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Abstract This paper carries out a comparative analysis of the calibration and perfor-

mance of a variety of options pricing models. These include Black and Scholes (J Polit

Econ 81:637–659, 1973), the Gram–Charlier (GC) approach of Backus et al. (1997), the

stochastic volatility (HS) model of Heston (Rev Financ Stud 6:327–343, 1993), the closed-

form GARCH process of Heston and Nandi (Rev Financ Stud 13:585–625, 2000) and a

variety of Lévy processes including the Variance Gamma (VG), Normal Inverse Gaussian

(NIG), and, CGMY and Kou (Manag Sci 48:1086–1101, 2002) jump-diffusion models.

Unlike most studies of option pricing, we compare these models using a common point-in-

time data which reflects the perspective of a new investor who wishes to choose between

models using only the most minimal recent data set. For each of these models, we also

examine the accuracy of delta and delta-gamma approximations to the valuation of both

individual options and an illustrative option portfolio.

Keywords GARCH pricing � Gram–Charlier pricing � Lévy pricing �
Fast Fourier transform

JEL Classification C02

1 Introduction

The Geometric Brownian Motion (GBM) process of Black and Scholes (BS 1973) provides

a very tractable and in some respects very attractive basis for option pricing. However,
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these benefits come at a price. One problem is that GBM specifies that geometric asset

returns are normally distributed, and this goes against a great deal of evidence showing that

most asset returns are skewed and have higher than normal kurtosis. Evidence of this can

be found in Alles and Murray (2010) amongst host of others. Asset returns may also

experience jumps as for example recently found by Chan et al. (2007) in the case of the

Thai Baht exchange. A second problem is the assumption that volatility is constant, which

contradicts a vast literature suggesting that volatilities are themselves volatile. A recent

example of this in an international context can be found in Arora et al. (2009).

These weaknesses have spawned a number of alternatives to the Black–Scholes

approach to option pricing such as the constant elasticity variance model, empirically

tested by Chen et al. (2009). Another is the Gram–Charlier (GC) approach of Backus et al.

(1997), but this model is still restrictive in so far as it, like BS, still assumes a constant

volatility. A third, the stochastic volatility (HS) model of Heston (1993), allows the vol-

atility to follow a Cox–Ingersoll–Ross (CIR process 1985) stochastic process, and a fourth

is the closed-form GARCH process of Heston and Nandi (2000). All of these models allow

for skewness and excess kurtosis, but they all exclude the presence of jumps in asset

returns. If we wish to obtain jumps, on the other hand, we can use models of Lévy

processes. Such models include the pure jump Lévy processes—such as the Variance

Gamma (VG), Normal Inverse Gaussian (NIG) and CGMY models—that model asset

prices as a continuous-time (and non-diffusive) process of small jumps, and the jump-

diffusion models such as that of Kou (2002). All these Lévy process allow for both

skewness and excess kurtosis in asset returns. This list of models, though far from

exhaustive, is nonetheless representative of the range of alternative approaches that have

been proposed to remedy the limitations of BS.

Most studies of option price performance consider only one or a very limited number of

approaches, and typically do so using time-series approaches involving long spans of

historical data. This paper, by contrast, is the first in its kind in which BS, Gram–Charlier,

stochastic volatility, GARCH and Lévy models are jointly estimated and their performance

assessed on a common data set. Our approach is also distinctive in that it uses point-in-time

data—basically traded options data from a single week. Our proposal is to investigate

which model provides the best calibration subject to a potential new investor’s willingness

to use only the most recent minimum market information without having to make detailed

time-series analyses.

The paper is structured as follows. Section 2 provides a short description of the models

and discusses how they address skewness and kurtosis. It also sets out the risk-neutral

dynamics required for pricing options. Section 3 deals with the models’ calibration. Sec-

tion 4 discusses the models’ pricing performance and Sect. 5 discuss their skew-smirk

patterns. Section 6 then examines the models’ Greek-based (D; U) approximations and Sect.

7 address their use in portfolio approximations of option prices. Section 8 briefly discusses

the models’ risk-neutral densities which determine their pricing. Section 9 concludes.

2 The models and their dynamics

Our starting point is Black and Scholes (1973), who assume that asset prices St follow a

Geometric Brownian Motion (GBM) process:

dSt

St
¼ ldt þ r

ffiffiffiffi

dt
p

Zt ð1Þ

274 S. Mozumder et al.

123



where l is the drift rate, r the volatility and Zt is a standard normal random process. The

option can be priced using the equivalent risk-neutral pricing measure in which we replace

l in Eq. 1 with the risk-free rate r � 1
2
r2 to obtain the famous Black–Scholes (BS) price

formula for a vanilla European call option with strike K and maturity T on a stock of

current value St:

cBS ¼ StUðdÞ � Ke�rTU d � r
ffiffiffiffi

T
p� �

ð2Þ

where Uð�Þ is the standard normal distribution function and

d ¼ ln St=Kð Þ þ r þ r2=2ð ÞT
r
ffiffiffiffi

T
p

A major limitation of the BS model and of the underlying GBM process on which it is

based is that it fails to allow for skewness and excess kurtosis in the underlying process

(see e.g., Hull and White 1988; or Jondeau et al. 2007; Sapp 2009). This leads to the smile

skew effect in BS option prices and also leads to the BS model often undervaluing out-of-

the-money (OTM) options.

We now consider a number of models that can handle skewness and/or excess kurtosis.

2.1 The Gram–Charlier model

The first of these is the Gram–Charlier (GC) model introduced in Backus et al. (1997). It

involves an extension of the BS density that allows for skewness and excess kurtosis:

f ðxÞ ¼ /ðxÞ � 11T

1

3
/3ðxÞ þ 12T

1

4
/4ðxÞ ð3Þ

where the superscripts on / indicate the order of derivative of the BS density f(x), 11T ¼ 111
ffiffiffi

T
p

and 12T ¼ 121
ffiffiffi

T
p are the skewness and kurtosis on a horizon of T, and 111 and 121 are the per

unit skewness and kurtosis. Backus et al. (1997) show that with this density the call price

can be written as the following straightforward generalization of the BS formula (2):

cGC ffi StUðdÞ � Ke�rTU d � r
ffiffiffiffi

T
p� �

þ StUðdÞr
111

3!
2r

ffiffiffiffi

T
p
� d

� �

�
121
ffiffiffi

T
p

4!
1� d2 þ 3dr

ffiffiffiffi

T
p
� 3Tr2

� �

� � ð4Þ

2.2 The Heston stochastic volatility model

The stochastic volatility model (SV) of Heston (1993) assumes a diffusion process for the

stock price given by:1

dSt

St
¼ ldt þ

ffiffiffi

t
p

t

ffiffiffiffi

dt
p

Zt ð5Þ

and a Cox–Ingersoll–Ross (CIR 1985) process for the volatility tt given by:

1 The reader will note that here the volatility tt is not only time-varying, but is also roughly speaking to be
interpreted as the square of the BS volatility r.
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dtt ¼ j t� tt½ �dt þ n
ffiffiffiffi

tt
p ffiffiffiffi

dt
p

Wt ð6Þ

where t is the long-run mean volatility, j is the volatility mean-reversion parameter, n is

the volatility of volatility and Wt is a standard normal random variable with correlation q
against Zt.

The SV model has a flexible distributional structure in which the correlation (q)

between volatility and asset returns serves to control the level of asymmetry (and hence

incorporates skewness) and the volatility of volatility coefficient (n) serves to control the

level of kurtosis. The risk-neutral specification is

dtt ¼ j� t� � tt½ �dt þ n
ffiffiffiffi

tt
p ffiffiffiffi

dt
p

dWt ð7Þ

where j� ¼ jþ k and n� ¼ jn
jþk, where k is the market price of volatility risk.

This model has the following closed-form solution for the call price:

cSV ¼ St
1

2
þ 1

p

Z

1

0

Re
K�izf1

iz

� �

dz

0

@

1

A� Ke�r T�tð Þ 1

2
þ 1

p

Z

1

0

Re
K�izf2

iz

� �

dz

0

@

1

A ð8Þ

where Real½�� refers to the real part of the expression in ½�� and fj ¼ exp Cj þ Djtþ izx
� �

with

x ¼ xt ¼ logðStÞ
t ¼ tt

Cj ¼ irz T � tð Þ þ jt

n2
bj � iqnzþ dj

	 


T � tð Þ � 2 ln
1� gje

dj T�tð Þ

1� gj

� �� �

Dj ¼
bj � izqnþ dj

n2

1� edj T�tð Þ

1� gjedj T�tð Þ

� �

gj ¼
bj � izqnþ dj

bj � izqn� dj

dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

izqn� bj

	 
2� 2iujz� z2
	 


n2

q

u1 ¼
1

2

u2 ¼ �
1

2

b1 ¼ jþ k� qn

b2 ¼ jþ k

2.3 The Heston–Nandi GARCH model

Heston and Nandi (2000) provide a closed form pricing formula for a European option,

where the underlying follows the non-linear GARCH process:

log
Stþ1

St

 �

¼ r þ kr2
t þ rtþ1ztþ1; ztþ1�Nð0; 1Þ

r2
tþ1 ¼ xþ a zt � hrtð Þ2þbr2

t

ð9Þ
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where bþ ah2\1 is necessary for the volatility rt to be mean-reverting. In this model h
determines skewness and a determines kurtosis, and the risk-neutral characterization of

Eq. 9 may be obtained by plugging k ¼ �1
2

and replacing h with h� ¼ hþ kþ 1
2
. This

model has a moment-generating function of the form:

f ðzÞ ¼ Sz
t exp A t; t þ T ; zð Þ þ B t; t þ T ; zð Þr2

tþ1

� �

ð10Þ

where Aðt; t þ T ; zÞ and Bðt; t þ T ; zÞ are given by the recursive relations:

A t; t þ T; zð Þ ¼ A t þ 1; t þ T ; zð Þ þ zr þ B t þ 1; t þ T ; zð Þx

� 1

2
ln 1� 2aB t þ 1; t þ T ; zð Þð Þ ð11Þ

B t; t þ T ; zð Þ ¼ z kþ hð Þ � 1

2
h2 þ bB t þ 1; t þ T ; zð Þ þ

1
2

z� hð Þ2

1� 2aB t þ 1; t þ T ; zð Þ ð12Þ

Heston and Nandi then show that the closed-form GARCH (CFG, for short) call price can

be obtained as:

cGARCH ¼ St
1

2
þ 1

p

Z

1

0

Re
K�izf � izþ 1ð Þ

izf � 1ð Þ

� �

dz

0

@

1

A

� Ke�r T�tð Þ 1

2
þ 1

p

Z

1

0

Re
K�izf � izð Þ

iz

� �

dz

0

@

1

A ð13Þ

where f � is the risk-neutral version of f and f �ð1Þ ¼ EQ
t St½ � ¼ erðT�tÞSt. See Christoffersen

(2003).

2.4 Pure jump Lévy models

The remaining models we consider are Lévy models. Unlike the previous processes con-

sidered, not all Lévy processes have closed form solutions. Consequently, Lévy processes

and derivatives on them should conveniently be analyzed and priced via their characteristic

functions. Following Carr and Madan (1999), we can price the option using:

CTðkÞ ¼
e�ak

p

Z

1

0

e�iukwTðuÞdu ð14Þ

where a is dampening factor that ensures that CT(k) is integrable for all values of the log

strike k, and wTðuÞ is an expression involving the risk-neutral characteristic function of the

model for which prices are computed, viz.:

wTðuÞ ¼
e�rTUT u� aþ 1ð Þið Þ

a2 þ a� u2 � i 2aþ 1ð Þu ð15Þ

The option price (14) can then be estimated using a FFT routine as described (e.g., Fusai

and Roncoroni 2008).

The general characteristic function for a Lévy process governing the random variable

X t2�t1ð Þ ¼ ln St2

St1

� �

is given by:
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E e
isX t2�t1ð Þ

h i

¼ exp t2 � t1ð Þ ias� 1

2
s2b2

� �

þ
Z

<n 0f g

eisx � 1� isxI �1;1f gðxÞmðdxÞ
� �

8

>

<

>

:

9

>

=

>

;

ð16Þ

where t1 can naturally be zero. The scalars a; b 2 < and the measure m satisfies mðf0gÞ ¼ 0

and
R

<nf0g xj j2^1
� �

mðdxÞ\1, where this latter property helps us extract a square inte-

grable martingale process in the limit.2

In this subsection we consider three models of the pure jump family of Lévy models,

which assume that all possible movements in stock price are caused by the frequent arrival

of jumps (see Geman 2002 for further details).

Our first case is the variance gamma (VG) process which involves the following Lévy

measure for mð�Þ:

mVGðdxÞ ¼ 1

c xj j exp
xh
r2
� xj j

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

c
þ h2

r2

s

0

@

1

Adx ð17Þ

When integrated for jumps of all possible sizes equation, Eq. 17 implies that the total jump

rate is infinite, i.e.,
R1

0
mvgðdxÞ ¼ 1. However for any e[ 0, we have

R1
e mvgðdxÞ\1,

implying that jumps exceeding any threshold e[ 0 are finite and arrive in compound

Poisson fashion. This Lévy measure is then used in Eq. 16 with a = b = 0 to yield the

following closed-form characteristic function for Xt:

UðVGÞ
Xt
ðsÞ ¼ 1

1� ishcþ 1
2
s2r2c

 �t
c

ð18Þ

For the VG pure jump Lévy model the skewness and kurtosis in log returns over an interval

of length one are given respectively by:

hc 3r2 þ 2cr2ð Þ
r2 þ ch2
	 


3
2

ð19aÞ

3 1þ 2c� cr4

r2 þ rh2
	 
2

 !

ð19bÞ

We can then price the VG call option using the risk-neutral (or mean-corrected) version of

the characteristic function (16) suggested by Carr and Madan (1999):

UðVG;rnÞ
Xt

ðsÞ ¼ exp i r þ 1

c
ln 1� hc� 1

2
r2c

 �� �

st � t

c
ln 1� ishcþ 1

2
s2r2c

 �� �

ð20Þ

A second pure jump model is the CGMY model proposed by Carr et al. (2002). The Lévy

measure of the CGMY model is given by:

2 Further details on these processes can be found in Cont and Tankov (2004) and Kyprianou (2006).
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mCGMYðdxÞ ¼
C e�Mx

x1þY dx if x [ 0

C e�Gx

xj j1þY dx if x\0

(

ð21Þ

for positive constants C, G, M and Y \ 2. Applying Eq. 16, this Lévy measure leads to the

closed-form characteristic function:

UðCGMYÞ
Xt

ðsÞ ¼ exp CtC �Yð Þ M � isð ÞY�MY þ Gþ isð ÞY�GY
	 
� �

ð22Þ

The skewness and kurtosis in log-returns on an interval of length 1 are then given by:

C MY�3 � GY�3ð ÞC 3� Yð Þ
C MY�2 þ GY�2ð ÞC 2� Yð Þð Þ3

2

ð23aÞ

3þ C GY�4 þMY�4ð ÞC 4� Yð Þ
C MY�2 þ GY�2ð ÞC 2� Yð Þð Þ2

ð23bÞ

This model’s risk-neutral characteristic function is given by:

UðCGMY;rnÞ
Xt

ðsÞ ¼ exp
i r � CC �Yð Þ M � 1ð ÞY�MY þ Gþ 1ð ÞY�GY

	 
	 


st

þ CtC �Yð Þ M � isð ÞY�MY þ Gþ isð ÞYþGY
	 


( )

ð24Þ

The third model we consider in the pure jump category is the Normal Inverse Gaussian

(NIG). The Lévy measure of a NIGða; b; dÞ process is given by:

mNIGðdxÞ ¼ da
p xj j e

bxK1 a xj jð Þdx ð25Þ

where K1 is a modified Bessel function of the third kind with index 1. Plugging this Lévy

measure into Eq. 16, with a = b = 0 yields the closed-form characteristic function:

UðNIGÞ
Xt
ðsÞ ¼ exp �dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � bþ isð Þ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2

q

 �� �

ð26Þ

For the NIG model, the skewness and kurtosis in log returns over an interval of length 1

are:

3b

ad�
1
2 a2 � b2
	 
�1

4

ð27aÞ

3 1þ a2 þ 4b2

da2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p

 !

ð27bÞ

We then obtain the risk-neutral form of the characteristic function (26) by mean-correction:

UðNIG;rnÞ
Xt

ðsÞ ¼ exp i

r þ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � bþ 1ð Þ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p

 �

st

�d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � bþ isð Þ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p

 �

0

B

B

@

1

C

C

A

8

>

>

<

>

>

:

9

>

>

=

>

>

;

ð28Þ
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2.5 A jump-diffusion model

Our last model is the jump-diffusion model of Kou (2002). In contrast to other models such

as those considered by Psychoyios et al. (2010), this model assumes that, in addition to

drifted diffusion, the log-return process has occasional jumps that follow a double expo-

nential distribution DE(p,g1, g2), where p is the probability of an upward jump and g1 and

g2 govern the decay of the tails for the distribution of negative and positive jump sizes

respectively. The Lévy measure for this process is given by:

mJDðdxÞ ¼ pkg1e�g1xIx\0 þ 1� pð Þkg2e�g2 xj jIx [ 0

� �

dx ð29Þ

where
R1
�1 mJDðdxÞ\1. Applying this Lévy measure to Eq. 16 then provides the closed

form characteristic function:

UðJDÞ
Xt
ðsÞ ¼ exp t ias� 1

2
b2s2 þ isk

pg1

g1 þ is
þ 1� pð Þg2

g2 þ is
� 1

� � �� �

ð30Þ

The skewness in this model is not explicitly characterized, but Kou suggests that the tails

(and, by implication, kurtosis) become more pronounced with the increase of either the

jump size expectation (1/gj) or the jump rate (k). The risk-neutral characteristic function

for this process is then:

UðJD;rnÞ
Xt

ðsÞ ¼ exp

i r � 1

2
b2 � k

pg1

g1 þ 1
þ 1� pð Þg2

g2 þ 1
� 1

� � �

st

� 1

2
b2s2t þ iskt

pg1

g1 þ is
þ 1� pð Þg2

g2 þ is
� 1

� �

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

ð31Þ

2.6 Summary of models

In sum, we consider eight models: Black–Scholes (BS), Gram–Charlier (GC), Heston’s

stochastic volatility model (SV), the Heston–Nandi closed-form GARCH model (CFG),

the three pure-jump models (VG, CGMY and NIG) and the Kou jump-diffusion (JD)

model.

3 Data and calibration

We consider options on the S&P500 index traded on Wednesday 23rd January 2008, a day

on which there was 178 options traded in the market. This day was chosen on a random

basis.3 We begin by cleaning the data following the standard cleaning criteria set by Bakshi

et al. (1997). The models are then calibrated using NonLinear Least Squares, minimizing

the RMSE defined as:4

3 We have also re-run our results for other Wednesdays with different data sets and find our results robust.
4 Note that maximum likelihood is not possible for all the Lévy processes because their densities do not
always exist. Hence, for consistency, we compute RMSE’s numerically using the mean square error (MSE)
function appearing in the Jacobian and then apply finite difference scheme with the same perturbation to
compute the partials. This enables us to obtain the MLE even if closed form densities don’t exist. We prefer
to use the RMSE because it provides ‘prospective estimates’ which are more appropriate for options, which
are forward looking. By contrast MLE provides us with ‘retrospective estimates’ based on, e.g., historical
stock prices. An alternative approach which may have been used, but is left as the basis for future study is
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RMSE ¼ 1

mean price

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

Cmarket
i � Cmodel

ið Þ2
s

ð32Þ

Table 1 reports the calibrated parameters for all the models. All parameters have the

expected signs and are significant (by the ratio of each parameter estimate to its SE) except

for the kurtosis term (121) in the GC model and the x term in the CFG model. Even so, all

models provide reasonable ‘fits’ to the data and, except some parameters of the CFG

model, the calibrations seem broadly consistent with others’ findings.

4 Pricing performance

Figure 1 shows plots of the models’ RMSEs against moneyness. For the most part, it is

hard to distinguish among the models’ performance as judged by this criterion. However,

we see that the SV is a consistently good performer across both moneyness and maturity.

Table 1 Model calibrations

Model RMSE Parameters

BS 0.1472 (r)
0.1974
(0.0017)

GC 0.1418 (r)
0.2036
(0.0018)

(111)
-0.3103
(0.0337)

(121)
0.157
(0.5562)

SV 0.0770 (j)
6.5460
(0.0393)

(t)
0.0393
(0.0010)

(n)
0.9287
(0.0025)

(q)
-0.4196
(0.0040)

(V0)
0.1955
(0.0196)

CFG 0.0919 (a)
3.3794e-5
(3.4e-6)

(b)
0.2500
(1.6e-4)

(x)
32.290e-5
(1.6e-4)

(h)
0.500
(3.4e-6)

(r2)
0.0029
(1.6e-4)

VG 0.1398 (r)
0.1694
(0.0020)

(h)
-0.6109
(0.0234)

(c)
0.0343
(0.0023)

CGMY 0.1452 (C)
0.0772
(0.0012)

(G)
7.1106
(0.0063)

(M)
29.9656
(0.0165)

(Y)
1.3534
(0.0044)

NIG 0.1392 (a)
64.4954
(0.0262)

(b)
-41.7570
(0.0243)

(d)
1.1825
(0.0182)

JD 0.1464 (r)
0.1900
(0.0017)

(k)
0.3644
(0.0499)

(p)
0.1183
(0.0768)

(g1)
13.2284
(0.0916)

(g2)
13.6686
(0.0679)

Calibrations based on S&P500 data on 23rd January 2008. The standard error of each parameter appears in
brackets, computed numerically using the Jacobian of the mean squared error function for each model.
Partial derivatives are calculated using a finite difference scheme

Footnote 4 continued
Bayesian Markov Chain Monte Carlo (MCMC) approach. A recent application of the MCMC approach can
be found in the forthcoming paper by Hachicha et al. (2011).
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(a)

(b)

(c)

Fig. 1 Models’ in-sample
pricing performance for options
traded on S&P500 index on
January 23, 2008. a Options with
0–60 days to maturity (dtm).
b Options with 60–120 days to
maturity (dtm). c Options with
over 120 days to maturity (dtm)
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We also see that the CFG model’s performance improves with the length of the maturity,

and this model is unambiguously the best performer for the longer maturities in Fig. 1c.

5 Smile-skew patterns

Figures 2 and 3 give the models smile-skew patterns, i.e., plots of the models’ implied vola-

tilities against moneyness. The BS plot is flat, as of course is well known, but we also get nearly

flat plots for the CFG model as well. By contrast, we get pronounced smile-type patterns for the

short-maturity GC and Lévy models and for the long-maturity SV model, and pronounced

smirks for the short-maturity SV models and the long-maturity GC and Lévy models.

These results suggest that the SV and Lévy models can accommodate the smile-skew

patterns found in the data, but the BS model cannot and the CFG model might have

difficultly doing so.

6 Greek-based approximations to option prices

We turn now to consider approximations to option prices using the options’ deltas and

gammas. These are often highly convenient (e.g., for mapping purposes, see Dowd 2005,

chapter 12 and for portfolio approximation, of which more below), but can sometimes be

inaccurate, especially in the face of large fluctuations in the underlying. This inaccuracy

arises partly because the delta and gamma themselves often inadequately reflect the full

non-linearity of option prices and partly because estimates of the deltas and gammas,

themselves, are often inaccurate.

One reason for this latter inaccuracy is that these methods often use inaccurate ‘one

point’ approximations for a generic underlying asset price S that is (hopefully) ‘close’ to

the current price St:

CmodelðSÞ � CmodelðStÞ þ dmodelðS� StÞ ð33Þ

CmodelðSÞ � CmodelðStÞ þ dmodelðS� StÞ þ
1

2
cmodelðS� StÞ2 ð34Þ

(see e.g., Christoffersen 2003 or Dowd 2005). For any generic underlying asset price the

option price is then approximated using the same delta and gamma, which are calculated

once (only for the current value of the underlying) no matter how much the underlying

asset price deviates. Of course, this approximation presupposes that the underlying price

remains ‘close’ enough to the value it took when the delta and gamma were estimated. This

may (sometimes) be reasonable but it is highly questionable in the context of jumpy Lévy

models or stochastic volatility processes.

Another reason for inaccurate delta and gamma estimates is that amongst the models we

are considering, closed-form formulas only exist for the BS and GC models. In the case of

the other models, we need to estimate Greeks using numerical methods, and these are

subject to potential inaccuracies of their own due to factors such as perturbation errors.

The typical method used is the finite difference technique, which is popular because it

can be applied to estimate all the Greeks reasonably quickly (see Duffy 2006). Suppose

Cmodel(S), for a particular model, is the price of a European option with strike K and time to

maturity T, when the price of the underlying is S. As is well-known, the finite difference

method gives us the following approximation for the option delta for that particular model:
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Fig. 2 Smile-skew patterns exhibited by pricing models calibrated to S&P500 index options traded on
January 23, 2008: short maturities

284 S. Mozumder et al.

123



Fig. 3 Smile-skew patterns exhibited by pricing models calibrated to S&P500 index options traded on
January 23, 2008: long maturities

Option pricing under non-normality 285

123



dmodel ¼ oC

oS
¼ CmodelðSþ dSÞ � CmodelðSÞ

dS
ð35Þ

where dS is a small perturbation to the price of the underlying. Similarly, to obtain the

gamma, the sensitivity of delta, we need to obtain two values of delta. Let d1 be the d as

defined in Eq. 35 and d2 be some value close to it:

d2 ¼
oC

oS
¼ CmodelðSþ 2dSÞ � CmodelðSþ dSÞ

dS
ð36Þ

Then the finite difference method gives us the following approximation for the option’s

gamma:

cmodel ¼ o2d
oS2
¼ d2 � d1

dS
¼ CmodelðSþ 2dSÞ � 2CmodelðSþ dSÞ þ CmodelðSÞ

ðdSÞ2
ð37Þ

However, the finite difference estimates of these parameters are extremely sensitive to the

perturbation size dS: the Greek surfaces are unstable and the ranges over which the method

works vary across different Greeks and different models. Furthermore, to our knowledge

there is no working rule to choose a perturbation that works for all models.

Given this, it is possible to obtain ‘respectable’ surfaces. To illustrate, Fig. 4 plots the

Delta surfaces for all the models under consideration, where all are based on the finite

difference approach with the perturbation size (which is common to all models) found by

trial and error. We see that the delta changes dramatically when the option is close to

ATM, converges to zero for OTM options and to one for ITM options. Figure 5 plots the

comparable surfaces for the gamma. For a short maturity option the gamma changes

dramatically when the option is close to ATM, and converges to zero both for ITM and

OTM options. These plots are broadly similar across most models, but one might notice

that those for the SV and CFG models are somewhat different from those of the others.

7 Greek-based approximations to option portfolio values

We now consider a portfolio similar to one used in Britten-Jones and Schaefer (1999). This

portfolio is constructed from our data set subject to the proviso that, while the call options

Fig. 4 Delta surfaces of pricing models. Note: The right-hand side shows a slice corresponding to an option
with 16 DTM and strike of 1,550

286 S. Mozumder et al.

123



in the portfolio are traded in the market, the put option is priced using put-call parity. The

option portfolio is described in Table 2.

However, whilst Britten-Jones and Schaefer (1999) and Christoffersen (2003) only

considered the valuation of similar portfolio under the BS model, we wish to examine

portfolio valuation under all 8 of our models.

Now assume a risk-management horizon of five trading days (seven calendar days),

which corresponds to the sampling interval for our weekly data. As in Christoffersen

(2003) we consider the complete pay-off profile of the portfolio, under all considered

models, for different future values of the underlying asset prices St?5. Let Pt and P(St?5)

denote the portfolio value today and at the end of five trading days respectively. We have:

Pt ¼ m1put þ m2call1 þ m3call2 ð38Þ

Pd Stþ5ð Þ ¼ Pt þ dp Stþ5 � Stð Þ ð39Þ

Pdc Stþ5ð Þ ¼ Pt þ dp Stþ5 � Stð Þ þ 1

2
cp Stþ5 � Stð Þ2 ð40Þ

Here dp and cp are model-dependent portfolio hedge factors defined as:

dp ¼ m1d
m
put þ m2d

m
call1
þ m3d

m
call2

ð41Þ

cp ¼ m1c
m
put þ m2c

m
call1
þ m3c

m
call2

ð42Þ

where the superscript m is any number between 1 and 8 representing each of the 8 different

models considered. m1 is the number of puts and m2 and m3 are the number of calls

respectively in the portfolio.

Fig. 5 Gamma surfaces of pricing models. Note: The right-hand side shows a slice corresponding to an
option with 16 DTM and strike of 1,550

Table 2 Illustrative option portfolio constructed using options traded on January 23, 2008

Type of option Put Call1 Call2

Strike (K) 1,200 1,200 1,550

Maturity (days) 23 23 23

Option price 4.2251 146.60 0.1750

Position (mj) -1 -1.5 2.5

Current spot is 1,338.6. j = 1 for put, ‘2’ for call1, ‘3’ for call2
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Fig. 6 Portfolio valuation: full valuations versus Greek approximations. Note: Current asset price is 1,338.6

288 S. Mozumder et al.

123



The true value of the option portfolio is then obtained through full-valuation using

model-based option prices:

Pexact Stþ5ð Þ ¼ m1 	 putm K ¼ 1200; T ¼ 23� 7ð Þ
þ m2 	 callm

1 K ¼ 1200; T ¼ 23� 7ð Þ
þ m3 	 callm

2 K ¼ 1550; T ¼ 23� 7ð Þ
ð43Þ

The accuracy of these approximations is evident in the valuation plots shown in Fig. 6. The

most pronounced feature of these plots is the way the Greek-based approximations for all

models diverge away from the full valuations when there are large swings in the underlying

asset price. However, for relatively small asset price movements, the Greeks-based valu-

ations are accurate for all models. We also see that there are differences between the delta

and delta-gamma approximations, though the magnitude of these differences varies a little

across the models, being least for the JD model and greatest for the GC model.

We also see that, in general, valuations based on the delta approximation are a little

more accurate than those based on the delta-gamma approximation in the face of upward

asset price movements, and slightly less accurate in the face of downward asset price

(a)

(b)

Fig. 7 Approximation errors of Greek-based valuations increasing (left) and decreasing (right) asset prices.
a Delta approximations. b Delta–Gamma approximations. Note: Current asset price is 1,338.6
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movements. Thus, on average, the more sophisticated delta-gamma approximation is no

more accurate than the simpler delta approximation.

The corresponding approximation errors are shown in Fig. 7 and these show some

notable differences between the models. We see that the worst model is the BS and the

second-worst is the JD model. We also note that both stochastic volatility (SV) and

GARCH(CFG) models perform quite well for both increasing and decreasing asset prices.

8 Risk-neutral densities

Finally, Fig. 8 shows the risk-neutral densities obtained by inverting risk neutral charac-

teristic functions. We see some notable differences in the shapes of these densities, and

perhaps the most notable differences are in their tails: the SV model gives the widest tails

and the CFG the narrowest.

(b)

(a)

Fig. 8 Risk-neutral densities of pricing models calibrated on traded options on January 23, 2008. a Models
without jump. b Pure jump and jump-diffusion model
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9 Conclusion

The inability of the Black-Scholes option pricing model to incorporate skewness and

excess kurtosis has led to the development of a series of alternative models over the years.

This study compares the overall performance of a wide range of models—including Gram–

Charlier, stochastic volatility, GARCH and Lévy models, as well as BS—using a common

data set. We find a number of notable differences between the models and we find that the

BS and Gram–Charlier models often perform less accurately than the GARCH, stochastic

volatility and Lévy models. Of these the stochastic volatility model performs robustly well

and the Lévy models often perform well too.

We have also shown that satisfactory estimates of these models’ hedge ratio deltas and

gammas can be obtained using traditional finite difference methods, and that these can be

used to value portfolios of options. In this respect, our study extends the earlier work of

Britten-Jones and Schaefer (1999), who only considered such problems in the context of

Black–Scholes. We find that regardless of the model used, delta and delta-gamma

approaches can yield inaccurate approximations of option portfolio values, especially in

the face of large swings in the price of the underlying. These findings suggest that delta and

delta-gamma approximations can be very misleading and reinforce the need for full-

valuation methods instead. They also remind us that even the most (otherwise) sophisti-

cated models can be very inaccurate during times of financial market turbulence.

This study can be extended in a number of ways. First, the stochastic volatility and

GARCH models can be combined with Lévy processes, in which normal innovations are

replaced with Lévy innovations. Such a combination would combine the complementary

strengths of both approaches and also benefit from closed-form solutions resulting in quick

calibrations. Second, to date there are no systematic comparisons of option risk measures

(such as VaR or Expected Shortfall) based on all eight models. It would be useful to

compare these on common data sets encompassing both stable and turbulent market

conditions. Finally, it would be useful to examine the performance of different numerical

schemes to calculate the Greeks. Quick and accurate calculation of these would help in

hedging and risk-managing the options involved.
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