1) and Xi(t) represents the 
cash reserve process of the survival firm i. The parameters �p and �p of the portfolio are 
then obtained from the mean and standard deviation of {Rp(t)} . For the capital injection 
rate � , we calculate the annualized rate of the portfolio by summarizing over all injections 
of each firm in their existing time period.8

To illustrate, we use Fannie Mae as a special case as the government bailout program 
separates it from other firms. The sample period of the Fannie Mae data runs from Janu-
ary 1980 to February 2012. We use the rolling-window method to update estimation over 
time. In this case, the rolling estimation period runs from January 1980 up to each quarter 
in the test period, which is from August 2009 to February 2012. We start our test period 
from August 2009 when Lehman Brothers ran into a serious problem and the crisis esca-
lated. We also conduct tests for the constructed portfolio that includes the group of other 
firms. For the portfolio test, the rolling estimation period is also from January 1980 up to 
each month in the test period. But we set the test period from January 2009 to July 2009, 
which is more relevant for the bailout pattern of this group. As shown in Panel B of Fig. 4, 
government capital injections into this group of firms are more intensive and largely con-
centrate in the period from October 2008 to January 2009. As such, we start the test period 
for this group of firms from January 2009 by allowing a two-month lag to capture the full 
effect of government bailouts.

7.3  Empirical tests

In this section, using the parameters estimated above, we conduct empirical tests first for 
Fannie Mae and the constructed portfolio and then use AIG as an additional case to ensure 
robustness of our test results.

Rp(t) =
1

nt

nt∑
i=1

Ri(t),

8 We normalize the scale of raw data to increase the precision of dividend time and amount estimates in 
empirical tests.
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7.3.1  Empirical results for Fannie Mae

On September 7, 2008, the government took over Fannie Mae and Freddie Mac and 
injected billions of dollars to cover their losses. The Fannie and Freddie bailout is sepa-
rated from the broader $700 billion bailout known as the TARP. Instead, their bailouts are 
based on the Housing and Economic Recovery Act of 2008 passed in July 2008.9 As the 
frequency of capital injections is much higher for Fannie Mae than for other firms, we can 
estimate the injection rate for this firm precisely using its data. Thus, we first select Fannie 
Mae as an example to verify our model predictions.

As mentioned above, transaction cost data are not available. However, as the economic 
condition stabilized in the first quarter of 2012, we can posit that the dividend distribution 
by Fannie Mae is back to normal to back out the implied transaction cost for this firm in 
this quarter and apply this estimate to other quarters in the sample period. We estimate that 
the implied dividend transaction cost is 16.3 million for Fannie Mae.

We estimate � and � of the cash reserve process using the data beginning from Janu-
ary 1980, while for � , the data of capital injections is available only from March 2009. As 
mentioned, we choose the period from August 2009 to February 2012 for empirical tests 
on Fannie Mae. For each quarter in the test period, all available historical data up to that 
quarter are used to estimate the parameters of � , � and �.

Panel A of Fig.  5 plots the estimates of � . As shown, � is not constant and tends to 
decrease over the sample period. By contrast, the estimate of � (see Panel B of Fig. 5) is 
relatively stable and almost flat over the period. The estimated � is somewhat larger than 
the estimated � which could be due to the small sample size. For the capital injection rate 
� (see Panel C of Fig. 5), the largest value occurs in August 2009 and the injection rate 
decreases henceforth as the market condition improves.

Given the parameters in Panels A–C of Fig. 5 and the implied transaction cost, Panel D 
of Fig. 5 plots the estimated (black bars) and actual (grey bars) dividend payout amounts 
after capital injections where the dividend amount is in billions. It shows that the differ-
ences between actual and estimated dividends are quite small and much lower than the 
volatility, suggesting that the actual dividends are well within the confidence interval of 
estimated dividends. Thus, the firm’s dividend policy is fully consistent with rationality 
implied by the model over the sample period. The results suggest that the dividend behav-
ior is rational not only in normal time but also in the crisis period.

Comparing Panel C with Panel A of Fig.  5, we find that the capital injection rate is 
always greater than the parameter � . That is, the condition of 𝜂 > 𝜇 is well satisfied, which 
implies the optimal dividend event should take place shortly after the capital injection. The 
empirical results thus strongly support the prediction of our theoretical dividend model. 
The estimated time durations increase from the lowest value (about 7.98 days) in the first 
quarter to the highest value (about 85.92 days) in the last quarter. Although the actual divi-
dend payment time is somewhat flat due to the fact that dividend payments are regular, 
they are still within the confidence intervals of the estimates. Moreover, as the optimal 
estimated dividend time duration is longer, the estimated dividend amounts are also larger, 
which reflects the accumulation of accrued dividends over time.

9 See bailout for Fannie Mae on website: https:// proje cts. propu blica. org.

https://projects.propublica.org
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7.3.2  Empirical results for AIG

After falling into deep trouble in September 2008, AIG received four bailouts from the US 
government, totaling over $170 billion. Immediately after receiving $30 billion in bailout 
funds from the US government on March 3, 2009, on the 15th of the same month AIG 
announced that it would pay a total of $165 million in bonuses to its financial products 
department executives, which sparked controversy. The issue of distributing bonuses right 
after receiving government bailouts has been discussed in detail in Thomas (2009). In this 
paper, we further employ the AIG case to test the implication of our theoretical model. 
Specifically, we want to test how quickly a company should distribute dividends or bonuses 
within a rational framework after receiving a large amount of government relief. To do so, 
we compare the model prediction with the actual bonus payment pattern of AIG.

To estimate � and � for AIG, we also use the quarterly cash reserve data from Janu-
ary 1980 to March 2009. For parameter � , AIG Company received four government 
bailouts between September 2008 and March 2009. This means we only have four data 
points of external capital injections. As the sample size is relatively small, we use these 
four observations as the training sample to estimate parameter � . For other parameters, we 
use the same method to estimate them as in the Fannie Mae case. Considering that the 
government bailout funds was distributed out within half a year, in order to calculate the 

Fig. 5  In Panel A–C, the parameters � , � and � are estimated respectively for Fannie Mae. In Panel D, the 
estimated dividend times (grey bars) are calculated using the parameters of Panels A–C and � = 7.75% , 
k = 85% , K = 0.1 . In Panel D, the vertical axis denotes dividend times and the unit is one day. In addition, 
in Panel D the black bars denote the actual dividend times in each quarter. In these four panels, all notations 
on the horizontal axis denote the empirical time duration and its unit is one quarter
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capital injection rate within six months, we reduce the scale of original data by multiplying 
2 ∗ 10−10 . We then obtain the estimated parameters � = 0.0012 and � = 17.5335. A shown, 
� is much greater than � . The estimated dividend time is: 0.0208 year, which is equivalent 
to 7.592 days. It is less than the actual observed dividend (bonus) payment time, which is 
12 days after receiving the government bailout grant. As shown, AIG quickly distributed 
cashes after receiving a large amount of funding. This finding is consistent with the predic-
tion of our rational dividend model that when the capital injection rate is greater than the 
growth rate of the liquid asset, the firm will distribute cash immediately after receiving the 
bailout grant.

7.3.3  Empirical results for portfolio

As mentioned earlier, most firms receive government grants only a few times and therefore, 
it is more efficient to form the portfolio in empirical tests for these firms to accommodate 
the low frequency in grant offers and achieve a dispersion in data points. As revealed in the 
data of panel B in Fig. 4, most capital injections fall in the period from October 2008 to 
July 2009. In order to increase the amount of data for the estimated parameter � , we start 
validating our model at monthly points from January 2009 until July 2009.

We similarly posit that the dividend behavior is rational in the last quarter of the sample 
period to back out the implied cost of dividends K and use it in empirical tests.10 Estimates 
of � , � and � are displayed in Panels A–C of Fig. 6, respectively. Panel A shows that � esti-
mates are stable over time. Panel B of Fig. 6 shows that the estimated � values are close to 
a constant. Panel C of Fig. 6 shows that the estimated capital injection decreases as time 
goes by. In April 2009, there is no capital injection and therefore, we treat the injection 
rate as a missing data and no dividend amount is estimated at this time point in Panel D. 
Comparing Panel A with Panel C of Fig. 6, we find that the inequality 𝜂 > 𝜇 is well satis-
fied, that is, the capital injection rates are greater than the parameter � . Thus, according to 
Theorem 5.1, the dividends event should occur shortly after the capital injection.

Panel D of Fig. 6 plots the estimated and actual dividend times represented by grey 
bars and black bars, respectively. In this panel, the estimated dividend time represents 
the expected number of days following the capital injection in each month. The actual 
dividend time is the observed dividend day after the capital injection in each month. 
The dividend payment day in this panel is mostly no more than 6 days after the capital 
injection, which is quite short and consistent with the model’s prediction of immediate 
dividend distribution if the capital injection rate is greater than average growth rate 
of the firm’s cash reserve. It appears that large capital injections by the US govern-
ment are the main cause for dividend payments during the crisis period. Importantly, 
our results show that the estimated dividend time is quite close to the actual dividend 
payment time with the largest prediction error of only 1.5 days, which is economically 
insignificant. The results suggest that the dividend behavior of firms on the bailout 
program is rational and consistent with shareholder value maximization. Thus, the div-
idend distribution during the subprime crisis period does not appear to be an anomaly. 
Instead, the dividend payout pattern is consistent with the optimal dividend policy pre-
dicted by our dynamic optimization model with nonterminal bankruptcy and capital 
injections.

10 This is the last quarter in which bailout data are available and represents the best choice for estimating 
the implied cost of dividends.
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8  Conclusion

In this paper, we propose a stochastic dynamic dividend model with nonterminal bank-
ruptcy and a positive residual value when a firm goes bankrupt. The model generates 
the optimal dividend strategies under capital injections. We derive the sufficient and 
necessary condition for dividend payout in the case that firms have a positive residual 
value at the bankruptcy state and can be revived by capital infusion. Numerical simula-
tions and empirical test are used to verify the model prediction.

We use the model to evaluate the dividend behavior of firms receiving the bailout 
money during the financial crisis. We find that the dividend decisions for firms receiv-
ing government bailout money are consistent with the principle of shareholder value 
maximization. By paying dividends, banks and insurance companies send out a signal 
that they have the ability to survive, and increase the confidence of short-term credi-
tors to prevent a run. Paying dividends during the crisis period is also consistent with 
the contention that the firms’ opportunity cost of dividend payout is low at a time when 
the investment opportunity is meager and the government support is generous. In this 
circumstance, our model predicts that firms will be prone to pay dividends because the 
bailout grant results in excess cash flow. This prediction is consistent with the tradi-
tional dividend model of free cash flow Jensen 1986. A policy implication generated 
from the model is that the government can prevent firms from distributing dividends by 

Fig. 6  In Panel A–D, the parameters � , � and � , and the estimated and actual dividend time for the con-
structed portfolio are presented. In Panel D, the grey bars denote the estimated dividend days after capital 
injections and the black bars denote the actual ones. The unit of time duration on horizontal axis in this 
figure is one month
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lowering the amount of capital injection to avoid excess (free) cash inflow to these firms 
or imposing a sufficient penalty to increase the cost of their dividend payments.

Appendix A: Some properties of the optimal control function

A.1. Estimate parameter C

In the optimal policies of (56) and (57), the parameter C is an unknown parameter. In 
the real practical problems, we need to determine it.

A.1.1. Steps for computing parameter C

For the nonterminal model, we assume that the parameters � , � , k, K and � are known 
already. Then, the steps to compute C are given as follows. 

 Step 1. Compare � with �
2
.

 Step 2. If 0 ≤ 𝜂 <
𝜇

2
 , using the bisection method or Newton method to calculate C such 

that I1(C) = K.
 Step 3. If � ≥ �

2
 , using the bisection method or Newton method to calculate C such that 

I2(C) = K.

By these steps, the uncertain parameter C can be obtained. Meanwhile, we can get other 
parameters, such as xC

1
 and x̃C , which are the left and right roots of equation CH1(x) = k 

or CH2(x) = k , respectively.

Appendix B: Property of dividend events

B.1. Expected first dividend times after capital injections

Let �x1
(x) and �0,x1

(x) be defined as in (61) and (62) respectively, then the expected time 
�

x1
0
(x) first reaches x1 can be given by

Proof As in Chapter 15 of Karlin and Taylor (1981), the equations satisfied by �x1
(x) and 

�0,x1
(x) for x ∈ (0, x1) can be presented as,

and

�
x1
0
(x) =

�0,x1
(x)

�x1
(x)

.

1

2
�2u2(x)

d2�x1

dx2
+ �u(x)

d�x1

dx
= 0, �x1

(0) = 0, �x1
(x1) = 1,
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respectively.
To solve these two equations above, we define the function s ∶ (0,∞) → [0,∞) by

the function S ∶ (0,∞) → [0,∞) by

and the function m ∶ (0,∞) → [0,∞) by

Then, by the similar method of Karlin and Taylor (1981), it follows that

For x ∈ (0, x+
0
] , let

for x ∈ [x+
0
, x1] , let

1

2
�2u2(x)

d2�0,x1

dx2
+ �u(x)

d�0,x1

dx
= −1, �0,x1

(0) = 0, �0,x1
(x1) = 0,

s(x) ∶= exp

�
−�

x

x+
0

2𝜇u(t)

𝜎2u2(t)
dt

�
=

⎧
⎪⎨⎪⎩

�
𝜆x+𝜂𝛾

𝜆x+
0
+𝜂𝛾

�2𝛾−2

, x < x+
0
,

e
−

2𝜇

𝜎2
(x−x+

0
)
, x ≥ x+

0
,

S(x) ∶= �
x

x+
0

s(𝜂)d𝜂 =

⎧⎪⎨⎪⎩

𝜆x+
0
+𝜂𝛾

𝜆(1−2𝛾)

�
1 −

�
𝜆x+𝜂𝛾

𝜆x+
0
+𝜂𝛾

�2𝛾−1
�
, x < x+

0
,

𝜎2

2𝜇

�
1 − e

−
2𝜇

𝜎2
(x−x+

0
)
�
, x ≥ x+

0
,

m(x) ∶=
1

𝜎2u2(x)s(x)
=

⎧⎪⎨⎪⎩

𝜆2𝜎2(1−𝛾)2

𝜇2(𝜆x+
0
+𝜂𝛾)2

�
𝜆x+

0
+𝜂𝛾

𝜆x+𝜂𝛾

�2𝛾

, x < x+
0
,

1

𝜎2
e

2𝜇

𝜎2
(x−x+

0
)
, x ≥ x+

0
.

𝜙x1
(x) =

S(x) − S(0)

S(x1) − S(0)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜙0,x+
0
(x) ∶=

𝜆x+
0
+𝜂𝛾

𝜆(1−2𝛾)

��
𝜂𝛾

𝜆x+
0
+𝜂𝛾

�2𝛾−1

−

�
𝜆x+𝜂𝛾

𝜆x+
0
+𝜂𝛾

�2𝛾−1
�

𝜎2

2𝜇

�
1−e

−
2𝜇

𝜎2
(x1−x

+
0
)
�
−

𝜆x+
0
+𝜂𝛾

𝜆(1−2𝛾)

�
1−

�
𝜆𝜂𝛾

𝜆x+
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+𝜂𝛾

�2𝛾−1
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0
,

𝜙x+
0
,x1
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2𝜇

�
1−e

−
2𝜇

𝜎2
(x−x+

0
)
�
−

𝜆x+
0
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1−

�
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�2(1 − �)2
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− 1
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for x ∈ (0, x+
0
] , let

for x ∈ [x+
0
, x1] , let

Then, by the formula as in Chapter 15 of Karlin and Taylor (1981), �0,x1
(x) can be obtained 

as

Let �x1
(x) be the expected time for both processes, which reach the boundary x1 prior to 0. 

Meanwhile, for �0(x) , it denotes the expected time the processes reach 0 prior to x1 . Then 
we have

For the processes defined in (59) and (60), both of them have positive probability to reach 
zero points. But if the zero points are touched, then some capitals from outside will be 
injected to save the company. So, the expected time �x1

0
(x) for both processes, which finally 

reach the bound x1 , even they reach the lower bound 0 first, is complicated to calculate. 
If the process starting from bankruptcy state, then after a huge capital injection it would 
recover to the position x in a stochastic time period �s , which is assumed to be a random 

�−
x+
0
,x1
(x) ∶=∫

x

0

(S(t) − S(0))m(t)dt

=
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⎡
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�
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−
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�⎡⎢⎢⎣
1 −

�
�x + ��

�x+
0
+ ��

�1−2�⎤⎥⎥⎦

+
(1 − �)2�2

(1 − 2�)�2
ln

�
�x+

0
+ ��

�x + ��

�
+

�
S(x1)

2�
−

�2

4�2

��
e

2�

�2
(x1−x

+
0
)
− 1

�

+
1

2�
(x1 − x+

0
);

�+

x+
0
,x1
(x) ∶=∫

x1

x

(
S(x1) − S(t)

)
m(t)dt

=

(
S(x1)

2�
−

�2

4�2

)(
e

2�

�2
(x1−x

+
0
)
− e

2�

�2
(x−x+

0
)
)
+

1

2�
(x1 − x).

𝜓0,x1
(x) =

⎧⎪⎨⎪⎩

2
�
𝜙0,x+

0
(x) ⋅ 𝜑+

0,x+
0

(x) + (1 − 𝜙0,x+
0
(x)) ⋅ 𝜑−

0,x+
0

(x)
�
, x < x+

0
,

2
�
𝜙x+

0
,x1
(x) ⋅ 𝜑+

x+
0
,x1
(x) + (1 − 𝜙x+

0
,x1
(x)) ⋅ 𝜑−

x+
0
,x1
(x)

�
, x ≥ x+

0
.

(64)�0,x1
(x) = �x1

(x)�x1
(x) + (1 − �x1

(x))�0(x).
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variable with small mean and in simplification be neglected in our simulation examples. 
So, it follows that

From (64) and (65), we have that

So, the closed form of �x1
0
(x) is obtained.   ◻

B.2. Variance of �∗
x1

Before X(t) reaches the upper boundary x1 , it may arrive at the lower boundary 0 first, 
and in this case we assume that the process X(t) would rebound to the original position x 
in a negligible time after bailouts. Similar to (64), it follows that

Then, we have that

Consequently,

To derive Ex(�
2
0,x1

) , let U(x) = Ex(�
2
0,x1

) , then as in Chapter 15 of Karlin and Taylor (1981), 
the function U(x) satisfies

As in Appendix B.1, the solution of the equation above can be derived and given as follows

where �x1
(x) , S(t), m(t) and �0,x1

(t) are presented in Appendix B.1 and we don’t list them 
out again. Then the variance of �∗

x1
 can be obtained from (66) and

(65)�
x1
0
(x) = �x1

(x)�x1
(x) + (1 − �x1

(x))(�0(x) + �
x1
0
(x)).

�
x1
0
(x) =

�0,x1
(x)

�x1
(x)

.

Ex

(
(𝜏∗

x1
)2
)
= Px(𝜏x1 < 𝜏0) ⋅ Ex(𝜏

2
x1
) + Px(𝜏x1 > 𝜏0) ⋅

[
Ex(𝜏

2
0
) + Ex((𝜏

∗
x1
)2)

]
.

Ex((𝜏
∗
x1
)2) =

Ex(𝜏
2
0,x1

)

Px(𝜏x1 < 𝜏0)
.

(66)Varx(𝜏
∗
x1
) = Ex((𝜏

∗
x1
)2) − (Ex(𝜏

∗
x1
))2 =

Ex(𝜏
2
0,x1

)

Px(𝜏x1 < 𝜏0)
−

(Ex(𝜏0,x1 ))
2

(Px(𝜏x1 < 𝜏0))
2
.

1

2
�2u2(x)U��(x) + �u(x)U�(x) + 2 ⋅ �0,x1

(x) = 0, U(0) = 0, U(x1) = 0.

U(x) = 4�x1
(x) ⋅ ∫

x1

x

[S(x1) − S(t)]m(t)�0,x1
(t)dt

+ 4(1 − �x1
(x)) ⋅ ∫

x

0

[S(t) − S(0)]m(t)�0,x1
(t)dt,

(67)�2
�x1

∶= Varx(�
∗
x1
) =

U(x)

�x1
(x)

−
�2
0,x1

(x)

�2
x1
(x)

.
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