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Abstract
This paper studies how volatility affects the risk premium in crude oil futures through a 
discrete-time term structure model with long-run and short-run GARCH-type volatility 
components. Estimated using WTI crude oil futures data from January 1990 to July 2016, 
our model simultaneously matches futures prices and volatilities for the nearest twelve 
maturities. We document a significant positive relation between volatility and futures risk 
premia before May 2005, but a significant negative relation after that. The dynamic change 
of the risk-return relationship concur with the structural change, specifically the financiali-
zation, in the commodity markets. Risk premia decomposition indicates that the short-run 
volatility component represents the most important contribution to futures risk premia, 
both before and after the structural break.
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1 Introduction

A fundamental question in commodity futures markets is whether volatility drives higher 
expected excess returns. To study the dynamic relation between expected returns and vola-
tility in the term structure of commodity futures, a precise measure of the time-varying 
volatility and an accurate account of the term structure of expected returns are needed. In 
this paper, we employ a discrete-time term structure model with volatility components to 
examine the risk-return relationship in commodity futures markets.

Our model is built on the discrete-time stochastic volatility model of Treasury yields 
(see Le et al. 2010; Ghysels et al. 2014). Not only does the model retain the tractability 
of affine term structure models, but it also accurately captures the time variation in condi-
tional variances. In the spirit of Engle and Lee (1999), we endow the conditional variance 
of futures prices to be driven by a long-run component and a short-run component, each of 
which follows its own GARCH-type process with different degrees of persistence. Moreo-
ver, following the ARCH-in-mean literature (Engle et al. 1987), we allow the conditional 
variance to affect the futures prices and expected excess returns.

The model developed can be applied to any futures market. As of April 2020, crude oil 
accounted for 43.72% of the entire Standard and Poor Goldman Sachs Commodity Index 
(S&P GSCI) in terms of dollar value, while the West Texas Intermediate (WTI) crude oil 
futures account for 25.31% of the S&P GSCI and is the largest commodity as of dollar 
value in the index. Crude oil is also the most liquid commodity traded in derivatives mar-
kets. Additionally, many studies show that crude oil has a distinguishable impact on non-
energy commodity futures, the stock market, and the economy; and this market has the 
ability to exhibit cross-sectional influences on a variety of other market components.1 As 
such, we use data from the crude oil futures market to empirically test our model.

In our empirical implementation, we adopt three state variables, characterized as level, 
slope, and curvature of futures price in our model. We endow only the volatility of level 
factor with the component GARCH dynamic to create a parsimonious model estimated 
using WTI crude oil futures prices with maturities of one to twelve months spanning Janu-
ary 1990-July 2016. This sample period identifies a structural break in June 2005; there-
fore, we examine the risk-return relationship in the two subsamples in addition to the full 
sample. We document a statistically significant positive relationship between volatility and 
expected excess returns (risk premiums) for all maturities in the first subsample, but a sig-
nificant negative relation for all maturities in the second subsample.2

A negative relation between volatility and the risk premium on futures contracts seems 
counterintuitive; however, this may not be surprising given the increasingly speculative 
activities in commodity markets. Hamilton and Wu (2014) find negative risk premia in the 
crude oil market after 2005. Other literature (see, for example, Li 2018; Heath 2019) docu-
ment similar results and ascribe them to the financialization of commodity markets. The 
increased financial trading activities concurred with lower risk premiums in commodity 
markets since financial traders are willing to accept a lower or even negative risk premium 
in exchange for the diversification benefits of commodities. Brunetti and Reiffen (2014) 
and Cheng and Xiong (2014) suggest that financialization brings investors to the long side 

1 See, for example, Hamilton (1983, 2009),  Kilian (2008),  Tang and Xiong (2012),  Christoffersen and 
Pan (2018).
2 Because futures contracts are zero-initial-cost derivatives, expected returns stem from futures risk premia.
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of commodity trading and mitigates the hedging pressure of short hedgers, and leads to 
decreases in risk premiums.

The proposed model allows us to differentiate the contributions of long- and short-run 
volatility components to futures risk premiums. We decompose the predicted one-month 
excess returns of futures and find that the short-run component is as important as the long-
run component in explaining futures risk premia in the full sample. However, in the two 
subsamples, we find that the short-run volatility component is the most important contribu-
tor. Notably, in the first subsample, January 1990-May 2005, the short-run volatility com-
ponent itself, on average, accounts for about 96% of the predictive component of futures 
risk premiums. In the second subsample, June 2005-July 2016, the short-run volatility 
component explains on average about 64% of the futures risk premiums. These results sug-
gest that it is the short-run component of volatility, not the long-run component, which 
matters more for return predictability through exposure to level risk. Our findings also pro-
vide a caution against using a single volatility factor to forecast expected returns in the 
crude oil futures market.3

Our model adequately captures the cross-sectional and time-series properties of the 
level and volatility of log futures prices. In the full sample, the average in-sample root 
mean square error (RMSE) of log futures prices is about 24 basis points across 12 maturi-
ties. The average in-sample RMSE of the one-month conditional volatilities of log futures 
prices is about ten basis points across 12 maturities in the full sample. The fits of con-
ditional volatilities are better for futures with intermediate maturities (5 to 8  month). 
The proposed model fits the high volatility periods of the early 1990s, early 2000s, and 
2008–2009 well. These findings are robust to the two subsamples.

Our study is related to the literature using the continuous-time stochastic volatility 
model to price commodity derivatives. Trolle and Schwartz (2009) develop a model with 
a stochastic cost of carry for pricing commodity derivatives in the presence of unspanned 
stochastic volatility. Chiarella et al. (2016) use a more elaborate stochastic volatility model 
with multiple state variables to accommodate a more flexible volatility term structure. They 
use both futures and options data to improve the fit and implement a filtering technique in 
the estimation of their models due to the state variables and the volatility process being 
unobservable. In contrast, our model is simpler and flexible in fitting the term structure of 
futures prices and volatilities by using only futures data. Our model is in discrete-time with 
three observed variables. Thus its estimation can be simplified substantially as no filtering 
is necessary. More importantly, we incorporate GARCH-type volatility into the term struc-
ture model and distinguish the long-run and short-run components of volatility; therefore, 
the performance of our model in fitting the volatilities of futures prices can be improved 
substantially.

Our results are complementary to the literature that examines the predictability of com-
modity futures returns (see, for example, Bessembinder 1992; De Roon et  al. 2000; Erb 
and Harvey 2006; Gorton et al. 2013; Szymanowska et al. 2014; Hong and Yogo 2012), but 
we focus on studying how different volatility components affect expected futures returns 
of crude oil. We also contribute to the literature that documents the realized risk-return 
relation in commodity futures markets. For example, Baur and Dimpfl (2018) and Chen 
and Mu (2020) study the relationship between return shocks and subsequent variance and 

3 Because the long- and short-run volatility components have distinct dynamics, unless the single volatility 
factor is predominantly short-run, the forecasted return can be contaminated by the long-run volatility com-
ponent and therefore becomes less precise.
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relate it to the asymmetric volatility effect, while Chiarella et al. (2016) focus on the con-
temporaneous relationship between futures returns and innovations in the volatility and jus-
tify it using convenience yield effect. We investigate the relationship between volatility and 
expected futures returns, and find a change in the relationship, which we contribute to the 
financialization of commodity markets.

The paper proceeds as follows: Section 2 presents the term structure model with long-
run and short-run GARCH volatility components. Section  3 describes the estimation 
method and data. Section  4 discusses the modeling choice and the selection of samples 
in the empirical implementation. Section 5 provides parameter estimates and analyzes the 
long-run and short-run components. Section  6 investigates the model’s implications on 
risk-return relation. Section 7 shows the in-sample performance of the model. Section 8 
concludes.

2  Model

In this section, we first present a discrete-time term structure model with long-run and 
short-run GARCH-type volatility components for the oil futures prices. Subsequently, we 
discuss the model’s implications on oil futures risk premia.

2.1  The futures pricing with volatility components

We assume that the first M principal components, PCt , capture the term structure of the log 
futures prices in an affine function4

where f n
t
 is the n-maturity log futures price. An and Bn are free parameters: An is a scalar, 

and Bn is a 1 ×M matrix.5
We assume the state variables, PCt , follow affine dynamics with conditionally Gaussian 

innovations

where K0 and �t+1 are M × 1 vectors, and K1 is a M ×M diagonal matrix. Vt is a MV × 1 
GARCH-in-mean vector that captures the volatility information relevant for predicting the 
state variables, PCt , where MV is the total number of volatility factors for all M principal 
components. KV is a M ×MV matrix. �t is assumed to be distributed N(0,  Σt) . We now turn 
to the specifications of the conditional variance Σt and the GARCH-in-mean term Vt.

The conditional variance matrix Σt is a M ×M diagonal matrix with the diagonal ele-
ment, �2

i,t
, i = 1, ...,M , to be time-varying. Building on Engle and Lee (1999), we decom-

pose the total variance �2
i,t

 into a long-run component, Li,t , and a short-run component, Si,t . 

(1)f n
t
= An + BnPCt,

(2)PCt+1 = K0 + K1PCt + KVVt + �t+1,

4 In the literature, commodity futures prices are modeled as affine functions of state variables. See, for 
example, Gibson and Schwartz (1990), Schwartz (1997), Schwartz and Smith (2000), Casassus et al. (2013) 
and Hamilton and Wu (2014).
5 A

n
 and B

n
 are completely free in our model. This is different from the typical no-arbitrage term structure 

models in which A
n
 and B

n
 are functions of the risk-neutral parameters through standard no-arbitrage pric-

ing recursions.
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Each component follows its own GARCH-type process with different persistence, captured 
by �i,L and �i,S.

where �i,t is the ith element in the M × 1 vector of �t . �i,L , �i,S , �i , and �i are all positive sca-
lars. Without loss of generality, we impose the restriction that 𝜌i,L > 𝜌i,S . Li,t is a low-fre-
quency trending component of �2

i,t
 , whereas Si,t is a high-frequency transitory component 

with a population mean of zero. �2
i
 is the constant unconditional mean of the conditional 

variance of the ith principal component. Note that E[�2
i,t
] = E[Li,t] =

�2
i (1−�i,L)
1−�i,L

= �2
i
 as long 

as 𝜌i,L < 1 . The term �2
i,t
− �2

i,t−1
 represents innovations about volatility. We also impose the 

following restriction as in Engle and Lee (1999) to guarantee that �2
i,t

 and Li,t are strictly 
positive

This decomposition allows us to differentiate the impact of recent volatilities on futures 
prices and risk premia from that of distant volatility information.6

Following the ARCH-in-mean literature pioneered by Engle et al. (1987), we allow the 
conditional variance to affect oil futures prices. Vt in Eq. (2) is a MV × 1 vector consisting 
of the long-run and short-run volatility components of the M principal components.7

For a model with M principal components as state variables, there are M long-run volatility 
components, Li,t , and M short-run volatility component, Si,t . Therefore Vt is a 2M × 1 vector 
( MV = 2M ). The volatility components affect the conditional means of the state variables, 
PCt , through KV , a M ×MV block diagonal matrix

where KVi , i = 1, ...,M , is a 1 × 2 vector. In particular, note that Li,t and Si,t are known as of 
time t, given the history of the ith principal component PCi until t and an initial variance 
Li,0 and Si,0 , as follows

(3)

�2
i,t
=Li,t + Si,t,

Li,t =�
2
i
(1 − �i,L) + �i,LLi,t−1 + �i

(
�2
i,t
− �2

i,t−1

)
,

Si,t =�i,SSi,t−1 + �i

(
�2
i,t
− �2

i,t−1

)
,

(4)𝜙i + 𝜑i < 𝜌i,S < 𝜌i,L < 1.

(5)Vt =

⎡
⎢⎢⎢⎢⎢⎣

√
L1,t

�1,t −
√
L1,t

...√
LM,t

�M,t −
√
LM,t

⎤
⎥⎥⎥⎥⎥⎦

.

(6)KV = diag
( [

KV1

]
...

[
KVM

] )
,

6 The decomposition of total variance into a long-run and a short-run components is also related to lit-
erature that attempts to build various volatility components into the pricing of different financial securities. 
See, for example, Christoffersen et  al. (2008), Alizadeh et  al. (2002), Adrian and Rosenberg (2008), and 
Kang et al. (2020).
7 Note that the short-run volatility component is written as �

i,t −
√
L
i,t  instead of 

√
S
i,t  , because S

i,t needs 
not to be positive, but L

i,t is.
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where K0i is the ith element in K0 and K1i is the ith diagonal term in K1.
To summarize, our model is fully characterized by Eqs. (1)–(8). The full parameter set is 

given by: Θ = {A, B,  K0, K1, KV , �i,L, �i,S, �i, �i, �2
i
} , where A is a N × 1 vector and B is a 

N ×M matrix, with An and Bn are their corresponding elements for n-maturity. N denotes the 
total number of available maturities in the sample.

2.2  Implications on futures risk premia

Using Eq. (1), we can write the model’s prediction of the one-period ahead n-maturity futures 
price as

From Eq. (2), the predicted one-period ahead state variables, PC, are given by

Following Szymanowska et al. (2014) and Heath (2019), we define the one-period excess 
futures return as the continuously compounded return of holding an n-maturity futures for 
one period

The model-implied risk premia for n-maturity futures is the conditional expectation of the 
excess holding return. Using Eqs. (9)–(11) and (1), we have

For each futures contract with n periods to maturity, the effect of the volatility components, 
Vt , on its risk premium, rf n

t+1|t , is the product of the exposure of the log futures prices to 
each principal component, Bn−1 , and the effect of the volatility component on the forecast 
of future principal components, KV . Since KV is a block diagonal matrix, KVi ( i = 1, ...,M ) 
determines the relationship between the volatility components of the ith principal compo-
nent and futures risk premium for a given price loading Bn−1.

(7)

Li,t =�
2
i
(1 − �i,L) + �i,LLi,t−1 + �i

×

��
PCi,t − K0i − K1iPCi,t−1 − KVi

� √
Li,t−1

�i,t−1 −
√
Li,t−1

��2

−
�
Li,t−1 + Si,t−1

��
,

(8)

Si,t =�i,SSi,t−1 + �i

×

��
PCi,t − K0i − K1iPCi,t−1 − KVi

� √
Li,t−1

�i,t−1 −
√
Li,t−1

��2

−
�
Li,t−1 + Si,t−1

��
,

(9)f n
t+1|t = An + BnPCt+1|t.

(10)PCt+1|t = K0 + K1PCt + KVVt.

(11)rf n
t+1

= f n−1
t+1

− f n
t
.

(12)

rf n
t+1|t =f

n−1
t+1|t − f n

t

=An−1 + Bn−1PCt+1|t − (An + BnPCt)

=An−1 + Bn−1(K0 + K1PCt + KVVt) − (An + BnPCt)

=An−1 + Bn−1K0 − An + (Bn−1K1 − Bn)PCt + Bn−1(KVVt)

=constant + (Bn−1K1 − Bn)PCt + Bn−1(KVVt).
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Furthermore, Eq. (12) provides a term structure of risk-return relations across the maturity 
spectrum as n varies. We can decompose the predictive component of the one-period return 
for n-maturity futures into a PCt-related component and a Vt-related component. We calculate 
the following fraction as a proxy for the contribution of the PCt-related component for futures 
risk premia

The contribution of the volatility component Vt for futures risk premia can be computed in 
the same way,

The contribution of the long-run volatility component of the ith principal component is

where KVi(1) is the first element of KVi and corresponds to the long-run component. Bn−1(i) 
is the ith element of Bn−1 . The contribution of the short-run volatility component of the ith 
principal component is

where KVi(2) is the second element of KVi and corresponds to the short-run component.

3  Estimation method and data

3.1  Estimation method

We assume that futures prices are measured with errors et , a vector of measurement errors 
that is assumed to be i.i.d. normal. We further assume that the errors on each maturity have 
equal variance �2

e
 so that the likelihood tries equally hard to match the term structure of futures 

prices.
The conditional likelihood function of futures prices is

where Θ1 = {A, B} and Θ2 = {K0,K1,KV , �i,L, �i,S,�i,�i, �
2
i
} . The first term captures the 

cross-sectional dependence of futures prices on risk factors PCt , and its logarithm is given 
by

(13)
Var

[
(Bn−1K1 − Bn)PCt

]

Var
[
(Bn−1K1 − Bn)PCt + Bn−1(KVVt)

] .

(14)
Var

[
Bn−1(KVVt)

]

Var
[
(Bn−1K1 − Bn)PCt + Bn−1(KVVt)

] .

(15)
Var

�
Bn−1(i)(KVi(1)

√
Li,t)

�

Var
�
(Bn−1K1 − Bn)PCt + Bn−1(KVVt)

� ,

(16)
Var

�
Bn−1(i)(KVi(2)(�i,t −

√
Li,t))

�

Var
�
(Bn−1K1 − Bn)PCt + Bn−1(KVVt)

� ,

(17)Γ(ft|ft−1,Θ) = Γ(ft|PCt,Θ1, �
2
e
) × Γ(PCt|PCt−1,Θ2),

(18)logΓ(ft|PCt,Θ1, �
2
e
) = constant − 0.5N log(�2

e
) − 0.5

‖‖et‖‖2
�2
e

.
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Recall that N is the number of maturities in the term structure of futures prices. ‖‖et‖‖ 
denotes the Euclidean norm of the vector of measurement errors. The second term of Eq. 
(17) captures the time-series dynamics of the risk factors. It corresponds to the likelihood 
of a conditionally Gaussian VAR process. The logarithm is given by

3.2  Data

We use the Chicago Mercantile Exchange (CME) WTI crude oil futures settlement price 
on the last business day of each month from January 1990 to July 2016 with the nearest 
12 maturities.8 Panel A of Fig. 1 plots the log futures prices for the full sample. The log 
futures prices with different maturities comove closely with each other. The log futures 
prices on average is increasing over time for all maturities. Panel A of Table 1a presents 
the summary statistics of the log futures prices using the full sample. On average, the term 
structure of log futures prices is flat, and the volatility of log futures prices is relatively 
higher for longer maturities. The prices for all maturities are highly persistent, with slightly 
higher autocorrelation for long-term futures than for short-term futures. The log futures 
prices exhibit excess kurtosis and positive skewness for all maturities.

Panel B of Fig. 1 plots the one-month excess futures returns for the full sample. The 
futures returns fluctuate significantly in our sample for all maturities, and the movements 
across different maturities are highly correlated with each other. The returns dropped to 
around −40% during the financial crisis. Another two major drops happened in January 
1991 (after the U.S. ordered a drawdown of Strategic Petroleum Reserve, and Kuwaiti oil 
facilities were destroyed by Iraq) and November 1998 (the oil price crisis of 1998 that the 
price hit 25-year low on November 30, 1998).

Panel B of Table  1a presents the summary statistics of futures returns using the full 
sample. The average returns are all positive ranging from 0.0404% (2-month) to 0.4730% 
(8-month). On average, the returns are higher for long maturities than short maturities. 
The volatility of one-month returns is monotonically decreasing with maturity. The returns 
are much less persistent than the log futures prices. The one-month excess returns exhibit 
excess kurtosis and negative skewness for all maturities.

4  Modeling choice and sample discussion

4.1  Modeling choice

To show that the cross-section of log futures prices can be well described by a low-dimen-
sional term structure model, we conduct a principal component analysis on the data. Figure 2 
plots the loadings of the first three principal components for the levels and changes in log oil 

(19)
logΓ(PCt|PCt−1,Θ2)

= constant − 0.5 log(det(Σt)) − 0.5
‖‖‖Σ

−0.5
t

(PCt − K0 − K1PCt−1 − KVVt−1)
‖‖‖
2

.

8 One WTI crude oil futures contract is based on 1, 000 barrels of crude oil. Trading of WTI crude oil 
futures contracts terminate on the third business day prior to the 25th calendar day (if the 25th calendar day 
is not a business day, then use the business day before it instead) of the month before the contract month.
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futures prices by maturity. The first three principal components are well characterized as the 
level, slope, and curvature of the log futures prices. The figure also displays the percentage 
fraction of the variance that is accounted for by the principal components. We find that the first 
three principal components together account for more than 99.99% of the variance. We con-
clude that the three state variables are needed in the term structure model to capture both the 
levels and changes in the log prices, and they are sufficient to account for the variation of the 
log futures prices. This conclusion is consistent with Schwartz (1997) and Casassus and Col-
lin-Dufresne (2005).9 We, therefore, adopt a model with the observed first three principal com-
ponents of oil futures prices as the state variables: M = 3 for the model specified in Sect. 2.

Fig. 1  Log futures prices and returns. Notes to Figure: Panels A and B of the figure plot the log futures 
prices with 1-month to 12-month maturities f n

t
 and the one-month excess holding returns with 2-month 

to 12-month maturities rf n
t+1

 . Panel C plots the differences of log futures prices between 12-month and 
1-month maturities f 12

t
− f

1

t
 . The sample period is from 1990:01 to 2016:07 (color figure online)

9 The three-factor models in those papers include three latent factors: spot price, convenience yield, and 
interest rate.
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Table 1  Summary statistics

Mean St.Dev Skewness Kurtosis AC(1) AC(12)

1a: Full sample 1990:01-2016:07

Panel A: Log futures price
1 month 3.6350 0.6630 0.2059 1.6116 0.9890 0.8732
2 month 3.6365 0.6662 0.2088 1.5770 0.9900 0.8842
3 month 3.6361 0.6689 0.2157 1.5485 0.9909 0.8923
4 month 3.6348 0.6713 0.2227 1.5243 0.9916 0.8985
5 month 3.6332 0.6734 0.2293 1.5029 0.9922 0.9036
6 month 3.6312 0.6753 0.2353 1.4843 0.9926 0.9078
7 month 3.6291 0.6770 0.2406 1.4682 0.9930 0.9113
8 month 3.6270 0.6785 0.2452 1.4541 0.9934 0.9143
9 month 3.6249 0.6798 0.2494 1.4415 0.9937 0.9169
10 month 3.6230 0.6809 0.2531 1.4302 0.9940 0.9193
11 month 3.6212 0.6818 0.2564 1.4200 0.9942 0.9213
12 month 3.6195 0.6825 0.2592 1.4108 0.9944 0.9232
Avg. 3.6293 0.6749 0.2351 1.4894 0.9924 0.9055

Mean (%) St.Dev (%) Skewness Kurtosis AC(1) AC(12)

Panel B: One-month excess holding return

2 month 0.0404 9.3918 − 0.1490 4.5103 0.2524 − 0.0066
3 month 0.2573 8.8434 − 0.2007 4.8052 0.2427 − 0.0107
4 month 0.3545 8.4133 − 0.2712 4.9254 0.2427 − 0.0105
5 month 0.4031 8.0479 − 0.3137 5.0398 0.2442 − 0.0065
6 month 0.4383 7.7122 − 0.3557 5.1462 0.2442 − 0.0004
7 month 0.4664 7.4164 − 0.3957 5.2372 0.2448 0.0061
8 month 0.4730 7.1508 − 0.4412 5.3184 0.2460 0.0111
9 month 0.4710 6.9168 − 0.4846 5.4017 0.2474 0.0148
10 month 0.4599 6.7101 − 0.5200 5.4822 0.2481 0.0183
11 month 0.4470 6.5280 − 0.5473 5.5590 0.2473 0.0212
12 month 0.4450 6.3660 − 0.5691 5.6494 0.2461 0.0230
Avg. 0.3869 7.5906 − 0.3862 5.1886 0.2460 0.0054

Mean St.Dev Skewness Kurtosis AC(1) AC(12)

1b: Subsample 1990:01-2005:05

Panel A: Log futures price
1 month 3.1331 0.3157 0.6331 3.2688 0.9381 0.4121
2 month 3.1281 0.3102 0.7361 3.4764 0.9411 0.4225
3 month 3.1220 0.3038 0.8346 3.7065 0.9435 0.4319
4 month 3.1158 0.2976 0.9258 3.9334 0.9452 0.4386
5 month 3.1097 0.2917 1.0120 4.1612 0.9463 0.4431
6 month 3.1039 0.2862 1.0923 4.3835 0.9471 0.4459
7 month 3.0983 0.2811 1.1669 4.5959 0.9477 0.4474
8 month 3.0931 0.2766 1.2355 4.7969 0.9482 0.4483
9 month 3.0884 0.2723 1.3008 4.9908 0.9484 0.4489
10 month 3.0841 0.2683 1.3624 5.1787 0.9485 0.4493
11 month 3.0803 0.2646 1.4202 5.3607 0.9485 0.4492

12 month 3.0767 0.2612 1.4749 5.5389 0.9483 0.4489
Avg. 3.1028 0.2858 1.0996 4.4493 0.9459 0.4405
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Table 1  (continued)

Mean (%) St.Dev (%) Skewness Kurtosis AC(1) AC(12)

Panel B: One-month excess holding return

2 month 0.9712 9.2242 0.2595 4.3608 0.1875 − 0.0394
3 month 1.0976 8.5177 0.2680 4.7956 0.1847 − 0.0438
4 month 1.1267 7.9516 0.2390 4.9337 0.1900 − 0.0372
5 month 1.1224 7.4722 0.2505 5.0682 0.1964 − 0.0240
6 month 1.1056 7.0289 0.2635 5.1420 0.1979 − 0.0073
7 month 1.0904 6.6390 0.2688 5.1642 0.1970 0.0089
8 month 1.0536 6.2941 0.2523 5.0965 0.1955 0.0228
9 month 1.0121 5.9989 0.2264 5.0174 0.1943 0.0340
10 month 0.9692 5.7443 0.2078 4.9396 0.1897 0.0463
11 month 0.9252 5.5262 0.1990 4.8565 0.1825 0.0581
12 month 0.8978 5.3400 0.1922 4.8399 0.1751 0.0674
Avg. 1.0338 6.8852 0.2388 4.9286 0.1900 0.0078

Mean St.Dev Skewness Kurtosis AC(1) AC(12)

1c: Subsample 2005:06-2016:07
Panel A: Log futures price

1 month 4.3166 0.3042 − 0.5801 2.6409 0.9334 0.1501
2 month 4.3272 0.2929 − 0.5504 2.6190 0.9330 0.1583
3 month 4.3344 0.2846 − 0.5308 2.6098 0.9329 0.1638
4 month 4.3398 0.2778 − 0.5162 2.6137 0.9330 0.1678
5 month 4.3441 0.2719 − 0.5056 2.6288 0.9330 0.1713
6 month 4.3475 0.2667 − 0.4986 2.6519 0.9331 0.1750
7 month 4.3500 0.2621 − 0.4922 2.6771 0.9332 0.1785
8 month 4.3520 0.2580 − 0.4868 2.7030 0.9335 0.1818
9 month 4.3536 0.2543 − 0.4822 2.7271 0.9338 0.1849
10 month 4.3549 0.2509 − 0.4768 2.7488 0.9341 0.1877
11 month 4.3559 0.2477 − 0.4711 2.7694 0.9343 0.1905
12 month 4.3567 0.2446 − 0.4660 2.7904 0.9344 0.1930
Avg. 4.3444 0.2680 − 0.5047 2.6817 0.9335 0.1752

Mean (%) St.Dev (%) Skewness Kurtosis AC(1) AC(12)

Panel B: One-month excess holding return

2 month − 1.2777 9.5135 − 0.6265 4.3011 0.3099 0.0181
3 month − 0.9469 9.1749 − 0.6539 4.4208 0.2873 0.0154
4 month − 0.7625 8.9160 − 0.6865 4.4876 0.2785 0.0065
5 month − 0.6448 8.6881 − 0.7081 4.5220 0.2721 0.0001
6 month − 0.5415 8.4763 − 0.7278 4.5727 0.2684 − 0.0044
7 month − 0.4570 8.2829 − 0.7412 4.6205 0.2680 − 0.0063
8 month − 0.3931 8.1010 − 0.7547 4.6931 0.2696 − 0.0079
9 month − 0.3428 7.9286 − 0.7681 4.7676 0.2718 − 0.0087

10 month − 0.3112 7.7679 − 0.7796 4.8305 0.2752 − 0.0108
11 month − 0.2826 7.6187 − 0.7910 4.8917 0.2779 − 0.0130
12 month − 0.2507 7.4768 − 0.8007 4.9522 0.2799 − 0.0154
Avg. − 0.5646 8.3586 − 0.7307 4.6418 0.2781 − 0.0024

This table presents the summary statistics of the log futures prices f
t
 (Panel A) and the one-month excess 

holding returns rf n
t+1

 (Panel B) for the full sample and two subsamples. We use the Chicago Mercantile 
Exchange (CME) WTI crude oil futures settlement price on the last business day of each month for maturi-
ties of one to twelve months. We present the sample mean, standard deviation, skewness, kurtosis, and auto-
correlations for each maturity. The full sample period is from 1990:01 to 2016:07. The first subsample is 
from 1990:01 to 2005:05. The second subsample is from 2005:06 to 2016:07
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Our next step in the estimation is to diagnose the conditional variance �2
i,t

 of the first three 
principal components. We estimate the maximum flexible version of the model as specified in 
Sect. 2 using the full sample, and plot the estimated time-varying variance �2

i,t
 and its long- and 

short-run components, Li,t and Si,t , for all three principal components in Fig. 3. We find that the 
total conditional variance of the first principal component is much larger and more volatile than 
those of the other two principal components. This observation also holds for the long-run and 
short-run variance components. The conditional variance and the variance components for the 
second and third principal components are relatively inconsiderable and time-invariant.

The principal component analysis in Fig. 2 indicates that 99.76% of the variance of the oil 
futures curve can be explained by the first principal component. We therefore may not need to 
specify time-varying variance for all three factors. Including time-varying variance and the vari-
ance components for all risk factors would make our model over-parameterized. Based on the 
evidence in Figs. 2 and 3, we will focus on a parsimonious model with only the first (level) factor 
having a time-varying variance for the remaining of the paper. In this specification, �i,L , �i,S , �i , 
and �i are zeros for i = 2 and 3 in Eq. (3). Vt is a 2 × 1 vector and KV is a 3 × 2 matrix in Eq. (2). 
The first row of KV is KV1 , a 1 × 2 vector, and the remaining rows in KV are zeros. According to 
Eqs. (9)–(12), the volatility components at t can affect the futures prices and risk premium at 
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Fig. 2  Principal component analysis of levels and changes in log futures prices. Notes to Figure: This fig-
ure plots the loadings (y-axis) of the first three principal components for the term structure of log futures 
prices f

t
 (Panel A) and the term structure of changes in log futures prices f

t+1 − f
t
 (Panel B) by maturity. 

The diamond line (red) is for the first principal component. The cross line (blue) is for the second principal 
component. The square line (green) is for the third principal component. The percentage numbers reported 
in the top right corner of the figure represent the fraction of variance that is accounted for by the principal 
components. The sample period is from 1990:01 to 2016:07 (color figure online)
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t + 1 , but only through the level factor. KV1 determines the relationship between volatility compo-
nents and futures risk premium for a given price loading Bn−1.

4.2  Sample discussion

Our full sample is an extended sample, including 26 years of data. Estimation using such 
a long sample may subject to estimation biases due to structural break. As indicated in 
Panel A of Fig. 1, the log futures prices are apparently higher in the second half of the sam-
ple than in the first half. We also plot the basis (the difference between 12-month futures 
prices and 1-month futures prices) in Panel C of Fig. 1. The basis is on average negative in 
the first half of the sample, suggesting the crude oil futures market was in backwardation 
most of the time. However, after 2005, the basis becomes positive on average, implying the 
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Fig. 3  Variance and variance components for the three state variables. Notes to Figure: This figure plots the 
estimated total conditional variance �2

i,t
 (Panel A) and its long-run component L

i,t (Panel B) and short-run 
component S

i,t (Panel C) for the first three principal components using the full sample. The solid line (blue) 
is for the first principal component. The dotted line (red) is for the second principal component, and the 
dashed line (green) is for the third principal component. The full sample period is from 1990:01 to 2016:07 
(color figure online)
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crude oil futures market was in contango most of the time. Given the fact that futures prices 
will converge to spot price at expiration, a market in backwardation (contango) implies the 
expected futures price will increase (decrease) therefore leading to a positive (negative) 
risk premium in the futures markets (Gorton and Rouwenhorst 2006). These observations 
are consistent with the literature documenting the structural change (from backwardation 
to contango) and the low (or even negative) risk premiums since 2005, the so-called finan-
cialization and electronification period (see, for example, Hamilton and Wu 2014; Brunetti 
and Reiffen 2014; Cheng and Xiong 2014; Heath 2019). The Chow (1960) structural break 
test on the log futures prices with one month to expiry suggests a breakpoint on June 6, 

Table 2  Parameter estimates

This table presents the estimated parameters (t-statistics are in parentheses) for the term structure model 
with long-run and short-run volatility components using the full sample and two subsamples. We use the 
Chicago Mercantile Exchange (CME) WTI crude oil futures settlement price on the last business day 
of each month for maturities of one to twelve months in the estimation. The full sample period is from 
1990:01 to 2016:07. The first subsample is from 1990:01 to 2005:05. The second subsample is from 
2005:06 to 2016:07
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2005 in our sample. We therefore conduct our analyses for the full sample and also for the 
two subsamples, the first covering January 1990 to May 2005, and the second June 2005 to 
July 2016 in the remaining of the paper.10

Table 1b and c show the summary statistics of log futures prices and one-month excess 
returns for the two subsamples. The futures prices on average are higher in the second sub-
sample than in the first subsample for all maturities. Futures price exhibits negative skew-
ness for all maturities in the second subsample, but positive skewness for all maturities in 
the first subsample. After separating the two subsamples, the volatility of log futures prices 
is relatively lower in the two subsamples than in the full sample for all maturities. On aver-
age, the log futures prices are more persistent in the full sample than in the two subsam-
ples. In terms of the one-month excess return, the differences between the two subsamples 
are very obvious. The returns are negative for all maturities in the second subsample, while 
they are positive in the first subsample. Moreover, the one-month excess returns exhibit 
negative skewness for all maturities in the second subsample, while positive skewness for 
all maturities in the first subsample.

5  Parameter estimates and variance components

Table  2 reports the parameter estimates for the full sample (Panel A) and the two sub-
samples (Panels B and C). The level factor is the most persistent, and the third variable is 
strongly mean-reverting for all three samples. For example, the estimated K1 is 0.9930 for 
the level factor and 0.6718 for the third variable in the full sample. The estimated constant 
variance ( �2

i
, i = 1, 2, 3 ) is similar across different samples, with the first variable having a 

much larger variance than the second and third variables.
The long-run variance component L1,t is extremely persistent, with the persistence 

parameter, �1,L , estimated to be 0.9974 for the full sample as shown in Table  2. The 
short-run variance component is much less persistent. The estimated �1,S is 0.1495, sug-
gesting a half-life of about five months. These findings are robust to the two subsamples. 
The estimated �1 and �1 are 0.0094 and 0.0805, respectively, for the full sample. This 
implies that about 9% of the total variance (combining the long- and short-run compo-
nents) shock in each month enters next month’s conditional variance �2

1,t
 . The estimated 

�1 and �1 are smaller in the two subsamples than in the full sample. All estimates asso-
ciated with the volatility process are statistically significant.

We also examine the time-series properties of the filtered long-run and short-run var-
iance components. Figure 4 plots the estimated time-varying variance �2

1,t
 and its long- 

and short-run components, L1,t and S1,t , for the full sample and the two subsamples. 
There is a close correspondence between the total variance and the long-run variance 
component for all three samples. The mean zero short-run component adds high-fre-
quency noise to the long-run component, which results in a variance dynamic with more 
spikes in all three samples. In terms of magnitude, the short-run component is much 
smaller than the long-run component, and by design the short-run component can be 
negative.

10 Other than the structural break test, a regime-switching model could also flexibly identify different states 
in the market. We estimate a two-state regime-switching model of the first principal component (level) of 
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6  Economic implications of the model

In this section, we discuss the economic implications of the term structure model with dif-
ferent volatility components. We first examine the model’s implication on the risk-return 
relation in the crude oil futures market. Subsequently, we investigate the relative contribu-
tions of the long-run and short-run volatility components in forecasting the term structure 
of futures risk premiums.

Footnote 10 (continued)
the log prices of the nearby crude oil futures contracts. The regime-switching model identifies two states: 
before and after February 2004. Our main results remain robust when using these two states as subsamples.
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Fig. 4  Variance and variance components for the first state variable by samples. Notes to Figure: This fig-
ure plots the estimated total conditional variance �2

1,t
 and its long-run L1,t and short-run components S1,t for 

the first principal component using the full sample (Panel A) and two subsamples (Panels B and C). The 
solid line (blue) is the estimated total variance of the first principal component. The dotted line (red) is the 
estimated long-run component, and the dashed line (green) is the estimated short-run component. The full 
sample period is from 1990:01 to 2016:07. The first subsample is from 1990:01 to 2005:05. The second 
subsample is from 2005:06 to 2016:07 (color figure online)
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6.1  Risk‑return relation

As shown in Eq. (12), the volatility component, Vt , summarizes the volatility information 
relevant for forecasting futures prices and risk premia. Therefore the estimated KV indicates 
the relationship between volatility and futures risk premia. Recall that in the model with 
only the first (level) factor having a time-varying variance, KV is a 3 × 2 matrix. The first 
row of the matrix is KV1 , and the second and third rows are zeros. The volatility component 
affects the futures risk premium through the estimate of KV1.

Table 2 shows that the estimates of KV1 are negative for both the long- and short-run vol-
atility components in the full sample. The estimate associated with the long-run volatility 
is −0.1690 and that for the short-run volatility is −0.3189 . But both estimates are not sta-
tistically significant in the full sample. When we examine the estimates in the two subsam-
ples, we find significantly negative KV1 in the second subsample, June 2005 to July 2016. 
While in the first subsample, January 1990 to May 2005, we reach an opposite conclusion: 
a significantly positive relationship between volatility risk and expected excess returns for 
all maturities. In particular, the short-run volatility component has a much larger impact 
on the level factor next month than the long-run volatility component. For example, the 
estimates of KV1 in the first subsample are 0.4206 for the long-run volatility component and 
4.3284 for the short-run volatility component. In the second subsample, the short-run vola-
tility component has a more negative estimate ( −3.8606 ) than the long-run volatility com-
ponent ( −1.7947 ), suggesting that the short-run volatility component has a greater negative 
impact on the level factor next month than the long-run volatility component.

With negative KV1 , a higher volatility predicts a lower level factor next month, as shown 
in Eq. (10). A lower-level factor is associated with a lower excess holding return. As 
explained in Eq. (12), the effect of volatility on risk premium is the product of the expo-
sure of the log futures prices to each risk factor, Bn−1 , and the effect of volatility has on the 
forecast of future risk factors, KV . The price loadings on the level factor, Bn−1 , are positive 
for all maturities. Therefore a negative and significant KV1 indicates a significantly negative 
risk-return relation in the second subsample of the crude oil futures market. The signifi-
cantly negative relationship holds both for the long- and short-run volatility risks.

Figure 5 plots the three-month averages of the expected one-month risk premia, rf n
t+1|t , 

for futures with different maturities. To conserve space, we limit ourselves to n = 2-, 5-, 9- 
and 12-month futures. We plot the results for the two subsamples using their correspond-
ing estimated parameters, respectively. Compared with the volatility shown in Figure  4, 
we observe positive spikes in risk premia for the first subsample when volatilities were 
relatively high (around 1991-1992); while for the second subsample, we observe nega-
tive spikes with high volatilities (around 2008-2009). This is consistent with the results 
in Table 2 that a positive estimate of KV1 in the first subsample and a negative one in the 
second subsample, implying a changing sign of the relationship between volatility and 
expected excess returns over time.

A negative relationship between volatility and expected returns seems to counter the 
classic asset pricing theory in the equity market. However, the commodity markets play 
different roles in the economy through the demand and supply of commodities and risk-
shifting among different traders. Producers wish to minimize their future price risks; there-
fore, they would like to pay a premium for their hedging positions. This is the so-called 
"normal backwardation" proposed by Keynes (1930) that the risk premium on average will 
accrue to the buyers of the futures contracts. However, the risk premium theoretically could 
accrue to either buyers or sellers, given that big consumers would hedge too. Therefore, the 
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sign of risk premium in the commodity markets could be positive or negative, resulting in a 
relatively lower average risk premium than that in the equity market.

As seen in Panel B of Table 1a, the average return of the crude oil futures market is 
about 4.64% (0.3869% × 12) per year, which is much lower than the historical average in 
the equity market. Recall that in Panel C of Fig.  1, the crude oil futures market was in 
backwardation most of the time during the first subsample and in contango most of the 
time during the second subsample. As the convenience yield effect in Pindyck (2001) and 
Chiarella et al. (2016) implies, a contango commodity futures market gives rise to a nega-
tive risk premium–volatility relation. Therefore, the relationship between risk premium and 
volatility for the first subsample should be positive while it should be negative for the sec-
ond subsample.

There is a large literature discussing financialization that features the increasing par-
ticipation of financial traders, especially commodity index traders. For example, Tang and 
Xiong (2012) show that financial traders’ portfolio rebalancing can spillover price volatility 
from outside to commodity markets. On the other side, the literature argues that the finan-
cial traders invest in commodities for portfolio diversification purposes and are willing to 

Fig. 5  Model-Implied Excess Holding Return. Notes to Figure: This figure plots the three-month averages 
of the model-implied one-month excess holding return rf n

t+1|t for futures with different maturities n=2, 5, 9 
and 12 months. We plot the results for the two subsamples using their corresponding estimated parameters 
respectively. The first subsample is from 1990:01 to 2005:05. The second subsample is from 2005:06 to 
2016:07. The solid line (blue) represents the average return using the first subsample. The dotted line (red) 
represents the average return using the second subsample (color figure online)



1523Risk premia in the term structure of crude oil futures: long‑run…

1 3

accept a lower or even a negative risk premium. The long-only commodity index traders 
could also exert hedging pressure on the buy-side and therefore lower the risk premium 
(Brunetti and Reiffen 2014; Cheng and Xiong 2014). Acharya et  al. (2013) document a 
negative relationship between the risk premium associated with hedging demand and spec-
ulative activities in the commodity markets. Hamilton and Wu (2014) and Li (2018) use 
different methodologies, and both find negative risk premiums during financialization. This 
is consistent with our findings of the negative excess returns in Panel B of Table 1c and the 
negative average risk premiums in Fig. 5. In addition to confirming the negative sign of the 
risk premium, our results confirm a significant negative relationship exists between volatil-
ity and expected return after 2005.

Overall, these findings suggest that the risk-return relation in the crude oil futures mar-
ket depends on different market conditions, such as market volatility, backwardation and 
contango, market participants’ positions, and speculation levels. We find a significantly 
positive relation before financialization and a significantly negative relation after financiali-
zation. In both subsamples, we find that the short-run volatility component has a greater 
impact on the level factor next month than the long-run volatility component. Therefore the 
short-run volatility affects futures risk premium more than the long-run volatility through 
exposure to level risk. This finding provides a caution against using a single volatility fac-
tor to capture the risk-return relation in the oil futures market. Unless the single volatility 
factor is predominantly short-run, the risk-return relation can not be accurately character-
ized by a single volatility factor.

6.2  Risk premia decomposition

Following Eqs. (14)–(13), we decompose the predictive component of one-month excess 
return of n-maturity futures to the contributions of the three principal components and 
the two volatility components. The results for the full sample and the two subsamples are 
reported in Table 3. The contributions of the three principal components ( PCt-related com-
ponent) are reported in the first four rows of each panel in Table 3. Each column corre-
sponds to a given futures maturity, while the last column is the average across all maturi-
ties. The first three rows in each panel report the individual contribution of each of the first 
three principal components.

The slope factor represents the most important contribution to futures risk premiums 
among all three principal components in all three samples. In the futures market, the slope 
factor corresponds to the basis between futures and spot prices; therefore, this finding is 
consistent with the literature showing that futures risk premium is related to futures basis 
(e.g., Erb and Harvey 2006; Gorton and Rouwenhorst 2006; Liu and Tang 2011). We find 
that the slope factor can explain on average about 48.24% of the predictive component of 
futures risk premia in the full sample (Panel A of Table  3). This contribution increases 
with maturity, reaching its peak of about 57.54% for the 12-month futures in the full sam-
ple. The level factor is also important in explaining the expected one-month excess return 
in the full sample, especially for short-dated futures. We observe that about 36.75% of the 
predictive component of the excess return for 2 -month futures is explained by the level 
factor. The curvature factor explains a small proportion of futures risk premia for all matur-
ities, especially for intermediate maturities. Because the principal components are uncor-
related with each other, summing up the first three rows in each panel gives the overall con-
tributions to futures risk premiums of all three principal components. The three principal 
components explain on average about 78.32% of the futures risk premia in the full sample.
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The last three rows in each panel of Table 3 report the contributions of the long-run, 
short-run, and total volatility components. The total volatility component ( Vt-related com-
ponent) contributes on average about 11.36% of the predictive component of futures risk 
premia in the full sample and it explains a much smaller proportion than the three princi-
pal components ( PCt-related component). This is because the estimates of KV1 are small 
and insignificant in the full sample as discussed in Sect. (6.1). On average about 5.81% of 
the predictive component of futures risk premia can be attributed to the long-run volatility 
component. This fraction reaches its maximum of about 6.84% for the 8-month futures and 
is slightly lower for very short- and long-dated futures. The contribution of the short-run 
volatility component has similar magnitude as the long-run volatility component. On aver-
age the short-run volatility component explains about 5.89% of the futures risk premia. 
The largest contribution of the short-run volatility component is also for the intermediate-
maturity futures (8-month). The short-run volatility component explains as much as the 
long-run volatility component does, because the estimated KV1 associated with the short-
run volatility component is larger as discussed in Sect. (6.1). Even though the magnitude 
of the short-run volatility component, �1,t −

√
L1,t , is smaller than the long-run volatility 

component, 
√
L1,t , as indicated in Fig. 4, the contributions of the two volatility components 

are similar in the full sample.
Note that the sum of the contributions of the long-run and short-run volatility components 

can be different from the contributions of the total volatility component, because of the cor-
relation between the long-run and short-run volatility components.11 As presented in panel A 
of Table 4, the unconditional correlation between the two volatility components is −0.03 in 
the full sample, −0.14 in the first subsample, and 0.07 in the second subsample. For example, 
in the full sample, the sum of the contributions of the two volatility components for 2-month 
futures is 4.34% + 4.40% = 8.74% , which is larger than the contribution of the total volatility 
component 8.49% . This is due to the negative correlation between the two components. How-
ever, the difference is very small since the correlation is very small. This suggests that the two 
volatility components represent mostly independent channels through which risk premiums 
can be determined.

Also note that the sum of the contributions of the three principal components ( PCt-related 
component) and the total volatility ( Vt -related component) can be different from 100% . The 
sum ranges from 88.36% to 100.25% for all maturities in all three samples, suggesting that the 
average correlation between PCt-related and Vt-related components are positive. Panel B of 
Table 4 presents the unconditional correlation between these two components. The average 
correlation is 0.18 in the full sample, 0.04 in the first subsample, and 0.09 in the second sub-
sample. Since the correlation is not large, especially in the two subsamples, we can treat the 
principal components and the total volatility component as mainly independent channels to 
affect the futures risk premiums.

As discussed in Sect. (6.1), the risk-return relations in the two subsamples are quite dif-
ferent from that in the full sample. We find consistent results for the risk premia decomposi-
tion analysis. Panels B and C of Table 3 show that the total volatility ( Vt-related component) 
explains a large proportion of the futures risk premia in the two subsamples. It accounts for 
about 95% of the predictive component of futures risk premia on average across all maturities 
in both subsamples. While the contributions of the three principal components ( PCt-related 
component) is very marginal in both subsamples. The slope factor is still the most important 

11 The correlation between 
√
L1,t  and �1,t −

√
L1,t is essentially the correlation between 

B
n−1(1)(KV1(1)

√
L1,t) and B

n−1(1)(KV1(2)(�1,t −
√
L1,t)).
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principle component among all three in explaining futures risk premiums for all maturities. 
The total volatility component dominates and contributes more than the three principal com-
ponents in the two subsamples, because the estimates of KV1 are large (in absolute value) and 
significant in the two subsamples.

Moreover, the short-run volatility component represents the most important contribu-
tion in explaining the futures risk premiums for all maturities in both subsamples. In the first 
subsample, January 1990 to May 2005, the short-run volatility component itself on average 
accounts for about 96.31% of the predictive component of futures risk premiums. In the sec-
ond subsample, June 2005 to July 2016, the short-run volatility component explains on aver-
age about 64.28% . This finding is consistent with the finding in Sect. (6.1): the short-run vola-
tility affects futures risk premium more than long-run volatility through exposure to level risk 
as indicated in the estimates of KV1 . As shown in panel B of Table 2, the estimate of KV1 for 
the short-run volatility component (4.3284) is almost as ten times large as the estimate for the 
long-run counterpart (0.4206).

In summary, the short-run volatility component is at least as important as the long-run vol-
atility component in explaining the predictive component of futures risk premia in all samples. 
In particular, the short-run volatility component is the most important contributor among the 
three principal components and the two volatility components in the two subsamples. These 
findings are consistent with those in Sect. (6.1), which suggests that it is important to distin-
guish between long-run and short-run volatility components. A single volatility factor is not 
able to capture the explanation power from the high-frequency transitory component in the 
volatility of the crude oil futures market.

Table 4  Unconditional correlation between different components

This table presents the unconditional correlation between the long-run volatility component 
√
L1,t and the 

short-run volatility component �1,t −
√
L1,t (Panel A) and also the unconditional correlation between the 

PC
t
-related component (B

n−1K1 − B
n
)PC

t
 and total volatility component B

n−1(KV
V
t
) for n = 2-12 month 

(Panel B). We estimate the term structure model with long-run and short-run volatility components using 
the full sample and two subsamples. The full sample period is from 1990:01 to 2016:07. The first subsam-
ple is from 1990:01 to 2005:05. The second subsample is from 2005:06 to 2016:07. The last row in panel B 
shows the averages across all maturities

1990:01-2016:07 1990:01-2005:05 2005:06-2016:07

Panel A: Unconditional correlation between long-run and short-run volatility components 
− 0.03 − 0.14 0.07

Panel B: Unconditional correlation between PC
t
-related component and volatility V

t
-related component

2 month 0.19 0.03 0.13
3 month 0.18 0.04 − 0.01
4 month 0.19 0.04 0.02
5 month 0.19 0.04 0.03
6 month 0.19 0.04 0.02
7 month 0.18 0.05 0.05
8 month 0.18 0.05 0.10
9 month 0.17 0.04 0.12
10 month 0.17 0.04 0.16
11 month 0.16 0.04 0.20
12 month 0.15 0.04 0.20
Avg. 0.18 0.04 0.09
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7  Model performance

While our main objective is to study the risk-return relation in the term structure of oil 
futures, it is also important that our model adequately captures the stylized facts in the 
data. We therefore examine the model’s in-sample performance in this section. We inves-
tigate the model’s ability to simultaneously fit the first and second moments of log futures 
prices.

7.1  Fit of futures prices

Table 5 reports the in-sample RMSEs of the term structure of log futures prices for the full 
sample and the two subsamples. In the full sample, the average RMSE across 12 maturi-
ties is about 24 basis points. In the two subsamples, the average RMSEs are about 24 and 
13 basis points, respectively. Our model provides a good fit for the term structure of log 
futures prices. This finding is robust to different sample periods.

7.2  Conditional volatility of futures prices

Using Eq. (9), the model-implied one-month ahead conditional variance of the n-maturity 
futures is given by

where �2
e
 is the variance of the pricing errors. We use EGARCH(1, 1) model as a bench-

mark to measure the "true" conditional volatility of log futures prices. The model is esti-
mated by assuming that the conditional mean of changes in monthly log futures prices is 
generated by an AR(1) process. Table 6 presents the in-sample RMSEs of the term struc-
ture of conditional volatilities for the full sample and the two subsamples. On average, the 
RMSE is about 10 basis points for the full sample, and it is about 11 and 7 basis points 
respectively for the two subsamples. The fits are better for futures with intermediate matur-
ities (5 to 8 month) for all three samples.

We present the model-implied one-month conditional volatilities together with the 
EGARCH(1, 1) volatilities for all three samples in Fig.  6. The estimates from the term 
structure model with long- and short-run volatility components comove closely with the 
EGARCH volatilities for all maturities and in all three samples. The proposed model fits 
the high volatility periods of the early 1990s, early 2000s, and 2008-2009 well in the sam-
ple. To further assess the quality of the estimated conditional volatilities, we report the 
unconditional correlation between model-implied volatilities and EGARCH(1, 1) volatili-
ties in Table 7. We find that the average unconditional correlation is as high as 97% for the 
full sample. For futures with intermediate maturities (4- to 8-month), the unconditional 
correlation is as high as 99% . In the two subsamples, the average unconditional corre-
lation is 93% . The unconditional correlations are slightly higher for futures with longer 

(20)vart(f
n
t+1

) = B
�

n
vart(PCt+1)Bn + �2

e
,
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Table 5  Fits of log oil prices

This table presents the in-sample RMSEs of the log futures prices for 
1-month to 12-month maturities. We estimate the term structure model 
with long-run and short-run volatility components using the full sam-
ple and two subsamples. The full sample period is from 1990:01 to 
2016:07. The first subsample is from 1990:01 to 2005:05. The second 
subsample is from 2005:06 to 2016:07. The last row in the table shows 
the averages across all maturities. RMSEs are reported in basis points

1990:01–2016:07 1990:01–2005:05 2005:06–2016:07

1 month 30.56 30.46 14.68
2 month 37.55 40.18 20.81
3 month 30.21 28.30 16.85
4 month 18.63 16.71 7.89
5 month 12.87 15.89 9.68
6 month 22.43 24.81 12.71
7 month 26.76 26.76 14.66
8 month 26.33 23.33 12.86
9 month 18.04 15.02 9.70
10 month 10.26 10.87 5.77
11 month 16.56 17.36 9.57
12 month 39.12 34.94 17.81
Avg. 24.11 23.72 12.75

Table 6  Fits of conditional 
volatilities

This table presents the in-sample RMSEs of the conditional volatili-
ties of the log futures prices for 1-month to 12-month maturities. We 
estimate the term structure model with long-run and short-run vola-
tility components using the full sample and two subsamples. The full 
sample period is from 1990:01 to 2016:07. The first subsample is 
from 1990:01 to 2005:05. The second subsample is from 2005:06 to 
2016:07. The EGARCH(1,1) estimated volatility is used as the bench-
mark to compute the RMSEs. The EGARCH(1,1) is estimated assum-
ing that the conditional mean of changes in monthly log futures prices 
is generated by an AR(1) process. The last row in the table shows the 
averages across all maturities. RMSEs are reported in basis points

1990:01–2016:07 1990:01–2005:05 2005:06–2016:07

1 month 17.72 21.15 11.32
2 month 13.31 16.15 10.82
3 month 9.31 12.14 10.68
4 month 5.50 8.94 10.80
5 month 2.49 7.13 6.06
6 month 2.89 6.71 5.10
7 month 5.55 7.33 4.37
8 month 8.39 8.54 3.81
9 month 11.09 9.89 3.66
10month 13.63 11.20 3.88
11 month 16.06 12.45 4.28
12 month 18.41 13.59 4.98
Avg. 10.36 11.27 6.65
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Fig. 6  Model-implied conditional volatility. Notes to Figure: This figure plots the model-implied one-
month conditional volatility of log futures prices and the EGARCH(1,1) volatility for 1-month to 12-month 
maturities using the full sample and two subsamples. For each maturity, the solid line (blue) represents 
the EGARCH(1,1) estimated volatility of changes in log futures prices. The EGARCH(1,1) is estimated 
assuming that the conditional mean of changes in monthly log futures prices is generated by an AR(1) pro-
cess. The dotted line (red) represents the implied volatility from the term structure model with long-run and 
short-run volatility components. The full sample period is from 1990:01 to 2016:07. The first subsample is 
from 1990:01 to 2005:05. The second subsample is from 2005:06 to 2016:07 (color figure online)
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maturities in the two subsamples. Overall, the term structure model with long- and short-
run GARCH volatility components appears to trace well the movements in the conditional 
second moment of the log futures prices. Our model inherits the ability of GARCH models 
to capture the time-varying volatilities of futures prices.

8  Conclusion

In this paper, we study the risk-return relation in the crude oil futures market through a 
discrete-time term structure model with long-run and short-run GARCH-type volatility 
components. The model combines the tractability of affine term structure model with the 
ability of the GARCH model to deliver an accurate measure of futures volatility. Moreover, 
this model allows us to differentiate the contributions to risk premiums of long-run and 
short-run volatility components of the term structure of futures prices.

Using WTI oil futures prices from 1990 to 2016, we find a significant positive relation-
ship between risk and return before May 2005, but a significant negative relation after that 
time period. Due to the financialization in the commodity markets after 2005, speculators 
who treat commodities as alternative investments are willing to accept a lower or even neg-
ative risk premium. Notably, it is the short-run component of volatility that matters more 
for return predictability than the long-run component, especially in the two subsamples. 
The risk-return relation may be misrepresented by models with a single volatility factor.

Table 7  Unconditional 
correlation between model-
implied volatility and EGARCH 
volatility

This table presents the unconditional correlation between model-
implied one-month conditional volatility and EGARCH(1,1) estimated 
volatility for futures with 1-month to 12-month maturities. We esti-
mate the term structure model with long-run and short-run volatility 
components and the EGARCH(1,1) model using the full sample and 
two subsamples. The EGARCH(1,1) is estimated assuming that the 
conditional mean of changes in monthly log futures prices is gener-
ated by an AR(1) process. The full sample period is from 1990:01 to 
2016:07. The first subsample is from 1990:01 to 2005:05. The second 
subsample is from 2005:06 to 2016:07. The last row in the table shows 
the averages across all maturities

1990:01–2016:07 1990:01–2005:05 2005:06–2016:07

1 month 0.93 0.86 0.84
2 month 0.96 0.89 0.83
3 month 0.98 0.91 0.82
4 month 0.99 0.92 0.81
5 month 0.99 0.93 0.95
6 month 0.99 0.94 0.97
7 month 0.99 0.95 0.98
8 month 0.99 0.95 0.99
9 month 0.98 0.95 0.99
10 month 0.97 0.95 0.99
11 month 0.96 0.95 0.99
12 month 0.95 0.94 0.99
Avg. 0.97 0.93 0.93
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