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Abstract The main purposes of this paper are: (1) to review three alternative methods for

deriving option pricing models (OPMs), (2) to discuss the relationship between binomial

OPM and Black–Scholes OPM, (3) to compare Cox et al. method and Rendleman and

Bartter method for deriving Black–Scholes OPM, (4) to discuss lognormal distribution

method to derive Black–Scholes OPM, and (5) to show how the Black–Scholes model can

be derived by stochastic calculus. This paper shows that the main methodologies used to

derive the Black–Scholes model are: binomial distribution, lognormal distribution, and

differential and integral calculus. If we assume risk neutrality, then we don’t need

stochastic calculus to derive the Black–Scholes model. However, the stochastic calculus

approach for deriving the Black–Scholes model is still presented in Sect. 6. In sum, this

paper can help statisticians and mathematicians understand how alternative methods can be

used to derive the Black–Scholes option model.
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1 Introduction

The use of stock options for risk reduction and return enhancement has expanded at a

considerable rate over the last several decades. In 1973, the Chicago Board Option Ex-

change was established, and brought about liquidity for successful option trading through

public listing and option contract standardization. In the same year, the most famous option

pricing model—Black–Scholes model was proposed and became the industry standard

(Lee et al. 2013a).

Black and Scholes (1973) and Merton (1973) used stochastic calculus to derive option

pricing models. Rendleman and Bartter (1979) and Cox et al. (1979) used binomial dis-

tribution to derive the Black–Scholes model. In the next several decades, a group of new

models that relax some restrictive assumptions of Black–Scholes model have been

proposed.

The first group of researches developed models that allowed important parameters such

as interest rate or (and) volatility, to be stochastic. Scott (1987), Wiggins (1987), Hull and

White (1987), Melino and Turnbull (1990, 1995), Stein and Stein (1991) and Heston

(1993) generalized the Black–Scholes model in terms of stochastic variance. While Amin

and Jarrow (1992) developed the Black–Scholes model allowing stochastic interest rate.

Furthermore, there are some literatures proposed generalization method to allow interest

rate and volatility to be stochastic at the same time. Examples can be found in Amin and

Ng (1993), Bakshi and Chen (1997a, b) and Bailey and Stulz (1989). Similarly, Lee et al.

(1991) extended the binomial option pricing model to the case where the up and down

percentage changes of stock prices are stochastic. They have proved that assuming

stochastic parameters in the discrete-time binomial option pricing is analogous to assuming

stochastic volatility in the continuous-time option pricing.

The second group of studies introduced jump-diffusion process into the Black–Scholes

model, and made extensions to the original model. Several jump-diffusion models were

proposed by Bates (1991), Kou (2002), Kou and Wang (2004), respectively. Psychoyios

et al. (2010) well approximated the time series behavior of VIX index by a mean reverting

logarithmic diffusion process with jumps. Based on the empirical results, they derived

closed-form valuation models for European options written on the spot and forward VIX,

respectively. For more complicated cases, Bates (1996) introduced jump-diffusion process

into the stochastic-volatility model, and Scott (1997) attempted to price options in a jump-

diffusion model with stochastic volatility and interest rates.

Besides the mentioned two large categories of models, an explosion of other option

pricing models have also been proposed and well validated using real world data. Ex-

amples include: (a) the constant elasticity of variance (CEV) models (Cox and Ross 1976;

Beckers 1980; Davydov and Linetsky 2001; Lee et al. 2004; Chen et al. 2009); (b) the

Markovian models (Rubinstein 1994; Aı̈t-Sahalia and Lo 1996); (c) the GARCH models

(Duan 1995; Heston and Nandi 2000; Wu 2006); and (4) the models based on Lévy

processes (Geman et al. 2001; Carr and Wu 2004).

In more recent years, much more complex cases were considered to develop new

models. And these models were proved to describe the reality more precisely. Chen and

Palmon (2005) proposed an empirically based, non-parametric option pricing model and

used it to evaluate S&P 500 index options. As their model was derived under the real

measure, an equilibrium asset pricing model, rather than no-arbitrage model was assumed.

Costabile et al. (2014) proposed a binomial approach for option pricing assuming the

parameters governing the underlying asset process follow a regime-switching model. Lin

et al. (2014) developed a currency option pricing model with regimes of high-variance or
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low-variance states as well as the jump nature of exchange rates. And they have proved

that their model performed better than both traditional regime-switching model and the

Black–Scholes model.

Overall, Black–Scholes option pricing model has been extensively studied by different

researchers, and the models discussed above are by no means exhaustive. This information

can be found in Hull (2014).

Black–Scholes model, the important development of option valuation theory, which

relied on far fewer assumptions, shed new light on the valuation process. Subsequently, the

growing popularity of the option concept is evidenced by its application to the valuation of

other more abstract assets including lease contracts (Grenadier 1995) and real estate

agreements (Williams 1991; Buetow and Albert 1998).

Besides assets valuation, option theory is also widely used in the field of risk man-

agement. The most important observation in Merton (1974) is that the firm’s equity can be

regarded as a call option on the firm’s assets with exercise price equal to the liability. If the

firm’s assets fall below its liabilities, then the firm is in danger of bankruptcy. Under the

Black–Scholes model, the probability of bankruptcy is simply the probability that the

market value of assets is less than the face value of the liabilities (Hillegeist et al. 2004).

Based upon the option pricing models, several commercial vendors provide default

probabilities, with KMV, LLC being the best known.

Similar to the above theory, Merton (1977, 1978) first discussed the relationship be-

tween the deposit insurance and put option. If bank’s assets cannot meet the amount of

deposits, the bank is insolvent. Therefore, all remainders of the assets belong to depositors.

And the insurer of deposit insurance should pay the difference of the bank assets and the

deposits. In this case, the deposit insurance contracts can be viewed as a put option written

on bank assets with the strike price equal to deposits. Marcus and Shaked (1984) used

Merton’s model to price fair insurance premium with constant proportional dividends, and

found FDIC overcharged the deposit insurance premiums in practice.

As discussed so far, it is very important to better understand the pricing theory and

mechanism of option contracts, as the applications of the theory are so wide. It is well-

known that binomial approach, lognormal distribution approach and Itô stochastic differ-

ential approach can be used to derive option pricing model. (a) Binomial option model

assumes stock price either goes up or down at each period. With no arbitrage opportunity

existing, a risk-free portfolio combined with assets is constructed to produce the same

return in every state over each investment period. After then, the binomial model can be

generalized into n periods. (b) As for lognormal distribution approach, the most important

assumption is that the stock price return follow a lognormal distribution. Using properties

of normal distribution, lognormal distribution, and their mutual relations, Black–Scholes

model can be derived without using stochastic differential. (c) Black and Scholes have used

two alternative methods to derive the well-known stochastic differential equation. By

introducing boundary constraints and making variable substitutions, the stochastic differ-

ential equation evolves to the heat-transfer equation in physics. The Fourier transformation

is then used to solve the heat-transfer equation under the boundary condition, and finally

obtain the closed-form solution, which is the famous Black–Scholes formula.

In this paper, we are going to give a overall review and comparison of the alternative

methods to derive option pricing model. This paper will show that the main methodologies

used to derive the Black–Scholes model are: binomial distribution, lognormal distribution,

and differential and integral calculus. We will show that if we assume risk neutrality, then

we don’t need stochastic calculus to derive the Black–Scholes model. This paper can help
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statisticians and mathematicians understand how alternative methods can be used to derive

the Black–Scholes option model.

The rest of this paper proceeds as follows. In Sect. 2, we briefly review three different

approaches for deriving option model. In Sect. 3, we discuss the relationship between bi-

nomial OPM and Black–Scholes OPM. In Sect. 4, we compare Cox et al. method and

Rendleman and Bartter method for deriving Black–Scholes OPM. In Sect. 5, we discuss

lognormal distribution method to derive Black–Scholes OPM. In Sect. 6, we present the

stochastic calculus for deriving the Black–Scholes model. Finally, in Sect. 7, we summarize

the paper. In Appendix, we use the de Moivre–Laplace theorem to prove that the best fit

between the binomial and normal distributions occurs when binomial probability is 1
2
.

2 A brief review of alternative approaches for deriving option pricing model

Binomial model, lognormal distribution approach, and the Black–Scholes model can be

used to price an option. Similar results can be obtained by any of them if we assume some

additional assumptions.

2.1 Binomial model1

The binomial option pricing model derived by Rendleman and Bartter (1979) and Cox

et al. (1979) is one of the most used models to price options.

In binomial model settings, stock price S either goes up with increase factor (u) to arrive

uS or down with decrease factor (d) to arrive dS at each period, where u = 1 ? percentage

of increase, d = 1 - percentage of decrease.

Let i = interest rate; r = 1 ? i; Cu = max[uS - X, 0], call option price after stock

price increases; Cd = max[dS - X, 0], call option price after stock price decreases.

To intuitively grasp the underlying concept of option pricing, here we set up a risk-free

portfolio—a combination of assets that produces the same return in every state of the world

over the investment horizon. The investment horizon here is assumed to be one period. We

buy h shares of the stock and sell the call option at its current price of C to set up the

portfolio.2 Moreover, we choose the value of h such that our portfolio after one period will

yield the same payoff whether the stock goes up or down, which is shown as follows.

hðuSÞ � Cu ¼ hðdSÞ � Cd ð1Þ

By solving h, we can obtain the number of shares of stock we should buy for each call

option we sell, as the following equation shows.

h ¼ Cu � Cd

ðu � dÞS ð2Þ

Here h is called the hedge ratio. Because our portfolio yields the same return under either

of the two possible states for the stock price without risk, then it should yield the risk-free rate

of return, which is equal to the risk-free borrowing and lending rate. This condition must hold;

otherwise, there would be a chance to earn a risk-free profit, which is known as an arbitrage

1 In this section, we follow the notations used by Cox et al. (1979).
2 To sell the call option means to write the call option. If a person writes a call option on stock A, then he or
she is obliged to sell at exercise price X during the contract period.
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opportunity. Therefore, the ending portfolio value must be equal to r (1 ? risk-free rate)

times the beginning portfolio value, as defined in the following equation.

rðhS � CÞ ¼ hðuSÞ � Cu ¼ hðdSÞ � Cd ð3Þ

Note that S and C represent the stock price and the option price at period 0, respectively.

Substituting h as Eq. (2) shows, we get the expression for call option value as follows.

C ¼ R � d

u � d

� �
Cu þ

u � R

u � d

� �
Cd

� ��
r ð4Þ

To simplify this equation, we set

p ¼ r � d

u � d
ð5Þ

Therefore, we have

1 � p ¼ u � r

u � d
ð6Þ

Thus we can get the option’s value with one period to expiration as Eq. (7).

C ¼ ½pCu þ ð1 � pÞCd�=r ð7Þ

This is the binomial call option valuation formula in its most basic form. It prices the

call option with one period to expiration. In this formula, p can be viewed as the prob-

ability of stock price increase, while 1 - p is the probability of stock price decrease.

To derive the option’s price with two periods to go, it is helpful as an intermediate step

to derive the value of Cu and Cd with one period to expiration when the stock price is either

uS or dS, respectively.

Cu ¼ ½pCuu þ ð1 � pÞCud�=r ð8Þ

Cd ¼ ½pCdu þ ð1 � pÞCdd�=r ð9Þ

Equation (8) tells us that if the value of the option after one period is Cu, the option will be

worth either Cuu (if the stock price goes up) or Cud (if stock price goes down) after one more

period (at its expiration date). Cuu and Cud are determined by: Cuu = max[u2S - X, 0], and

Cud = max[udS - X, 0].

Similarly, Eq. (9) shows that if the value of the option is Cd after one period, the option

will be worth either Cdu or Cdd at the end of the second period. Cdu and Cdd are:

Cud = max[udS - X, 0], and Cdd = max[d2S - X, 0].

Replacing Cu and Cd in Eq. (4) with their expressions in Eqs. (8) and (9), respectively,

we can simplify the resulting equation to yield the two-period equivalent of the one-period

binomial pricing formula, which is

C ¼ p2Cuu þ 2pð1 � pÞCud þ ð1 � pÞ2
Cdd

h i.
r2 ð10Þ

In Eq. (10), we used the fact that Cud = Cdu because the price will be the same in either

case.

If we assume that r, u, and d will remain constant over time, deriving the option’s fair

value with two or more periods to maturity is a relatively simple process of working
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backwards from the possible maturity values. Using the same procedure, we can extend the

two-period model to a three-period model as in Eq. (11).

C ¼ p3Cuuu þ 3p2ð1 � pÞCuud þ 3pð1 � pÞ2
Cudd þ ð1 � pÞ3

Cddd

h i.
r3 ð11Þ

A graphical interpretation of Eq. (11) is presented in Figs. 1 and 2. Figure 1 presents the

stock price binomial decision tree and Fig. 2 presents the call option decision tree.

In Fig. 1, S represents stock price per share in period 0. In period 1, stock price can

either go up (uS) or go down (dS).

Similarly, in period 2, stock prices can be u2S, udS, duS or d2S.3 In period 3, stock price

has eight possible cases as presented in Fig. 1 in detail.

In period 3, the highest possible value for stock price based on our assumption is

u3S. We get this value first by multiplying the stock price S at period 0 by u to get the

resulting value of uS of period 1. Then, we again multiply the stock price in period 1 by

u to get the resulting value of u2S of period 2. Finally, we multiply the stock price in period

2 by u to get the value of u3S in period 3. Similarly, the lowest possible value of stock price

is d3S.

In Fig. 2, eight nodes in the right column represent the values of call option when the

stock price is fewer than eight different possible cases. Under three-period binomial tree

settings, period 3 means the maturity date. At that point, the value of the call option is

determined by the relationship between stock price and exercise price X. Here, we take

Cuud, which implies the value of the call option when the stock price is u2dS as an example.

If the stock price, u2dS, exceeds exercise price X, then the call option value should be

Cuud = u2dS - X. Otherwise, a negative value has no value to an investor, and the call

option value should be 0. All we mentioned above yields the value of option Cuud in period

0 1 2 3 

Fig. 1 Three-period binomial
decision tree of stock price

3 Here, we distinguish udS and duS, and count them as two possible outcomes.
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0 as Cuud = max[u2dS - X, 0]. Similarly, we can determine all the option values under

different stock price at expiration date.

Similarly, the binomial model can be generalized into n periods. Lee et al. (2013b)

defined the pricing of a call option in a binomial OPM with n periods as Eq. (12).

C ¼ 1

rn

Xn

j¼0

n!

j!ðn � jÞ! p
jð1 � pÞn�j

max½ðuÞ jðdÞn�j
S � X; 0� ð12Þ

We can rewrite Eq. (12) as:

C ¼ S
Xn

j¼a

n!

j!ðn � jÞ! p
jð1 � pÞn�j u jdn�j

rn

" #
� X

rn

Xn

j¼a

n!

j!ðn � jÞ! p
jð1 � pÞn�j

" #
ð13Þ

where a denotes the minimum integer value of j for which ujdn-j - X will be positive.

It is easy to observe that the second term in brackets in Eq. (13) is a cumulative

binomial distribution with parameters n and p. If we define p0 � ðu=rÞp and

1 � p0 � ðd=rÞð1 � pÞ, then the first term in the brackets can also become a cumulative

binomial distribution with parameters n and p0, as show in Eq. (14).

p jð1 � pÞn�j u jdn�j

rn
¼ p0jð1 � p0Þn�j ð14Þ

Therefore, Eq. (13) can be simplified as

0 1 2 3 

Fig. 2 Three-period binomial
decision tree of call option
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C ¼ SB1ða; n; p0Þ �
X

rn
B2ða; n; pÞ ð15Þ

where

B1ða; n; p0Þ ¼
Xn

j¼a

nCjp
0jð1 � p0Þn�j ð15aÞ

B2ða; n; pÞ ¼
Xn

j¼a

nCjp
jð1 � pÞn�j ð15bÞ

2.2 Black–Scholes model

Black and Scholes (1973) and Merton (1973) have used stochastic Itô calculus to derive an

option pricing model. However, if we assume risk-neutral, Lee et al. (2013b) proposed a

lognormal distribution approach to derive the Black–Scholes model. In this paper, we will

discuss the lognormal distribution approach in details in Sect. 5.

The most famous option pricing model is the Black–Scholes option pricing model

which can be used to price European options.

The Black–Scholes model for a European call option is:

C ¼ SNðd1Þ � Xe�rT Nðd2Þ ð16Þ

where d1 ¼ lnðS=XÞþ rþr2

2

� �
T

r
ffiffiffi
T

p ; d2 ¼ d1 � r
ffiffiffiffi
T

p
; C = call price; S = stock price; X = exercise

price; r = risk-free interest rate; T = time to maturity of option in years; N(�) = standard

normal distribution; r = stock volatility.

This model can be used to price call option and the put option can be derived from the

following put-call parity:

P ¼ C þ Xe�rT � S ð17Þ

where P = put price, other notations are identical to those defined in Eq. (16).

In the following section, we will show the relationship between binomial and Black–

Scholes option pricing models.

3 Relationship between binomial OPM and Black–Scholes OPM

When comparing the parameters in both models, we will find that, the binomial model has

an increase factor (u), a decrease factor (d), and n-period parameters that the Black–

Scholes model does not have. While the Black–Scholes model has distinct parameters, r
and T do not appear in binomial model. The parameters between the two models have the

links, and can be translated from one to another. The derivations are as follows (Hull

2014).

As we discussed in Sect. 2, in binomial OPM setting, the stock price S goes up with a

probability p to arrive uS, and goes down with a probability 1 - p to arrive dS. The

expected stock price is:

puS þ ð1 � pÞd:
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Assume each step is of length Dt, where Dt ¼ T
n
: As n ? ?, Dt ? 0. The expected

return on a stock (in the real world) is supposed to be r (continuously compounding).

Therefore, within this small period of time, the expected price should be erDtS.

Therefore, we have the following equation holds.

puS þ ð1 � pÞdS ¼ erDtS ð18Þ

The volatility of a stock price is defined as r, therefore, in the short time period Dt, the

standard deviation of the stock return is r
ffiffiffiffiffi
Dt

p
, i.e. the variance of the return is r2Dt.

The variance of the stock price return is4:

pu2 þ ð1 � pÞd2 � ðpu þ ð1 � pÞdÞ2:

We have the following equation holds.

pu2 þ ð1 � pÞd2 � ðpu þ ð1 � pÞdÞ2 ¼ r2Dt ð19Þ

Combining the two equations, we get

erDtðu þ dÞ � ud � e2rDt ¼ r2Dt ð20Þ

When ignoring terms Dt2 and higher power of Dt, one solution of this equation is5:

u ¼ er
ffiffiffiffi
Dt

p

d ¼ e�r
ffiffiffiffi
Dt

p ð21Þ

These are the values of u and d proposed by Cox et al. (1979). To summarize the main

relations between the parameters of the two alternative OPMs, we have the following

important equations to link the two models.

Dt ¼ T

n

R ¼ erDt

u ¼ er
ffiffiffiffi
Dt

p

d ¼ e�r
ffiffiffiffi
Dt

p

ð22Þ

If n gets very large, the binomial OPM value will get close to the Black–Scholes OPM

value. Benninga and Czaczkes (2000) demonstrated that the binomial value will be close to

Black–Scholes when the parameter n exceeds 500.

There are two alternative methods to show how binomial OPM can be converted to the

Black–Scholes OPM. These two methods are:

1. Theoretical methods proposed by Cox et al. (1979) and Rendleman and Bartter (1979).

Lee and Lin (2010) have shown how these two different methods can be related. Cox

4 This uses the property that the variance of a variable Q can be calculated by: E(Q)2 – [E(Q)]2, where E(�)
denotes the expected value.

5 Here, Taylor series expansion is used: ex ¼ 1 þ x þ x2

2! þ x3

3! þ � � �.
erDt ¼ 1 þ rDt and e2rDt ¼ 1 þ 2rDt when higher powers of Dt2 are ignored. The solution to u and d

implies that u ¼ 1 þ r
ffiffiffiffiffi
Dt

p
þ 1

2
r2Dt, d ¼ 1 � r

ffiffiffiffiffi
Dt

p
þ 1

2
r2Dt. All of these expansions satisfy Eq. (19).
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et al. (1979) used the Lyapunov Condition to show how the binomial OPM can be

reduced to the Black–Scholes OPM. Alternatively, Rendleman and Bartter (1979) used

the limited theory of the relationship between binomial and normal distribution to

show how the binomial OPM can be converted to the Black–Scholes OPM. To

understand this approach, we do not need to know advanced probability theory, as we

will point out in the next section.

2. The Excel approach proposed by Lee (2001). Lee has used the Excel program

approach to show that the binomial model can be approached to the Black–Scholes

model when n approaches 500. This approach is similar to the concept and theory used

by Rendleman and Bartter (1979).

Here we will demonstrate how to use the binomialBS_OPM.xls Excel file proposed by

Lee (2001), to create the decision trees for call option price as an illustrative example.6 We

assume stock price is 30, strike price is 32, increase factor (u) is 1.1 and decrease factor

(d) is 0.9. We are constructing a four-period binomial option pricing model with risk-free

rate 3 %. Decision tree of call option using binomial model is produced as shown in Fig. 3.

31 calculations were required to create a decision tree that has four periods. Therefore,

the Excel file did 31 9 3 = 93 calculations to create the three decision trees for stock

price, call option value, and put option value.

We also use the Excel program to calculate the binomial and Black–Scholes call values,

which were previously illustrated. If we determine the parameter T and r as 1 and 0.2,

respectively, the increase factor (u) and decrease factor (d) will be adjusted. And we can

get: u = 1.105 and d = 0.905. Figure 4 shows the decision tree approximation of Black–

Scholes call pricing model as these parameters determined.

Notice that in Fig. 4, the binomial OPM value does not agree with the Black–Scholes

OPM, but the values are close. The binomial OPM value will get very close to the Black–

Scholes OPM value once the binomial parameter—number of periods n gets very large.

Benninga and Czaczkes (2000) demonstrated that the binomial value will be close to Black–

Scholes when the number of periods n is larger than 500. Here, we will use the Johnson and

Johnson call option as a real example for a practical illustration. The parameters are as

follows: S = 93.45, X = 92.5, T = 0.3589, r = 2.75 %. r = 13.01 %, which is estimated

from JNJ stock’s daily return. The observed call price from market is C = 3.65.

For Black–Scholes OPM, we can get:

Nðd1Þ ¼ 0:6175; Nðd2Þ ¼ 0:5875

The theoretical value for the call option from Black–Scholes model should be:

C ¼ SNðd1Þ � e�rT XNðd2Þ ¼ 3:90

Table 1 shows how the binomial OPM value converges to the Black–Scholes OPM as

n gets larger, with increase factor (u) and decrease factor (d) adjusted accordingly.

Previous examples show that the Excel program can be used to demonstrate the bi-

nomial option pricing model and can converge to the Black–Scholes model when the

number of periods approaches infinity.

6 The details of program presentation for stock price, call option price, and also put option price using both
binomial model and Black–Scholes model are shown in Chapter 18 in Lee et al. (2013a).The Excel VBA
Code for binomialBS_OPM.xls can be found in Appendix 18A in Lee et al. (2013a). The readers can read
them if interested. Due to space limit, we only present the illustrative decision trees for call options using
binomial model and Black–Scholes model in the main text.
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4 Compare Cox et al. and Rendleman and Bartter methods to derive OPM

Both Cox et al. (1979) and Rendleman and Bartter (1979) employ Eq. (13) to show how

the binomial model can be reduced to the Black–Scholes model when the number of

observation n approaches infinity. In this section, we briefly discuss the methods employed

by these two papers.

Fig. 3 Call option pricing decision tree
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4.1 Cox et al. method

Cox et al. (1979) used the following binomial option pricing model to derive the Black–

Scholes model.

Fig. 4 Decision tree approximation of Black–Scholes call pricing

Table 1 Binomial OPM estimates of different numbers of periods

Number
of period (n)

Increase
factor (u)

Decrease
factor (d)

Theoretical value
of binomial OPM

3 1.0460 0.9560 4.1285

4 1.0397 0.9618 3.8844

5 1.0355 0.9657 4.0306

6 1.0323 0.9687 3.9122

7 1.0299 0.9710 3.9888

8 1.0279 0.9728 3.9232

9 1.0263 0.9744 3.9657

10 1.0250 0.9757 3.9282
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C ¼ S
Xn

j¼a

n!

j!ðn � jÞ! p
jð1 � pÞn�j u jdn�j

r̂n

" #
� Xr̂�n

Xn

j¼a

n!

j!ðn � jÞ! p
jð1 � pÞn�j

" #

¼ SB1ða; n; p0Þ � Xr̂�nB2ða; n; pÞ
ð23Þ

where

B1ða; n; p0Þ ¼
Xn

j¼a

nCjp
0jð1 � p0Þn�j

B2ða; n; pÞ ¼
Xn

j¼a

nCjp
jð1 � pÞn�j

p0 � ðu=r̂Þp and 1 � p0 � ðd=r̂Þð1 � pÞ
r̂ ¼ 1 þ interest rate over one period

a is the minimum number of upward stock movements necessary for the option to ter-

minate in the money. In other words, a is the minimum value of integer j that ujdn-jS -

X[ 0 holds.

In order to show the limiting result that the binomial option pricing formula converges

to the continuous version of the Black–Scholes option pricing formula, we assume that h

represents the lapsed time between successive stock price changes. Thus, if t is the fixed

length of calendar time to expiration, and n is the total number of periods each with length

h, then h ¼ t
n
. As the trading frequency increases, h will get closer to zero. When h ? 0,

this is equivalent to n ? ?.

r̂ is one plus the interest rate over a trading period of length h. We not only want r̂ to

depend on n, but want it to depend on n in a particular way—so that as n changes, the total

return r̂n remains the same. We denote r as one plus the rate over a fixed unit of calendar

time, then over time t, the total return should be rt. Then, we will have following equation:

r̂n ¼ rt ð24Þ

for any choice of n. Therefore, r̂ ¼ r
t
n. Let S� be the stock price at the end of the nth period

with the initial price S. If there are j upwards move, then the generalized expression should

be:

logðS�=SÞ ¼ j log u þ ðn � jÞ log d ¼ j logðu=dÞ þ n log d ð25Þ

Therefore, j is the realization of a binomial random variable with probability of a

success being p. We have the expectation of logðS�=SÞ as

EðlogðS�=SÞÞ ¼ ½p logðu=dÞ þ log d�n � ~ln ð26Þ

and its variance

varðlog S�=SÞ ¼ ½logðu=dÞ�2pð1 � pÞn � ~r2n ð27Þ

We are considering dividing up the original time period t into many shorter subperiods

of length h so that t = nh. Our procedure calls for making n larger while keeping the

original time period t fixed. As n ? ?, we would at least like the mean and the variance if

the continuously compounded return rate of the assumed stock price movement coincided

with that of actual stock price. Label the actual empirical values of ~ln and ~r2n as lt and
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r2t, respectively. Then we want to choose u, d, and p so that ~ln ! lt and ~r2n ! r2t as

n ? ?.

A little algebra shows that we can accomplish this by letting

u ¼ er
ffiffi
t
n

p
; d ¼ e�r

ffiffi
t
n

p

p ¼ 1

2
þ 1

2

l
r


 � ffiffiffi
t

n

r ð28Þ

At this point, in order to proceed further, we need the Lyapunov condition of central

limit theorem as following (Ash and Doleans-Dade 1999; Billingsley 2008).

Lyaponov’s Condition Suppose X1, X2, … are independent and uniformly bounded with

E(Xi) = 0, Yn = X1 ? ��� ? Xn, and s2 = E(Yn
2) = Var(Yn).

If limn!1
Pn

k¼1
1

s2þd
n

E Xkj j2þd ¼ 0 for some d[ 0, then the distribution of Yn

sn
converges

to the standard normal distribution as n ? ?.

Theorem If

p log u � ~lj j3þð1 � pÞ log d � ~lj j3

~r3
ffiffiffi
n

p ! 0 as n ! 1 ð29Þ

then

Pr
log S�

S

� �
� ~ln

~r
ffiffiffi
n

p � z

� �
! NðzÞ ð30Þ

where N(z) is the cumulative standard normal distribution function.

Proof Since

p log u � ~lj j3¼ p log u � p log
u

d
� log d

��� ���3¼ pð1 � pÞ3
log

u

d

��� ���3

and

ð1 � pÞ log d � ~lj j3¼ ð1 � pÞ log d � p log
u

d
� log d

��� ���3¼ p3ð1 � pÞ log
u

d

��� ���3;
we have

p log u � ~lj j3þð1 � pÞ log d � ~lj j3¼ pð1 � pÞ½ð1 � pÞ2 � p2� log
u

d

��� ���3:
Thus

p log u � ~lj j3þð1 � pÞ log d � ~lj j3

r̂3
ffiffiffi
n

p

¼
pð1 � pÞ½ð1 � pÞ2 � p2� log u

d

�� ��3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 � pÞ

p
log u

d

� �� �3 ffiffiffi
n

p

¼ ð1 � pÞ2 þ p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1 � pÞ

p
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Recall that p ¼ r̂�d
u�d

with r̂ ¼ r
t
n, u ¼ er

ffiffi
t
n

p
, d ¼ e�r

ffiffi
t
n

p
, we have:

p ¼ e
t
n

log r � e�r
ffiffi
t
n

p

er
ffiffi
t
n

p
� e�r

ffiffi
t
n

p

¼
1 þ t

n
log r � 1 � r

ffiffi
t
n

p
þ 1

2
r2 t

n


 �
þ O n�

3
2


 �
1 þ r

ffiffi
t
n

p
� 1 � r

ffiffi
t
n

p
 �
þ O n�

3
2

� �

¼ 1

2
þ 1

2

log r � 1
2
r2

r

� � ffiffiffi
t

n

r
þ Oðn�1Þ

Therefore,
ð1�pÞ2þ p2ffiffiffiffiffiffiffiffiffiffiffiffi

npð1�pÞ
p ! 0 as n ! 1.

Hence the condition for the theorem to hold as stated in Eq. (29) is satisfied. It is

noted that the condition (29) is a special case of Lyapunov’s condition where d = 1.

Next, we will show that the binomial option pricing model as given in Eq. (23) will

indeed coincide with the Black–Scholes option pricing formula. We can see that there

are apparent similarities in Eq. (23). In order to show the limiting result, we need to

show that:

As n ! 1; B1ða; n; p0Þ ! NðxÞ and B2ða; n; pÞ ! Nðx � r
ffiffi
t

p
Þ

In this section we will only show the second convergence result, as the same argu-

ment will hold true for the first convergence. From the definition of B2(a; n, p), it is

clear that

1 � B2ða; n; pÞ ¼ Prðj� a � 1Þ

¼ Pr
j � npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1 � pÞ

p � a � 1 � npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1 � pÞ

p
 !

ð31Þ

Recall that we consider a stock to move from S to uS with probability p and dS with

probability 1 - p. The mean and variance of the continuously compounded rate of return

for this stock are ~lp and ~r2
p where

~lp ¼ p log
u

d


 �
þ log d and ~r2

p ¼ log
u

d


 �h i2

pð1 � pÞ ð32Þ

From Eq. (25) and the definitions for ~lp and ~r2
p, we have

j � npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1 � pÞ

p ¼
log S�

S

� �
� ~lpn

~rp

ffiffiffi
n

p ð33Þ

Also, from the binomial option pricing formula we have

a � 1 ¼
log X

Sdn

� �
log u

d

� � � e ¼ log
X

S
� n log d

� ��
log

u

d


 �
� e ð34Þ

where e is a real number between 0 and 1.
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From the definitions of ~lp and ~r2
p, it is easy to show that

a � 1 � npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1 � pÞ

p ¼
log X

S

� �
� ~lpn � e log u

d

� �
~rp

ffiffiffi
n

p ð35Þ

Thus from Eq. (31) we have

1 � B2ða; n; pÞ ¼ Pr
log S�

S
� ~lpn

~rp

ffiffiffi
n

p �
log X

S
� ~lpn � e log u

d

� �
~rp

ffiffiffi
n

p
 !

ð36Þ

We have checked the condition given by Eq. (29) in order to apply the central limit

theorem. In addition, we have to evaluate ~lpn, ~r2
pn and log u

d

� �
as n ? ?.

~lpn ! log r � 1
2
r2

� �
t, which can be derived from the property of the lognormal distri-

bution that log EðS�=SÞ ¼ lpt þ 1
2
r2t, and EðS�=SÞ ¼ ½pu þ ð1 � pÞd�n ¼ r̂n ¼ rt. It is also

clear that n~r2
p ! r2t and log u

d

� �
! 0.

Hence, in order to evaluate the asymptotic probability in Eq. (30), we have

log X
S

� �
� ~lpn � e log u

d

� �
~rp

ffiffiffi
n

p ! z ¼
log X

S

� �
� log r � 1

2
r2

� �
t

r
ffiffi
t

p ð37Þ

Using the fact that 1 - N(z) = N(-z), we have, as n ? ?, B2ða; n; pÞ ! Nð�zÞ ¼
Nðx � r

ffiffi
t

p
Þ, where x ¼ log S

Xr�tð Þ
r
ffiffi
t

p þ 1
2
r
ffiffi
t

p
. A similar argument holds for B1ða; n; p0Þ, and

hence we completed the proof that the binomial option pricing formula as given in Eq. (23)

includes the Black–Scholes option pricing formula as a limiting case.

Lyaponov’s Condition requires that X1, X2, … are independent and uniformly

bounded with E(Xi) = 0, Yn = X1 ? ��� ? Xn, and s2 = E(Yn
2) = Var(Yn). However, rates

of return are generally not independent over time and not necessarily uniformly bounded

by the condition required. This is the potential limitation of proof by Cox et al. (1979).

We found that the derivation methods proposed by Rendleman and Bartter (1979), which

will be discussed in next section, are not so restrictive as the proof discussed in this

section.

4.2 Rendleman and Bartter method

In Rendleman and Bartter (1979), a stock price can either advance or decline during the

next period. Let Hþ
T and H�

T represent the returns per dollar invested in the stock if the

price rises (the ? state) or falls (the - state), respectively, from time T - 1 to time T

(maturity of the option). Vþ
T and V�

T the corresponding end-of-period values of the

option.

Let R be the riskless interest rate, they showed that the price of the option can be

represented as a recursive form as:

WT�1 ¼
Wþ

T 1 þ R � H�
T

� �
þ W�

T Hþ
T � 1 � Rð Þ

ðHþ
T � H�

T Þð1 þ RÞ ð38Þ

432 C.-F. Lee et al.

123



Equation (37) can be applied at any time T - 1 to determine the price of the option as a

function of its value at time T.7 By using recursive substitution as discussed in Sect. 2.1,

they derived the binomial option pricing model as defined in Eq. (38).8

W0 ¼ S0B1ða; T ;uÞ �
X

ð1 þ RÞT
B2ða; T ;/Þ ð39Þ

where pseudo probabilities u and / are defined as:

u ¼ ð1 þ R � H�ÞHþ

ð1 þ RÞðHþ � H�Þ ð40Þ

/ ¼ ð1 þ R � H�Þ
ðHþ � H�Þ ð41Þ

Please note that / and u are identical to p and p0, which are defined as p ¼ r�d
u�d

and

p0 � ðu=rÞp in Sect. 2.1.

a denotes the minimum integer value of i for which S0Hþi

H�T�i

[X will be satisfied.

This value is given by9:

a ¼ 1 þ INT
lnðX=S0Þ � T lnðH�Þ

ln Hþ � ln H�

� �
ð42Þ

where INT[�] is the integer operator.

B1(a; T, u) and B2(a; T, u) are the cumulative binomial probability. The number of

successes will fall between a and T after T trials, u and / represent the probability

associated with a success after one trial.

In each period, the stock price rises with the probability h. We assume the distribution

of returns, which is generated after T periods will follow a log-binomial distribution. Then

the mean of the stock price return is:

l ¼ T ½hþhþ h�ð1 � hÞ� ¼ T ½ðhþ � h�Þhþ h�� ð43Þ

And the variance of stock price return is:

r2 ¼ Tðhþ � h�Þ2hð1 � hÞ ð44Þ

where: h = probability that the price of the stock will rise

hþ ¼ lnðHþÞ ð45Þ

h� ¼ lnðH�Þ ð46Þ

Please note that in Cox et al. (1979), they assume log-binomial distribution with mean

lt, and variance r2t. Apparently, Rendleman and Bartter (1979) assumed that t = 1.

Therefore, the Black–Scholes model derived by them is not exactly identical to the original

7 Please note that notation T used here is the number of periods rather than calendar time.
8 Please note that some of the variables used in this section are different from those used in Sects. 2.1 and
4.1.

9 We first solve equality S0Hþi

H�T�i ¼ X. This yields i ¼ lnðX=S0Þ�T lnðH�Þ
ln Hþ�ln H� . To get a, the minimum integer

value of i for which S0Hþi

H�T�i

[X will be satisfied, we should note a as: a ¼ 1 þ INT
lnðX=S0Þ�T lnðH�Þ

ln Hþ�ln H�

h i
.
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Black–Scholes model. The implied values of H? and H- are then determined by solving

Eqs. (42)–(45), shown as Eqs. (46) and (47), respectively.

Hþ ¼ exp l=T þ ðr=
ffiffiffiffi
T

p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � hÞ

h

r !
ð47Þ

H� ¼ exp l=T � ðr=
ffiffiffiffi
T

p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h
ð1 � hÞ

s !
ð48Þ

As T becomes larger, the cumulative binomial density function can be approximated by

the cumulative normal density function. When T ? ?, the approximation will be exact,

and Eq. (38) evolves to Eq. (48).10

W0 � S0N Z1; Z
0
1

� �
� X

ð1 þ RÞT
N Z2; Z

0
2

� �
ð49Þ

In this equation, NðZ; Z 0Þ is the probability that a random variable from a standard

normal distribution will take on values between a lower limit Z and an upper limit Z 0.
According to the property of binomial probability distribution function, we have:

Z1 ¼ a � Tuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tuð1 � uÞ

p ; Z 0
1 ¼ T � Tuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tuð1 � uÞ
p

Z2 ¼ a � T/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T/ð1 � /Þ

p ; Z 0
2 ¼ T � T/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T/ð1 � /Þ
p

Thus, the price of option when the two-state process evolves continuously is presented

as:

W0 ¼ S0N lim
T!1

Z1; lim
T!1

Z 0
1

� �
� X

lim
T!1

ð1 þ RÞT
N lim

T!1
Z2; lim

T!1
Z 0

2

� �
ð50Þ

Let 1 þ R ¼ er=T reflect the continuous compounding of interest, then

limT??(1 ? R)T = er. It is obvious that limT!1Z 0
1 ¼ limT!1Z 0

2 ¼ 1, therefore, all that

needs to be determined is limT??Z1 and limT??Z2 in the derivation of the two-state

model under a continuous time case. Substituting H? and H- in Eqs. (46) and (47) into

Eq. (41), we have: a ¼ 1 þ INT
lnðX=S0Þ�lþr

ffiffiffi
T

p ffiffiffiffiffiffiffi
h

ð1�hÞ

p
r
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

Thð1�hÞ
p

� �
.

Then, we have Eq. (50) holds.

Z1 ¼ a � Tuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tuð1 � uÞ

p ¼
1 þ INT

lnðX=S0Þ�lþr
ffiffiffi
T

p ffiffiffiffiffi
h

1�h

p
rffiffiffiffiffiffiffiffiffi

Thð1�hÞ
p

� �
� Tu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tuð1 � uÞ

p ð51Þ

10 In ‘‘Appendix’’, we will use de Moivre–Laplace theorem to show that the best fit between the binomial

and normal distributions occurs when the binomial probability (or pseudo probability in this case) is 1
2
.
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In the limit, the term 1 ? INT[�] will be simplified to [�]. Therefore, Z1 can be restated

as:

Z1 �
lnðX=S0Þ � l

r
ffiffiffiffiffiffiffiffiffiffiffiffi
uð1�uÞ
hð1�hÞ

q þ
ffiffiffiffi
T

p
ðh� uÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uð1 � uÞ
p ð52Þ

Substituting H? and H- in Eqs. (46) and (47) and 1 þ R ¼ er=T into Eq. (39), we have:

u ¼ ð1 þ R � H�ÞHþ

ð1 þ RÞðHþ � H�Þ ¼
e

r
T � e

l
T
�ðr=

ffiffiffi
T

p
Þ
ffiffiffiffiffi
h

1�h

p
 �
e

l
T
þðr=

ffiffiffi
T

p
Þ
ffiffiffiffiffi
1�h
h

p

e
r
T e

l
Tþðr=

ffiffiffi
T

p
Þ
ffiffiffiffiffi
1�h
h

p
� e

l
T�ðr=

ffiffiffi
T

p
Þ
ffiffiffiffiffi
h

1�h

p
 �

¼ eðr=
ffiffiffi
T

p
Þ
ffiffiffiffiffi
1�h
h

p
� e

l
T
�r

T
þðr=

ffiffiffi
T

p
Þ
ffiffiffiffiffi
1�h
h

p
�
ffiffiffiffiffi
h

1�h

p� �
eðr=

ffiffiffi
T

p
Þ
ffiffiffiffiffi
1�h
h

p
� e�ðr=

ffiffiffi
T

p
Þ
ffiffiffiffiffi
h

1�h

p

ð53Þ

Now, we expand Taylor’s series11 in 1ffiffiffi
T

p , and obtain:

u ¼
ðr=

ffiffiffiffi
T

p
Þ
ffiffiffiffiffiffi
1�h
h

q
� ðl� rÞ=T � ðr=

ffiffiffiffi
T

p
Þ

ffiffiffiffiffiffi
1�h
h

q
�

ffiffiffiffiffiffi
h

1�h

q
 �
þ O 1ffiffiffi

T
p

 �

ðr=
ffiffiffiffi
T

p
Þ

ffiffiffiffiffiffi
1�h
h

q
þ

ffiffiffiffiffiffi
h

1�h

q
 �
þ O 1ffiffiffi

T
p

 �

¼
ðr=

ffiffiffiffi
T

p
Þ
ffiffiffiffiffiffi
h

1�h

q
þ O 1ffiffiffi

T
p

 �

ðr=
ffiffiffiffi
T

p
Þ

ffiffiffiffiffiffi
1�h
h

q
þ

ffiffiffiffiffiffi
h

1�h

q
 �
þ O 1ffiffiffi

T
p

 �

ð54Þ

where oð 1ffiffiffi
T

p Þ denotes a function tending to zero more rapidly than 1ffiffiffi
T

p .

It can be shown that:

lim
T!1

u ¼

ffiffiffiffiffiffi
h

1�h

q
ffiffiffiffiffiffi
1�h
h

q
þ

ffiffiffiffiffiffi
h

1�h

q ¼

ffiffiffiffiffiffi
h

1�h

q
1�hþhffiffiffiffiffiffiffiffiffiffiffi
hð1�hÞ

p ¼ h ð55Þ

Similarly, we have:

ffiffiffiffi
T

p
ðh� uÞ ¼

ffiffiffiffi
T

p
h� eðr=

ffiffiffi
T

p
Þ
ffiffiffiffiffi
1�h
h

p
� e

l
T
� r

T
þðr=

ffiffiffi
T

p
Þ
ffiffiffiffiffi
1�h
h

p
�
ffiffiffiffiffi
h

1�h

p� �
eðr=

ffiffiffi
T

p
Þ
ffiffiffiffiffi
1�h
h

p
� e�ðr=

ffiffiffi
T

p
Þ
ffiffiffiffiffi
h

1�h

p

0
@

1
A

¼
h
ffiffiffiffi
T

p
eðr=

ffiffiffi
T

p
Þ
ffiffiffiffiffi
1�h
h

p
� e�ðr=

ffiffiffi
T

p
Þ
ffiffiffiffiffi
h

1�h

p
 �
�

ffiffiffiffi
T

p
eðr=

ffiffiffi
T

p
Þ
ffiffiffiffiffi
1�h
h

p
� e

l
T
�r

T
þðr=

ffiffiffi
T

p
Þ
ffiffiffiffiffi
1�h
h

p
�
ffiffiffiffiffi
h

1�h

p� �� �

eðr=
ffiffiffi
T

p
Þ
ffiffiffiffiffi
1�h
h

p
� e�ðr=

ffiffiffi
T

p
Þ
ffiffiffiffiffi
h

1�h

p

ð56Þ

We also expand Taylor’s series in 1ffiffiffi
T

p , and we can obtain:

11 Using Taylor expansion, we have ex ¼ 1 þ x þ x2

2! þ Oðx2Þ.

Alternative methods to derive option pricing models 435

123



ffiffiffiffi
T

p
ðh�uÞ¼

h
ffiffiffiffi
T

p
ðr=

ffiffiffiffi
T

p
Þ

ffiffiffiffiffiffi
1�h
h

q
þ

ffiffiffiffiffiffi
h

1�h

q
 �
þ 1

2
ðr=

ffiffiffiffi
T

p
Þ2 1�h

h � h
1�h

� �
þO 1

T

� �h i

ðr=
ffiffiffiffi
T

p
Þ

ffiffiffiffiffiffi
1�h
h

q
þ

ffiffiffiffiffiffi
h

1�h

q
 �
þO 1ffiffiffi

T
p

 �

�

ffiffiffiffi
T

p
ðr=

ffiffiffiffi
T

p
Þ

ffiffiffiffiffiffi
1�h
h

q
 �
þ 1

2
ðr=

ffiffiffiffi
T

p
Þ2 1�h

h

� �
� l�r

T
þðr=

ffiffiffiffi
T

p
Þ

ffiffiffiffiffiffi
1�h
h

q
�

ffiffiffiffiffiffi
h

1�h

q
 �
 �

ðr=
ffiffiffiffi
T

p
Þ

ffiffiffiffiffiffi
1�h
h

q
þ

ffiffiffiffiffiffi
h

1�h

q
 �
þO 1ffiffiffi

T
p

 �

þ
1
2
ðr=

ffiffiffiffi
T

p
Þ2

ffiffiffiffiffiffi
1�h
h

q
�

ffiffiffiffiffiffi
h

1�h

q
 �2

þO 1ffiffiffi
T

p

 �

ðr=
ffiffiffiffi
T

p
Þ

ffiffiffiffiffiffi
1�h
h

q
þ

ffiffiffiffiffiffi
h

1�h

q
 �
þO 1ffiffiffi

T
p

 �

¼
1
2
h r2ffiffiffi

T
p 1�h

h � h
1�h

� �
þ l�rffiffiffi

T
p þ 1

2
r2ffiffiffi

T
p h

1�h�2
� �

þO 1ffiffiffi
T

p

 �

ðr=
ffiffiffiffi
T

p
Þ

ffiffiffiffiffiffi
1�h
h

q
þ

ffiffiffiffiffiffi
h

1�h

q
 �
þO 1ffiffiffi

T
p

 �

ð57Þ

Therefore, we have:

lim
T!1

ffiffiffiffi
T

p
ðh� uÞ

¼ lim
T!1

1
2
h r2ffiffiffi

T
p 1�h

h � h
1�h

� �
þ l�rffiffiffi

T
p þ 1

2
r2ffiffiffi

T
p h

1�h � 2
� �

þ O 1ffiffiffi
T

p

 �

ðr=
ffiffiffiffi
T

p
Þ

ffiffiffiffiffiffi
1�h
h

q
þ

ffiffiffiffiffiffi
h

1�h

q
 �
þ O 1ffiffiffi

T
p

 �

¼
1
2
hr2 1�h

h � h
1�h

� �
þ l� r þ 1

2
r2 h

1�h � 2
� �

r
ffiffiffiffiffiffi
1�h
h

q
þ

ffiffiffiffiffiffi
h

1�h

q
 �

¼
l� r � 1

2
r2

r
ffiffiffiffiffiffi
1�h
h

q
þ

ffiffiffiffiffiffi
h

1�h

q
 � ¼
l� r � 1

2
r2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð1 � hÞ

p
r

ð58Þ

Now substituting limT??u for u and limT!1
ffiffiffiffi
T

p
ðh� uÞ for

ffiffiffiffi
T

p
ðh� uÞ into Eq. (51).

Then we have Eq. (58) holds.

lim
T!1

Z1 ¼ lnðX=S0Þ � l

r
ffiffiffiffiffiffiffiffiffiffiffi
hð1�hÞ
hð1�hÞ

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð1 � hÞ

p
r � lþ 1

2
r2

� �
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð1 � hÞ

p

¼
lnðX=S0Þ � r � 1

2
r2

r

ð59Þ

Similarly, we can also prove that

lim
T!1

Z2 ¼
lnðX=S0Þ � r þ 1

2
r2

r
ð60Þ

According to the property of normal distribution, N(Z, ?) = N(-?, -Z). Let

d1 = -limT??Z1, d2 = -limT??Z2, the continuous time version of the two-state model

is obtained:
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w0 ¼ S0Nð�1; d1Þ � Xe�rNð�1; d2Þ
¼ S0Nðd1Þ � Xe�rNðd2Þ

d1 ¼
ln S0

X

� �
þ r þ 1

2
r2

r
d2 ¼ d1 � r

ð61Þ

Equation (60) is not exactly identical to the original Black–Scholes model because of

the assumed log-binomial distribution with mean l and variance r2. If they assume a log-

binomial distribution with mean lt and variance r2t, then d1 and d2 should be rewritten as:

d1 ¼
ln S0

X

� �
þ r þ 1

2
r2

� �
t

r
ffiffi
t

p

d2 ¼ d1 � r
ffiffi
t

p

Lee and Lin (2010) have theoretically compared these two derivation methods.

Based upon (a) mathematical and probability theory knowledge, (b) assumption and (c)

advantage and disadvantage, the comparison results are listed in Table 2. The main

differences of assumptions between two approaches are: Under Cox et al. (1979) method,

the stock price’s increase factor and decrease factor is expressed as: u ¼ er
ffiffi
t
n

p
and

d ¼ e�r
ffiffi
t
n

p
, respectively, which implies the restraints equality ud = 1 holds. While under

the Rendleman and Bartter (1979) method, the increase factor and decrease factor is:

Table 2 Comparison between Rendleman and Bartter’s and Cox et al.’s approaches

Model Rendleman and Bartter (1979) Cox et al. (1979)

Mathematical and
probability
theory
knowledge

Basic algebra Basic algebra

Taylor expansion Taylor expansion

Binomial theorem Binomial theorem

Central limit theorem Central limit theorem

Properties of binomial distribution Properties of binomial distribution

Lyapounov’s condition

Assumption The mean and variance of logarithmic
returns of the stock are held constant
over the life of the option

The stock follows a binomial process
from one period to the next. It can only
go up by a factor of u with probability
p or go down by a factor of d with
probability 1 - p

In order to apply the Central Limit
theorem, u, d, and p are needed to be
chosen

Advantage and
disadvantage

1. Readers who have undergraduate level
training in mathematics and probability
theory can follow this approach

1. Readers who have advanced level
knowledge in probability theory can
follow this approach; but for those who
don’t, it may be difficult to follow

2. The approach is intuitive, but the
derivation is more complicated and
tedious

2. The assumption on the parameters u, d,
and p makes this approach more
restricted
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Hþ ¼ exp l=T þ ðr=
ffiffiffiffi
T

p
Þ
ffiffiffiffiffiffiffiffiffi
ð1�hÞ

h

q� �
and Hþ ¼ exp l=T � ðr=

ffiffiffiffi
T

p
Þ
ffiffiffiffiffiffiffiffiffi

h
ð1�hÞ

q
 �
, respectively.

In the Rendleman and Bartter (1979) method’s settings, time to maturity is settled as ‘‘1’’.

With the number of periods T ? ?, we can find that the expressions are similar to the Cox

et al. (1979) method. They still have the ‘‘adjusted factor’’

ffiffiffiffiffiffiffiffiffi
ð1�hÞ

h

q
and

ffiffiffiffiffiffiffiffiffi
h

ð1�hÞ

q
before rffiffiffi

T
p in

the exponential expression for increase factor and decrease factor. Under the Rendleman

and Bartter (1979) method, H?H-
= 1.

Hence, like we indicate in Table 2, the Cox et al. method is easy to follow if one has the

advanced level knowledge in probability theory, but the assumptions on the model pa-

rameters make its applications limited. On the other hand, the Rendleman and Bartter

model is intuitive and does not require higher-level knowledge in probability theory.

However, the derivation is more complicated and tedious. In ‘‘Appendix’’, we show that

the best fit between binomial distribution and normal distribution will occur when binomial

probability is 0.5.

5 Lognormal distribution approach to derive Black–Scholes model12

To derive the option pricing model in terms of lognormal distribution, we begin by as-

suming that the stock price follows a lognormal distribution (Lee et al. 2013b). Denote the

current stock price by S and the stock price at the end of tth period by St. Then St

St�1
¼

expðKtÞ is a random variable with a lognormal distribution, where Kt is the rate of return in

tth period and is assumed as a random variable with normal dis-tribution. Assume Kt has

the same expected value lk and variance r2
k for each. Then K1 þ K2 þ � � � þ KT is a normal

random variable with expected value Tlk and variance Tr2
k .

Property of lognormal distribution If a continuous random variable y is normally

distributed, then the continuous variable x defined in Eq. (61) is lognormally distributed.

x ¼ ey ð62Þ

If the variable y has mean l and variance r2, then the mean lx and variance rx
2 of variable

x is defined as the following, respectively.

lx ¼ elþ 1=2r2 ð63Þ

r2
x ¼ e2lþr2

er
2 � 1


 �
ð64Þ

Following the property, we then can define the expected value of ST

S
¼ expðK1 þ K2 þ

� � � þ KTÞ as:

E
ST

S

� �
¼ exp Tlk þ

Tr2
k

2

� �
ð65Þ

12 The presentation and derivation of this section follow Garven (1986), Lee et al. (2013a, b).
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Under the assumption of a risk-neutral investor, the expected return E ST

S

� �
is assumed to

be erT (where r is the riskless rate of interest). In other words, we have the following

equality holds.

lk ¼ r � r2
k=2 ð66Þ

The call option price C can be determined by discounting the expected value of the

terminal option price by the risk-free rate.

C ¼ e�rT E½MaxðST � X; 0Þ� ð67Þ

Note that in Eq. (66):

MaxðST � X; 0Þ ¼ ST � X for ST [X

0 otherwise

�

where T is the time of expiration and X is the exercise price.

Let x ¼ ST

S
be a lognormal distribution. Then we have:

C ¼ e�rT E½MaxðST � XÞ�

¼ e�rT

Z 1

X
S

S x � X

S

� �
gðxÞdx

¼ e�rT S

Z 1

X
S

xgðxÞdx � e�rT S
X

S

Z 1

X
S

gðxÞdx

ð68Þ

where g(x) is the probability density function x ¼ ST

S
.

Here, we will use properties of normal distribution, lognormal distribution, and their

mutual relations to derive the Black–Scholes model. We continue with variable settings in

Eq. (61), where y is normally distributed and x is lognormally distributed.

The PDF of x is:

f ðxÞ ¼ 1

xr
ffiffiffiffiffiffi
2p

p exp � 1

2r2
ðx � lÞ2

� �
; x[ 0 ð69Þ

The PDF of y can be defined as:

f ðyÞ ¼ 1

r
ffiffiffiffiffiffi
2p

p exp � 1

2r2
ðy � lÞ2

� �
; �1\y\1 ð70Þ

By comparing the PDF of normal distribution and the PDF of lognormal distribution, we

know that

f ðxÞ ¼ f ðyÞ
x

ð71Þ

In addition, it can be shown that13

dx ¼ xdy ð72Þ

13 Now that x ¼ ey, then dx ¼ dðeyÞ ¼ eydy ¼ xdy.
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The CDF of lognormal distribution can be defined asZ 1

a

f ðxÞdx ð73Þ

If we transform variable x in Eq. (72) into variable y, then the upper and lower limits of

integration for a new variable are ? and ln a, respectively. Then the CDF for lognormal

distribution can be written in terms of the CDF for normal distribution asZ 1

a

f ðxÞdx ¼
Z 1

ln a

f ðyÞ
x

� �
x dy ¼

Z 1

lnðaÞ
f ðyÞdy ð74Þ

We can rewrite Eq. (73) in a standard normal distribution form, by substituting the

variable. Z 1

a

f ðxÞdx ¼
Z 1

lnðaÞ
f ðyÞdy ¼ NðdÞ ð75Þ

where d ¼ l�lnðaÞ
r .

Similarly, the mean of a lognormal variable can be defined as:Z 1

0

xf ðxÞdx ¼ elþ 1=2r2 ð76Þ

If the lower bound a is[0; then the partial mean of x can be shown as14:Z 1

0

xf ðxÞdx ¼
Z 1

lnðaÞ
f ðyÞeydy ¼ elþr2=2NðdÞ ð77Þ

where d ¼ l�lnðaÞ
r þ r.

Substituting l = r - r2/2 and a ¼ X
S

into Eq. (74), we obtain:Z 1

X
S

gðxÞdx ¼ Nðd2Þ ð78Þ

where d2 ¼ r�ð1=2Þr2�lnX
S

r .

Similarly, we substitute l ¼ r � r2
�

2 and a ¼ X
S

into Eq. (76), we obtain:Z 1

X
S

xgðxÞdx ¼ erNðd1Þ ð79Þ

where d1 ¼ r�ð1=2Þr2�lnX
S

r þ r.

Substituting Eqs. (77) and (78) into Eq. (67), we obtain Eq. (79), which is identical to

the Black–Scholes formula.

13 Now that x ¼ ey, then dx ¼ dðeyÞ ¼ eydy ¼ xdy.
14 The second equality is obtained by substituting the PDF of normal distribution into

R1
lnðaÞ f ðyÞeydy and

does the appropriate transformation.
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C ¼ SNðd1Þ � Xe�rT Nðd2Þ

d1 ¼
ln S

X

� �
þ r þ 1

2
r2

� �
T

r
ffiffiffiffi
T

p

d2 ¼
ln S

X

� �
þ r � 1

2
r2

� �
T

r
ffiffiffiffi
T

p ¼ d1 � r
ffiffiffiffi
T

p
ð80Þ

In this section, we show that the Black–Scholes model can be derived by differential

and integral calculus without using stochastic calculus. However, it should be noted that

we assume risk neutrality instead of risk averse in the derivation of this section.

6 Using stochastic calculus to derive Black–Scholes model

Black and Scholes (1973) have used two alternative approaches to derive the well-known

stochastic differential equation defined in Eq. (80)15:

1

2
r2S2CSS t; Sð Þ þ rSCS t; Sð Þ � rC t; Sð Þ þ Ct t; Sð Þ ¼ 0 ð81Þ

where t = passage of time; S = stock price, which is a function of time t; C(t, S) = call

price, which is a function of time t and stock price S; Ct(t, S) is the first order partial

derivative of C(t, S) respect to t; CS(t, S) is the first order partial derivative of C(t, S) re-

spect to S; CSS(t, S) is the second order partial derivative of C(t, S) respective to S;

r = risk-free interest rate; r = stock volatility.

We rewrite it in a simpler way, as shown in Eq. (81).

oC

ot
þ rS

oC

oS
þ 1

2
r2S2 o

2C

oS2
¼ rC ð82Þ

where oC
ot
¼ Ctðt; SÞ; oC

oS
¼ CSðt; SÞ; o2C

oS2 ¼ CSSðt; SÞ in Eq. (80).

To derive the Black–Scholes model, we need to solve this differential equation under

the boundary condition:

CðS; TÞ ¼ S � X if S	X

0 otherwise

�
ð83Þ

where T is the maturity date of the option, and X is the exercise price.

By introducing boundary constraints and making variable substitutions, they obtained a

differential equation, which is the heat-transfer equation in physics (Joshi 2003). They used

the Fourier transformation to solve the heat-transfer equation under the boundary condi-

tion, and finally obtain the solution. Here we will demonstrate the main procedures to

15 Black and Scholes have used two alternative methods to derive this equation. In addition, the careful
derivation of this equation can be found in Chapter 27 of Lee et al. (2013a), which was written by Professor
A.G. Malliaris, Loyola University of Chicago. Beck (1993) has proposed an alternative way to derive this
equation, and raised questions about the methods used by Black and Scholes. In the summary of his paper,
he mentioned that the traditional derivation of the Black–Scholes formula is mathematically unsatisfactory.
The hedge portfolio is not a hedge portfolio since it is neither self-financing nor riskless. Due to com-
pensating inconsistencies, the final result obtained is nevertheless correct. In his paper, these inconsistencies,
which abound in the literature, were pointed out and an alternative, more rigorous derivation avoiding these
problems is presented.
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obtain the heat-transfer equation, and then get the closed-form solution under the boundary

condition.

Let Z = ln S, using the chain rule of partial derivatives, then we have the following

equations hold.

oC

oS
¼ oC

oZ

oZ

oS
¼ oC

oZ

1

S
ð84Þ

o2C

oS2
¼

oðoC
oZ
Þ

oS

1

S
� oC

oZ

1

S2

¼ o2C

oZ2

1

S2
� oC

oZ

1

S2

ð85Þ

Then we changed Eq. (81) into Eq. (85).

oC

ot
þ r � 1

2
r2

� �
oC

oZ
þ 1

2
r2 o

2C

oZ2
¼ rC ð86Þ

Let s = T - t.

oC

os
� r � 1

2
r2

� �
oC

oZ
� 1

2
r2 o

2C

oZ2
¼ �rC ð87Þ

Let D = ersC, i.e. C = e-rsD, and re-define three partial derivatives in Eq. (86). We

have:

oC

os
¼ �re�rsD þ e�rs oD

os
¼ �rC þ e�rs oD

os
ð88Þ

oC

oZ
¼ e�rs oD

oZ
ð89Þ

o2C

oZ2
¼ e�rs o

2D

oZ2
ð90Þ

If we substitute Eqs. (87), (88), and (89) into Eq. (86), we obtain:

oD

os
� r � 1

2
r2

� �
oD

oZ
� 1

2
r2 o

2D

oZ2
¼ 0 ð91Þ

We introduce a new variable Y to replace Z, then we have:

Y ¼ lnðS=XÞ þ r � 1

2
r2

� �
s ¼ Z þ r � 1

2
r2

� �
s� ln X ð92Þ

Since D = ersC, and it is a function of Z and s, then we explicitly rewrite D as DZ(Z, s).
Equation (91) implies that D is also a function of Y and s. We define DZ(Z, s) and DY(Y, s)
as follows.

DZðZ; sÞ ¼ DZ Y � r � 1

2
r2

� �
sþ ln X; s

� �
ð93Þ
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DYðY ; sÞ ¼ DY Z þ r � 1

2
r2

� �
s� ln X; s

� �
ð94Þ

Taking partial derivatives of DZ(Z, s) respective to Z, we obtain:

oDZðZ; sÞ
oZ

¼ oDYðY ; sÞ
oY

oY

oZ
¼ oDYðY ; sÞ

oY
ð95Þ

Similarly, we have:

o2DZðZ; sÞ
oZ2

¼ o2DYðY ; sÞ
oY2

ð96Þ

oDZðZ; sÞ
os

¼ oDYðY ; sÞ
oY

oY

os
þ oDYðY ; sÞ

os

¼ oDYðY ; sÞ
oY

o Z þ r � 1
2
r2

� �
s� ln X

� �
os

þ oDYðY ; sÞ
os

¼ oDYðY ; sÞ
oY

r � 1

2
r2

� �
þ oDYðY ; sÞ

os

ð97Þ

Substituting Eqs. (94), (95), and (96) into Eq. (90), we can get:

oDY

os
� 1

2

o2DY

oY2
r2 ¼ 0 ð98Þ

Equation (97) is almost close to the heat transfer equation used by Black and Scholes.

Let u ¼ 2
r2 r � 1

2
r2

� �
Y; v ¼ 2

r2 r � 1
2
r2

� �2
s, and re-denote D(u, v) as the function of u

and v.

oDYðY; sÞ
oY

¼ oDðu; vÞ
ou

ou

oY
¼ oDðu; vÞ

ou

2

r2
r � 1

2
r2

� �
ð99Þ

o2DYðY ; sÞ
oY2

¼ o2Dðu; vÞ
ou2

2

r2
r � 1

2
r2

� �� �2

ð100Þ

oDYðY ; sÞ
os

¼ oDðu; vÞ
ou

ou

os
þ oDðu; vÞ

ov

ov

os
¼ oDðu; vÞ

ov

ov

os

¼ oDðu; vÞ
ov

2

r2
r � 1

2
r2

� �2 ð101Þ

We finally reach the heat transfer equation derived by Black and Scholes, when we

substitute Eqs. (99) and (100) into Eq. (97).

oDðu; vÞ
ov

¼ o2Dðu; vÞ
ou2

ð102Þ

Equation (101) is identical to Eq. (10) of Black–Scholes (1973). In terms of the Black–

Scholes notation, Eq. (101) can be written as
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y2 ¼ y11 ð1010Þ

Now, we need to find a function D(u, v) that satisfies both of the boundary conditions

and the partial differential equation as shown in Eq. (101).16 The general solution given in

Churchill (1963) is as follows.

If:

vtðx; tÞ ¼ kvxxðx; tÞ ð�1\x\1; t[ 0Þ ð103Þ

vðx; 0Þ ¼ f ðxÞ ð�1\x\1Þ ð104Þ

Then the general solution for vt(x, t) is17:

vðx; tÞ ¼ 1=
ffiffiffi
p

p Z 1

�1
f ðx þ 2g

ffiffiffiffi
kt

p
Þe�g2

dg ð105Þ

In our notation, D(u, v) = v(x, t), and k = 1, which makes Eq. (102) equivalent to the

partial differential equation as shown in Eq. (101). Moreover, we have the boundary

condition:

CðS; TÞ ¼ S � X if S	X

0 otherwise

�

At maturity date, t = T, v = 0. Then we have D(u, 0) = C(S, T). f(u) must be deter-

mined to make Eq. (103) satisfied. Black and Scholes choose:

f ðuÞ ¼ X eu 1
2
r2ð Þ= r�1

2
r2ð Þ � 1


 �
if u	 0

0 if u\0

(
ð106Þ

Note that, when t = T, u ¼ 2
r2 r � 1

2
r2

� �
lnðS=XÞ, then we have:

Dðu; 0Þ ¼ XðelnðS=XÞ � 1Þ ¼ S � X if u	 0

0 if u\0

�
ð107Þ

which is identical to the boundary condition. Therefore, the determined f(u) makes

Eq. (103) hold.

Now that Eqs. (102) and (103) are satisfied, the solution to the differential equation is

given by18:

Dðu; vÞ ¼ 1=
ffiffiffi
p

p Z 1

�u=2
ffiffi
v

p X eðuþ2g
ffiffi
v

p
Þ 1

2
r2ð Þ= r�1

2
r2ð Þ � 1


 �
e�g2

dg ð108Þ

Let g ¼ q
� ffiffiffi

2
p

, and substitute it and C = e-rsD into Eq. (107), then we have:

CðS; tÞ ¼ e�rs 1ffiffiffiffiffiffi
2p

p
Z 1

�u=
ffiffiffiffi
2v

p X eðuþq
ffiffiffiffi
2v

p
Þ 1

2
r2ð Þ= r�1

2
r2ð Þ � 1


 �
e�q2=2dq ð109Þ

16 The following procedure has closely related to Kutner (1988). Therefore, we strongly suggest the readers
read his paper.
17 The solution is obtained as an application of the general Fourier integral. See Churchill (1963,
pp. 154–155) for more details.
18 The lower limit exists since if u\0; f ðuÞ ¼ 0. Therefore, we require u þ 2g

ffiffiffi
v

p
	 0, i.e. g	 � u=2

ffiffiffi
v

p
.
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Note that:�u=
ffiffiffiffiffi
2v

p
¼ � lnðS=XÞþ r�1

2
r2ð Þs

r
ffiffi
s

p ¼ �d2. Therefore, Eq. (108) can evolve into:

CðS; tÞ ¼ Xe�rs 1ffiffiffiffiffiffi
2p

p
Z 1

�d2

e ðuþq
ffiffiffiffi
2v

p
Þ 1

2
r2ð Þ= r�1

2
r2ð Þ½ ��q2=2dq � Xe�rs 1ffiffiffiffiffiffi

2p
p

Z 1

�d2

e�q2=2dq ð110Þ

We observe the second term in Eq. (109). Recall that the cumulative standard normal

density function is defined as:

NðxÞ ¼
Z x

�1

1ffiffiffiffiffiffi
2p

p e�
t2

2 dt ð111Þ

Therefore, the second term of Eq. (109) is:

Xe�rs
Z 1

�d2

1ffiffiffiffiffiffi
2p

p e�q2=2dq ¼ Xe�rsð1 � Nð�d2ÞÞ ¼ Xe�rsNðd2Þ ð112Þ

Deriving the first term in Eq. (109) is much more tedious and difficult. Recall the

expressions for u and v, u ¼ 2
r2 ðr � 1

2
r2ÞðlnðS=XÞ þ ðr � 1

2
r2ÞsÞ, v ¼ 2

r2 ðr � 1
2
r2Þ2s.

Therefore, we have Eqs. (112) and (113) hold.

u
1

2
r2

� ��
r � 1

2
r2

� �
¼ lnðS=XÞ þ r � 1

2
r2

� �
s

� �
ð113Þ

q
ffiffiffiffiffi
2v

p 1

2
r2

� ��
r � 1

2
r2

� �
¼ qr

ffiffiffi
s

p
ð114Þ

Therefore, the first term in Eq. (109) is:

Xe�rs 1ffiffiffiffiffiffi
2p

p
Z 1

�d2

e ðuþq
ffiffiffiffi
2v

p
Þ 1

2
r2ð Þ= r�1

2
r2ð Þ½ ��q2=2dq

¼ Xe�rselnðS=XÞ 1ffiffiffiffiffiffi
2p

p
Z 1

�d2

erse�
1
2
ðq2�2qr

ffiffi
s

p
þr2sÞdq

¼ S
1ffiffiffiffiffiffi
2p

p
Z 1

�d2

e�
1
2ðq�r

ffiffi
s

p
Þ2

dq

ð115Þ

Here, again we apply variable substitution. Let q0 ¼ q � r
ffiffiffi
s

p
, then dq0 ¼ dq. Therefore,

Eq. (114) evolves to:

S
1ffiffiffiffiffiffi
2p

p
Z 1

�d2�r
ffiffi
s

p e�
1
2
q02 dq0 ð116Þ

Let d1 ¼ d2 þ r
ffiffiffi
s

p
, then we obtain:

S
1ffiffiffiffiffiffi
2p

p
Z 1

�d1

e�
1
2
q02 dq0 ¼ S

Z 1

�d1

1ffiffiffiffiffiffi
2p

p e�
1
2
q02 dq0 ¼ Sð1 � Nð�d1ÞÞ ¼ SNðd1Þ ð117Þ

Finally, when combining the first and second terms in Eq. (109), simplified by

Eqs. (116) and (111) respectively, we reach the Black–Scholes formula.

CðS; tÞ ¼ SNðd1Þ � Xe�rsNðd2Þ ð118Þ
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where

d1 ¼
lnðS=XÞ þ r þ 1

2
r2

� �
s

r
ffiffiffi
s

p

d2 ¼
lnðS=XÞ þ r � 1

2
r2

� �
s

r
ffiffiffi
s

p ¼ d1 � r
ffiffiffi
s

p

s ¼ T � t

ð119Þ

7 Summary and concluding remarks

In this paper, we have reviewed three alternative approaches to derive option pricing

models. We have discussed how the binomial model can be used to derive the Black–

Scholes model in detail. In addition, we also show how the Excel program in terms of

decision tree can be used to empirically show how binomial model can be converted to

Black–Scholes model when observations approach infinity. Under an assumption of risk

neutrality, we show that the Black–Scholes formula can be derived using only differential

and integral calculus and a basic knowledge of normal and lognormal distributions. In

‘‘Appendix’’, we use the de Moivre–Laplace Theorem to prove that the best fit between the

binomial and normal distributions occurs when binomial probability is 1
2
. Overall, this

paper can help statisticians and mathematicians better understand how alternative methods

can be used to derive the Black–Scholes option model.

Appendix: The relationship between binomial distribution and normal distribution

In this ‘‘Appendix’’, we will use the de Moivre–Laplace theorem to prove that the best fit

between the binomial and normal distributions occurs when the binomial probability is 1
2
.

de Moivre–Laplace theorem As n grows larger and approaches infinity, for k in the

neighborhood of np we can approximate

n

k

� �
pkqn�k ’ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2pnpq
p e�

ðk�npÞ2
2npq ; p þ q ¼ 1; p; q[ 0 ð120Þ

Proof According to Stirling’s approximation (or Stirling’s formula) for factorials ap-

proximation, we can replace the factorial of large number n with the following:

n! ’ nne�n
ffiffiffiffiffiffiffiffi
2pn

p
as n ! 1 ð121Þ

Then
n

k

� �
pkqn�k can be approximated as shown in the following procedures.

n

k

� �
pkqn�k ¼ n!

k!ðn � kÞ! p
kqn�k ’ nne�n

ffiffiffiffiffiffiffiffi
2pn

p

kke�k
ffiffiffiffiffiffiffiffi
2pk

p
ðn � kÞn�k

e�k
ffiffiffiffiffiffiffiffi
2pk

p pkqn�k

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

2pkðn � kÞ

r
k

np

� ��k
n � k

nq

� ��ðn�kÞ ð122Þ
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Let x ¼ k�npffiffiffiffiffiffi
npq

p , we obtain:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

2pkðn � kÞ

r
k

np

� ��k
n � k

nq

� ��ðn�kÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

2pkðn � kÞ

r
1 þ x

ffiffiffiffiffi
q

np

r� ��k

1 � x

ffiffiffiffiffi
p

nq

r� ��ðn�kÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n�1

2pk
n

ðn�kÞ
n

s
1 þ x

ffiffiffiffiffi
q

np

r� ��k

1 � x

ffiffiffiffiffi
p

nq

r� ��ðn�kÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n�1

2pk
n
ð1 � k

n
Þ

s
1 þ x

ffiffiffiffiffi
q

np

r� ��k

1 � x

ffiffiffiffiffi
p

nq

r� ��ðn�kÞ

ð123Þ

As k ? np, we get k
n
! p. Then Eq. (123) can be approximated as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1

2pk
n
ð1 � k

n
Þ

s
1 þ x

ffiffiffiffiffi
q

np

r� ��k

1 � x

ffiffiffiffiffi
p

nq

r� ��ðn�kÞ

’

ffiffiffiffiffiffiffiffiffiffi
n�1

2ppq

s
1 þ x

ffiffiffiffiffi
q

np

r� ��k

1 � x

ffiffiffiffiffi
p

nq

r� ��ðn�kÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2pnpq

s
exp ln 1 þ x

ffiffiffiffiffi
q

np

r� ��k
" #

þ ln 1 � x

ffiffiffiffiffi
p

nq

r� ��ðn�kÞ
" #( )

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2pnpq

s
exp �k ln 1 þ x

ffiffiffiffiffi
q

np

r� �
� ðn � kÞ ln 1 � x

ffiffiffiffiffi
p

nq

r� �� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2pnpq

s
exp �ðnp þ x

ffiffiffiffiffiffiffiffi
npq

p Þ ln 1 þ x

ffiffiffiffiffi
q

np

r� �
� ðnq � x

ffiffiffiffiffiffiffiffi
npq

p Þ ln 1 � x

ffiffiffiffiffi
p

nq

r� �� �

ð124Þ

We are considering the term in exponential function, i.e.

�ðnp þ x
ffiffiffiffiffiffiffiffi
npq

p Þ ln 1 þ x

ffiffiffiffiffi
q

np

r� �
� ðnq � x

ffiffiffiffiffiffiffiffi
npq

p Þ ln 1 � x

ffiffiffiffiffi
p

nq

r� �
ð125Þ

Here, we are using the Taylor series expansions of functions ln(1 ± x):

lnð1 þ xÞ ¼ x � x2

2
þ x3

3
þ oðx3Þ

lnð1 � xÞ ¼ �x � x2

2
� x3

3
þ oðx3Þ

Then we expand Eq. (125) respect to x and obtain:
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� ðnp þ x
ffiffiffiffiffiffiffiffi
npq

p Þ x

ffiffiffiffiffi
q

np

r
� x2q

2np
þ x3q

3
2

3n
3
2 p

3
2

þ oðx3Þ
 !

� ðnq � x
ffiffiffiffiffiffiffiffi
npq

p Þ �x

ffiffiffiffiffi
p

nq

r
� x2p

2nq
� x3p

3
2

3n
3
2 q

3
2

þ oðx3Þ
 !

¼ � x
ffiffiffiffiffiffiffiffi
npq

p þ x2q � 1

2
x2q � x3p�

1
2q

3
2

2
ffiffiffi
n

p þ x3p�
1
2q

3
2

3
ffiffiffi
n

p
� �

� �x
ffiffiffiffiffiffiffiffi
npq

p þ x2p � 1

2
x2q þ x3p

3
2q�

1
2

2
ffiffiffi
n

p � x3p
3
2q�

1
2

3
ffiffiffi
n

p
� �

þ oðx3Þ

¼ � 1

2
x2ðp þ qÞ � 1

6
ffiffiffiffiffiffiffiffi
npq

p x3ðp2 � q2Þ þ oðx3Þ

ð126Þ

Since we have p ? q = 1 when we ignore the higher order of x, Eq. (126) can be

simply approximated to:

� 1

2
x2 � 1

6
ffiffiffiffiffiffiffiffi
npq

p x3ðp � qÞ ð127Þ

Then we replace Eq. (127) in the exponential function in Eq. (124), we obtain:
n

k

� �
pkqn�k ’ 1ffiffiffiffiffiffiffiffiffiffi

2ppq
p exp � 1

2
x2 � 1

6
ffiffiffiffiffiffiffiffi
npq

p x3ðp � qÞ
� �

ð128Þ

Although term � 1
6
ffiffiffiffiffiffi
npq

p x3ðp � qÞ ! 0 as n ? ?, the term � 1
6
ffiffiffiffiffiffi
npq

p x3ðp � qÞ will be

exactly zero if and only if p = q. Under this condition,

n

k

� �
pkqn�k ’ 1ffiffiffiffiffiffiffi

2ppq
p expð� 1

2
x2Þ ¼ 1ffiffiffiffiffiffiffi

2ppq
p exp½� ðk�npÞ2

2npq
�. Thus, it is shown that the best fit

between the binomial and normal distribution occurs when p ¼ q ¼ 1
2
.

If p = q, then there exists an additional term � 1
6
ffiffiffiffiffiffi
npq

p x3ðp � qÞ. It is obvious thatffiffiffiffiffi
pq

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 � pÞ

p
will reach maximum if and only if p ¼ q ¼ 1

2
. Therefore, when n is

fixed, if the difference between p and q becomes larger, the absolute value of an additional

term � 1
6
ffiffiffiffiffiffi
npq

p x3ðp � qÞ will be larger. This implies that the magnitude of absolute value of

the difference between p and q is an important factor to make the approximation to normal

distribution less precise. We use the following figures to demonstrate how the absolute

a b c

Fig. 5 Binomial distributions to approximate normal distributions (n = 30)
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number of differences between p and q affect the precision of using binomial distribution

to approximate normal distribution.

From Figs. 5 and 6, we find that when p = q, the absolute magnitude does affect the

estimated continuous distribution as indicated by red solid curves. For example, when

n = 30, the red solid curve when p = 0.9 is very much different from p = 0.5. In other

words, when p = 0.9, the red solid curve is not as similar to the normal curve as p = 0.5. If

we increase n from 30 to 100, the solid red curve from p = 0.9 is less different from the

solid red curve when p = 0.5. In sum, both the magnitude of n and p will affect the shape

of using normal distribution to approximate binomial distribution.

From Eqs. (15) and (16) in the text, we can define the binomial OPM and the Black–

Scholes OPM as follows:

C ¼ SB1ða; n; p0Þ �
X

rn
B2ða; n; pÞ ð15Þ

C ¼ SNðd1Þ � Xe�rT Nðd2Þ ð16Þ

Both Cox et al. and Rendlemen and Bartter tried to show the binomial cumulative

functions of Eq. (15) will converge to the normal cumulative function of Eq. (16) when

n approaches infinity. In this ‘‘Appendix’’, we have mathematically and graphically

showed that the relative magnitude between p and q is the important factor to determine

this approximation when n is constant. In addition, we also demonstrate the size of n which

also affects the precision of this approximation process.
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