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Abstract. Latest scientific and engineering advances have started to recognize the need for defining
multiple types of uncertainty. Probabilistic modeling cannot handle situations with incomplete or little
information on which to evaluate a probability, or when that information is nonspecific, ambiguous,
or conflicting [12], [47], [50]. Many interval-based uncertainty models have been developed to treat
such situations.

This paper presents an interval approach for the treatment of parameter uncertainty for linear
static structural mechanics problems. Uncertain parameters are introduced in the form of unknown
but bounded quantities (intervals). Interval analysis is applied to the Finite Element Method (FEM)
to analyze the system response due to uncertain stiffness and loading.

To avoid overestimation, the formulation is based on an element-by-element (EBE) technique.
Element matrices are formulated, based on the physics of materials, and the Lagrange multiplier
method is applied to impose the necessary constraints for compatibility and equilibrium. Earlier EBE
formulation provided sharp bounds only on displacements [32]. Based on the developed formulation,
the bounds on the system’s displacements and element forces are obtained simultaneously and have
the same level of accuracy. Very sharp enclosures for the exact system responses are obtained. A
number of numerical examples are introduced, and scalability is illustrated.

1. Introduction

An important issue faced in real life engineering practice is how to deal with vari-
ables and parameters of uncertain values. For a proper performance assessment,
these uncertainties must be accounted for appropriately. There are various ways in
which the types of uncertainty might be classified. One is to distinguish between
“aleatory” (or stochastic) uncertainty and “epistemic” uncertainty. The first refers
to underlying, intrinsic variabilities of physical quantities, and the latter refers to
uncertainty which might be reduced with additional data or information, or better
modeling and better parameter estimation [26]. Probability theory is the traditional
approach to handling uncertainty. This approach requires sufficient statistical data
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to justify the assumed statistical distributions. Analysts agree that, given sufficient
statistical data, the probability theory describes the stochastic uncertainty well.
However, probabilistic modeling cannot handle situations with incomplete or little
information on which to evaluate a probability, or when that information is non-
specific, ambiguous, or conflicting [12], [47], [50]. Many generalized models of
uncertainty have been developed to treat such situations, including fuzzy sets and
possibility theory [51], Dempster-Shafer theory of evidence [10], [48], random set
[21], probability bounds [6], [12], [13], imprecise probabilities [50], convex model
[5], and others.
These generalized models of uncertainty have a variety of mathematical descrip-

tions. However, they are all closely connected with interval analysis [28]. For exam-
ple, the mathematical analysis associated with fuzzy set theory can be performed
as interval analysis on different levels [23], [30].
Fuzzy arithmetic can be performed as interval arithmetic on cuts. A Dempster-

Shafer structure [10], [48] with interval focal elements can be viewed as a set of
intervals with probability mass assignments, where the computation is carried out
using the interval focal sets. Probability bounds analysis [6], [12], [13] is a com-
bination of standard interval analysis and probability theory. Uncertain variables
are decomposed into a list of pairs of the form (interval, probability). In this sense,
interval arithmetic serves as the calculation tool for the generalized models of
uncertainty.
Recently, various generalized models of uncertainty have been applied within

the context of the finite element method to solve a partial differential equation
with uncertain parameters. Regardless of the model adopted, the proper interval
solution will represent the first requirement for any further rigorous formulation.
The finite element method with interval valued parameters results in the Interval
Finite Element Method (IFEM), the numerical solution of which is the focus of
this paper. The use of IFEM solution techniques can be broadly classified into
two groups, namely the optimization approach and the non-optimization approach.
In the optimization approach [1], [22], [27], [42], optimizations are performed
to compute the minimal and maximal structural responses when the uncertain
parameters are constrained to belong to intervals.
This approach often encounters practical difficulties. Firstly it requires an effi-

cient and robust optimization algorithm. In most structural engineering problems,
the interval finite element objective function is nonlinear and complicated, thus
often only an approximate solution is achievable. Secondly, this approach is com-
putationally expensive. For each response quantity, two optimization problems must
be solved to find the lower and the upper bounds.
More recently, non-optimization approaches for interval finite element analy-

sis have been developed in a number of papers. For linear elastic problems, this
approach leads to a system of linear interval equations, then the solution is sought
using various methods developed for this purpose. The major difficulty associ-
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ated with this approach is the “dependency problem” [17], [29], [32], [35]. The
dependency in interval arithmetic leads to an overestimation of the solution.
A straightforward replacement of the system parameters with interval ones

without taking care of the dependency problem is known as a näıve application of
interval arithmetic in the finite element method (näıve IFEM). Usually such a use
results in meaninglessly wide and even catastrophic results [32].
In the non-optimization category, a number of developments can be presented.

A combinatorial approach (based on an exhaustive combination of the extreme
values of the interval parameters) was used in [30], [41]. This approach gives
exact solution in linear elastic problems. However, it is computationally tedious
and expensive, and is limited to the solutions of small-scale problems. A convex
modeling and superposition approach was proposed to analyze load uncertainty in
[38], and exact solution was obtained. However, the superposition is only appli-
cable to load uncertainty. The combinatorial approach was used in [15] to treat
interval modulus of elasticity. Chen et al. [8] have developed a static displacement
bounds analysis using matrix perturbation theory. The first-order perturbation was
used, and the second-order term was neglected. The result is approximate and not
guaranteed to contain the exact bounds. McWilliam [25] proposed two methods for
determining the static displacement bounds of structures with interval parameters.
The first method is a modified version of perturbation analysis. The second method
is based on the assumption that the displacement surface is monotonic. However,
for the general case, the validity of monotonicity is difficult to verify. Dessombz
et al. [11] have introduced an interval FEM in which the interval parameters were
factored out during the assembly process of the stiffness matrix. Then Rump’s iter-
ative algorithm [46] was employed for solving the linear interval equation. In this
work, the overestimation control becomes more difficult with the increase in the
number of the interval parameters, which does not lead to useful results for practical
problems. In the work of Muhanna and Mullen [30], and of Mullen and Muhanna
[33], [34], an interval-based fuzzy finite element has been developed for treating
uncertain loads in static structural problems. Load dependency was eliminated,
and the exact solution was obtained. Also, Muhanna and Mullen [32] have devel-
oped an IFEM based on the element-by-element technique and Lagrange multiplier
method. Uncertainty in the modulus of elasticity was considered. Most sources of
overestimation were eliminated, and a sharp result for displacement was obtained.
However, this formulation can only handle uncertain modulus of elasticity, and it
can not obtain the sharp enclosures for element internal forces.
This paper extends the results of Muhanna and Mullen by introducing a new

formulation for interval finite element analysis for linear static structural problems.
Material and load uncertainties are handled simultaneously, and sharp enclosures on
the system’s displacements aswell as the internal forces are obtained efficiently. Two
other papers in this special issue also address interval-based structural uncertainty,
the lead authors of these papers are Arnold Neumaier and George Corliss. A
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brief review of interval arithmetic is presented, the formulation is described, and
numerical examples are given.

2. Short Review of Interval Arithmetic

In this paper, the notation follows the recommendation of [20]. Interval quantities
(interval number, interval vector, interval matrix) are introduced in boldface. Real
quantities are introduced in non-bold face.

2.1. BASIC DEFINITION

An interval number is a closed set in R that includes the possible range of an
unknown real number, where R denotes the set of real numbers. Therefore, a real
interval is a set of the form

x = [x, x], (2.1)

where x and x are the lower and upper bounds (endpoints) of the interval number x
respectively. The set of real intervals is denoted by IR . The midpoint x̌ of x is

x̌ mid(x) :=
x + x
2

. (2.2)

Sometimes it is convenient to write the interval in the midpoint form

x = x̌(1 + ) (2.3)

in which is a 0-midpoint interval. For example, when we say x has 4% uncertainty,
it means = [−0.02, 0.02], and x = x̌(1 + [−0.02, 0.02]).
The four elementary operations of real arithmetic, namely addition (+), subtrac-

tion (−), multiplication (∗), and division (/) can be extended to intervals. Operations
over intervals ◦ {+,−, ∗, /} are defined by the general rule

x ◦ y = {x ◦ y | x x, y y}. (2.4)

It is easy to see that the set of all possible results when applying an operator ◦ to
x◦ y forms a closed interval (for 0 not in a denominator interval), and the endpoints
can be calculated by

x ◦ y = [min(x ◦ y),max(x ◦ y)] ƒor ◦ {+,−, ∗, /}. (2.5)

Detailed information about interval arithmetic can be found in a series of books
and publications such as [2], [18], [28], [35], [45], [49].

2.2. DEPENDENCY PROBLEM IN INTERVAL ARITHMETIC

The quality of interval analysis is measured by the width of the interval results, and a
sharp enclosure for the exact solution is desirable. However, the width of results may
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be unnecessarily wide in some occasions due to the dependency effect. For example,
if the interval expression x − x is evaluated with x = [a, b] = [1, 2], the interval
subtraction rule gives the result: x− x = [a − b, b − a] = [−1, 1], which contains
the exact solution [0, 0], but is much wider than needed. The interval arithmetic
implicitly made the assumption that all intervals are independent, namely it treats
x − x as if evaluating the expression x − y, and x, y are two independent interval
quantities that happen to have the same bounds. This phenomenon is referred to as
overestimation due to “dependency” of the variables [17], [29], [32], [35]. Reducing
the overestimation is a crucial issue to a successful interval analysis. In general,
sharp results are obtained with the proper understanding of the physical nature
of the problem and reduction of the dependence. In the above example, the exact
solution could be achieved in evaluating x− x as x(1− 1) = 0.

2.3. INTERVAL VECTORS AND MATRICES

An interval matrix A IR
n×k is interpreted as a set of real n × k matrices by the

convention A = {A R
n×k | Aij Aij for i = 1,…, n, j = 1,…, k}. The set of n × k

interval matrices is denoted by IR n× k. An n × 1 interval matrix is an interval vector,
denoted by IR

n. Operations on interval matrices are extended naturally from the
corresponding deterministic (point values) matrix operations. Algebraic properties
of interval matrix operations are provided in [3], [24], [35].

2.4. LINEAR INTERVAL EQUATIONS

A linear interval equation with coefficient matrix A IR
n×n and right-hand side

b IR
n is defined as the family of linear equations

Ax = b (A A, b b). (2.6)

Therefore, a linear interval equation represents systems of equations in which the
coefficients are unknown numbers ranging in certain intervals. The solution set of
(2.6) is given by:

(A, b) = {x R
n | A A, b b : Ax = b}. (2.7)

The solution set (A, b) usually is not an interval vector, and does not need even
to be convex; in general, (A, b) has a very complicated structure. To guarantee
that the solution set (A, b) is bounded, it is required that the matrix A be regular,
i.e. that every matrix A A is nonsingular. The interval hull of the solution set
(A, b) is an interval vector which has the narrowest possible interval components
that contains the solution set and denoted as

AHb := ♦ (A, b), (2.8)

where

AHb = ♦{A−1b | A A, b b} for b IR
n. (2.9)
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In fact, computing the hull of the solution set for the general case is an NP-Hard
problem [43]. The solution of interest is seeking an enclosure, i.e., an interval vector
x containing AHb, while narrow enough to be practically useful:

AHb x. (2.10)

A number of methods have been developed to find x for the general linear inter-
val equations such as Interval Gauss elimination, Interval Gauss-Seidel iteration,
Krawczyk’s iteration, and fixed-point iteration [16], [19], [35], [36], [44], [46].
These algorithms usually involve a preconditioning of the coefficient matrix, and
then iterations are performed to get the enclosure. The present work uses Brouwer’s
fixed point theorem and Krawczyk’s operator. This method has been discussed in
the works of [16], [19], [36], [37], [44], [46].
One typical approach to find the solution of a linear system Ax = b is to transform

it into a fixed point equation g(x) = x, in which

g(x) = x− R(Ax− b) = Rb + (I − RA)x, (2.11)

and R is a nonsingular matrix. From Brouwer’s fixed point theorem, it follows that
for some interval vector x IR

n

Rb + (I − RA)x x x x (2.12)

implies

x x : Ax = b. (2.13)

One has to verify condition (2.12) is a range determination problem, and can be
reduced to interval arithmetic:

Rb + (I − RA)x x. (2.14)

If an interval vector x satisfying (2.14) can be found, then x contains the solution of
Ax = b. The result can be extended to find the enclosure of the solution set of linear
interval equation Ax = b [35], [45]. Based on this result, the following theorem can
be presented:

THEOREM 2.1 Rump 2001 [45]. Let A IR
n×n, R R

n×n, b, x IR
n be given, if

Rb + (I − RA)x int(x), (2.15)

then R and every matrix A A is nonsingular, and

(A, b) = {x R
n | A A, b b : Ax = b} x, (2.16)

where int(x) denotes the interior of x.
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Expression (2.16) provides a guaranteed enclosure of the solution set of the
linear interval equation Ax = b. The residual form of (2.15) can be given in the
form [35]:

Rb− RAx0 + (I − RA)x int(x ), (2.17)

where x = x0 + x and x0 is a real vector. In particular, Ǎ−1 is a good choice for
R [35], and x0 = Rb̌. Assigning z = Rb − RAx0, C = (I − RA), iteration could be
constructed [46] in the following form

x n+1 = z + C( x n) (ƒor n = 0, 1, 2,…), (2.18)

and the stopping criteria (2.17) becomes

x n+1 int(x n). (2.19)

In (2.18) is a constant interval number, serving as an “inflation parameter” to
enforce finite termination of the algorithm. If condition (2.19) is satisfied after n
iterations, then x n+1 + x0 is an enclosure of the solution set of Ax = b. The quality
(how sharp the enclosure is) of the enclosure provided in (2.18) depends mainly
on the width of the iterative matrix C. Crucial for the solution convergence is the
condition that the spectral radius (|C|) < 1 [44].
The above algorithm is designed for non-parametric linear interval equations;

i.e., the coefficients in the system are assumed to vary independently between their
bounds. Formany engineering problems, the coefficients have complex dependency
relations. For example, the stiffness matrix in FEM is symmetric and positive
definite. To account for the dependency effect, one approach is to adapt the solver
for non-parametric interval equations. This approach usually involves reformulation
of the coefficient matrix and the right hand side vector. It has been shown that a
sharp or even exact enclosure could be obtained in some cases [11], [31], [32].

3. Interval Finite Element Analysis

3.1. OVERESTIMATION IN IFEM

A naı̈ve use of interval arithmetic in FEM (näıve IFEM), i.e., replacing real num-
bers in conventional FEM with interval numbers and solving the system as non-
parametric interval equation results in meaningless wide results [11], [32]. Let us
consider the two step bar shown in Figure 1. The structure is subjected to a unit
load at node 3. The conventional FEM gives the equilibrium equations:

Ku = p (3.1)

or (
k1 + k2 −k2
−k2 k2

)(
u1
u2

)
=
(
0
1

)
. (3.2)
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Figure 1. Original two-step bar.

If the stiffness terms k1 and k2 are introduced as the interval parameters k1 and
k2, and the interval numbers of [0.99, 1.01] and [1.98, 2.02] are assigned for k1 and
k2 respectively, the näıve IFEM takes the following form:(

[2.97, 3.03] [−2.02,−1.98]
[−2.02,−1.98] [1.98, 2.02]

)(
u1
u2

)
=
(
0
1

)
, (3.3)

whose solution using Theorem 2.1 is

u1 = [0.876, 1.123],

u2 = [1.349, 1.651]. (3.4)

On the other hand, the exact solution can be achieved by solving (3.2) symboli-
cally

u1 =
1
k1
=

1
[0.99, 1.01]

= [0.990, 1.010],

u2 =
k1 + k2
k1k2

=
1
k1
+
1
k2
=

1
[0.99, 1.01]

+
1

[1.98, 2.02]
= [1.485, 1.515]. (3.5)

The above-presented results for the interval solution of a simple two-step bar
problem provide insight about some aspects of the interval finite element formula-
tion and reveal the most important sources of overestimation. The main two factors
that lead to overestimation are the element coupling and multiple occurrences of the
interval variables. The four parametric coefficients k2 in (3.2) represent the same
physical quantity. In the computational process, interval arithmetic treats this physi-
cal quantity as four independent interval variables of equal endpoints. Evidently, the
same physical quantity cannot have two different values at the same time. The way
the sources of overestimation are handled is critical to the formulation of interval
finite element analysis.

3.2. PRESENT FORMULATION

To reduce the overestimation in the interval finite element solutions, the issues
of coupling and multiple occurrences of interval variables have to be handled
properly.
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Figure 2. EBE two-step bar model.

In this work, an element-by-element technique (EBE) is used to circumvent
the element coupling problem [32]. The EBE technique can be illustrated by the
two-step bar problem in Figure 1. The elements are disjointed as shown in Figure 2,
thus the system stiffness matrix K takes a block-diagonal structure with dimension
of a × a, where a = degrees of freedom per element × number of elements in the
structure. The EBE approach adds to the number of degrees of freedom (DOF) in
the system but avoids the element coupling. The system stiffness matrix K in the
EBE approach is singular, and Lagrange multiplier method is used to ensure the
compatibility conditions and eliminate the singularity of K.
In steady-state analysis, the variational formulation for a deterministic case (no

uncertainty is involved) of a discrete structural model is given in the following form
[4], [14]:

=
1
2
uTKu− uTp (3.6)

with the conditions

ui
= 0 for all i, (3.7)

where , K, u, and p are total potential energy, stiffness matrix, displacement
vector, and load vector, respectively. Assume that we want to impose onto the
solution the m linearly independent discrete constraints Cu− t = 0, where C and t
contain constants. To impose constraints by Lagrange multipliers, we premultiply
Cu− t by a row vector that contains as many Lagrange multipliers i as there are
constraint equations, and add this to the potential energy (3.6) [9]. Thus

=
1
2
uTKu− uTp + T (Cu− t). (3.8)

Invoking the stationarity of , i.e., / u = 0 and / = 0, we obtain(
K CT

C 0

)(
u
)
=
(
p
t

)
. (3.9)

Considering the compatibility conditions in the present case takes the form Cu = 0
and t = 0, (3.9) reduces to(

K CT

C 0

)(
u
)
=
(
p
0

)
. (3.10)
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Equation (3.10) stands for the deterministic FEM formulation. In the interval case,
where the material and the load are considered to be interval numbers, the deter-
ministic linear equation (3.10) becomes the interval linear equation

(
K CT

C 0

)(
u
)
=
(
p
0

)
. (3.11)

The coefficientmatrix in (3.11) represents the combination of two parts: the inter-
val element-by-element stiffness matrix K and the constant deterministic Lagrange
multipliers matrix C.
The linear interval equation (3.11) can be solved by Theorem 2.1. However,

Theorem 2.1 carries the implicit assumption that the coefficients of A are indepen-
dent among themselves and that the components of b vary independently. Special
treatment has to be applied to reduce the dependency effect.
For an element with interval parameter of modulus of elasticity E, the interval

parameter could be factored out from the element stiffness matrix. Consider the ith
finite element in the structure, assume the uncertainty in the modulus of elasticity is
i, i.e.,Ei = Ěi(1+ i), the element stiffness matrix Ki can be expressed in the form
Ki = Ǩi(I + di). Ǩi is the midpoint of Ki, I is identity matrix, and di is an interval
diagonal matrix containing the interval quantity i. For example, let us take a truss
element whose element stiffness matrix can be written as


ĚA
L

− ĚA
L

− ĚA
L

ĚA
L




((
1 0
0 1

)
+
(

0
0

))
. (3.12)

Later in the formulation, care will be taken of the multiple occurrence of in
(3.12).
Following the same procedure for each element, the system stiffness matrix K

constructed by EBE model can be expressed as:

K = Ǩ(I + d). (3.13)

Ǩ is the midpoint of K, and d is an interval diagonal matrix; their submatrices are
Ǩi and di, respectively, i = 1, 2,…,m, where m is the number of elements in the
structure.
Applying this factorization, the system equation (3.11) can be written as((

Ǩ CT

C 0

)
+
(
Ǩd 0
0 0

))(
u
)
=
(
p
0

)
. (3.14)

To use the Theorem 2.1 in the present formulation, (3.14) is introduced as

Ax = b (3.15)
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with

A =

((
Ǩ CT

C 0

)
+
(
Ǩd 0
0 0

))
, x =

(
u
)
, b =

(
p
0

)
. (3.16)

A can be decomposed further

A =
(
Ǩ CT

C 0

)
+
(
Ǩ 0
0 0

)(
d 0
0 0

)

= Ǎ + SD. (3.17)

Using the residual form (2.17) to construct fixed point iteration (2.18)

x n+1 = z + C( x n) ƒor n = 0, 1, 2,… (3.18)

in which z = Rb − RAx0, C = (I − RA), R = Ǎ−1, and x0 = Rb̌. By substituting z
and C, the iteration (3.18) becomes

x l+1 =
(
Rb− R(Ǎ + SD)x0

)
+
(
I − R(Ǎ + SD)

)
( x l)

= Rb− x0 − RSDx0 − RSD( x l)

= Rb− x0 − RSD(x0 + x l)

= Rb− x0 − RSMl
. (3.19)

In the problems with deterministic right hand side, we have b = b̌, and (3.19)
reduces to a simpler form

x n+1 = −RSMn
. (3.20)

A key point in the formulation (3.19) is that D(x0 + x n) has been introduced
as Mn using the M matrix concept [32], [33] to handle the dependency problem
in D(x0 + x n). M is an interval matrix with the dimensions (n × m), and n =
dimensions of the system. It contains the components from (x0 + x n), and it will
be updated with each iteration. is a constant interval vector with the dimensions of
m, and the components are the uncertainties i of the modulus of elasticity of each
element, i = 1,…,m. Every interval parameter i associated with element i occurs
only once in . The following example shows how generally Dx can be rewritten
asM . Suppose there are two interval parameters 1 and 2


1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2






x1
x2
x3
x4


 =



x1 0
x2 0
0 x3
0 x4




(
1

2

)
. (3.21)

This treatment eliminates the multiple occurrences of i in D, thus reduces the
overestimation due to dependency problem. If condition (2.19) is satisfied after n
iterations, the enclosure x is given by

x = x n+1 + x0. (3.22)
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The obtained interval vector x contains two parts: x = [u ]. The first part, u, is
the enclosure for the system’s nodal displacements. The second part can be used
to find the enclosure for the element internal forces, as shown in below.
In conventional deterministic FEM, element internal forces in global coordinates

can be calculated by

Fi = Kiui (3.23)

in which Ki is element stiffness matrix, and ui is element nodal displacement in
global coordinates. The element internal forces in local coordinates can be obtained
by premultiplying by a transformation matrix Ti. In the IFEM, following the same
procedure to calculate element forces will bring in overestimation, making the
bounds of the element forces unnecessarily wide. The reason is that both Ki and
ui are functions of the same interval parameter i, this multiple occurrences of
i should be eliminated. In the present IFEM formulation, element forces are
calculated from Lagrange multipliers. From (3.11), it follows

Ku = p− CT . (3.24)

Because of its element-by-element structure, (3.24) produces the element forces
directly (in global coordinates). Instead of calculating the left hand side of (3.24), we
calculate its right hand side to handle dependence problem. Suppose the enclosure
x has been achieved after n iterations. Then can be obtained from x by the element
connectivity matrix L, i.e.,

= Lx. (3.25)

The interval load p can be rewritten as

p = Nb (3.26)

in which N is a constant matrix populated with zeros and ones. Substituting (3.19),
(3.22), (3.25), and (3.26) into p− CT yields

p− CT = p− CTL(x n+1 + x0)

= Nb− CTL(Rb− RSMn )

= (N − CTLR)b + CTLRSMn
. (3.27)

Equation (3.27) may be premultiplied by a coordinate transformation matrix T to
get the element forces in local coordinates [9], i.e.,

f = T(p− CT ) = T(N − CTLR)b + TCTLRSMn
. (3.28)

In (3.28), the multiple occurrences of the interval load b and interval material
parameter have been minimized, and a very sharp results for element force
response are obtained.
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Figure 3. Two-bay truss.

Table 1. Solutions for selected vertical and horizontal displacements of two-bay truss.

Nodal displacements v2(m) v2(m) u4(m) u4(m) v4(m) v4(m)

Combinatorial
approach × 10−5 −20.0326 −9.9166 1.9489 4.0041 −0.9984 −0.4886
Present IFEM × 10−5 −20.0690 −9.8296 1.9104 4.0158 −1.0005 −0.4811
Naı̈ve IFEM × 10−5 −21.6608 −8.2378 1.4747 4.4516 −1.1059 −0.3757
Present IFEM error 0.18% 0.87% 1.98% 0.29% 0.21% 1.53%
Naı̈ve IFEM error 8.13% 16.93% 24.33% 11.17% 10.76% 23.10%

Table 2. Solutions for axial forces of two-bay truss [compression(−)].

Axial forces N3(kN) N3(kN) N9(kN) N9(kN)

Combinatorial approach −7.9496 −3.9270 −13.5797 −6.7364
Present IFEM −7.9663 −3.8863 −13.5985 −6.6909
Naı̈ve IFEM −9.2159 −2.6664 −15.1364 −5.2001
Present IFEM error 0.21% 1.04% 0.14% 0.67%
Naı̈ve IFEM error 15.93% 32.10% 11.46% 22.80%

4. Examples

The present formulation for IFEM is illustrated by numerical solutions for three
problems with stiffness and load uncertainty.
The first example is a two-bay truss as shown in Figure 3. The truss is subjected

to a concentrated load, applied at the middle lower joint. The load is uncertain and
described by an interval [10, 20] kN.
Each element has a cross-sectional area Ai = 0.01 m2, and an uncertain modulus

of elasticity Ei = [199, 201] GPa, i = 1, …, 11. The modulus of elasticity of each
element are assumed to be varied independently.
The results for selected displacements and element forces are given in Table 1

and Table 2, respectively. The solutions of IFEM are compared with those of all



186 RAFI L. MUHANNA, HAO ZHANG, AND ROBERT L. MULLEN

Table 3. Interval properties for the members of the two-bay two-floor frame.

Member Shape A (cm2) I(cm4) E(GPa)

C1 W12×19 [35.76, 36.12] [5383.95, 5438.06] [199, 201]
C2 W14×132 [249.07, 251.57] [63364.99, 64001.83] [199, 201]
C3 W14×109 [205.42, 207.48] [51354.63, 51870.76] [199, 201]
C4 W10×12 [22.72, 22.95] [2228.13, 2250.52] [199, 201]
C5 W14×109 [205.42, 207.48] [51354.63, 51870.76] [199, 201]
C6 W14×109 [205.42, 207.48] [51354.63, 51870.76] [199, 201]
B1 W27×84 [159.20, 160.80] [118032.83, 119219.09] [199, 201]
B2 W36×135 [254.85, 257.41] [323037.21, 326283.81] [199, 201]
B3 W18×40 [75.75, 76.51] [25346.00, 25600.73] [199, 201]
B4 W27×94 [177.82, 179.60] [135427.14, 136788.21] [199, 201]

possible combinations (exact in the case of linear truss systems) and the Näıve
IFEM ones. In the truss case, the element stiffness matrix is a rank one matrix,
and the determinant of a rank one matrix multiplied by a parameter is linear with
respect to the parameter. Therefore, the exact bounds on the interval solutions of
truss systems are in full agreement with the bounds obtained from solutions to all
possible combinations of extreme parameter values.
The present approach captured the bounds of the system response with errors

within a range of 0.18% to 1.98%. However, the näıve IFEM overestimated the
bounds of displacements by a range of 8.13% to 24.33%, and the errors escalated
to as big as 32% in the element force calculation.
The second example is a two-bay two-story planar frame shown in Figure 4.

The problem was studied in [52]. The example illustrates the handling of the case
of stiffness and load uncertainty. The frame is adopted from the work of [7].
In the figure, the column is denoted as “C” and the beam as “B.” Subscripts

indicate member number. The frame is subjected to uniform loads acting on the
member B1, B2, B3, and B4. The geometric and material properties of each member
are summarized in Table 3.
The four uncertain uniform loads are wi (i = 1, 2, 3, 4) and described by the

following interval variables:

w1 = [105.8, 113.1] kN /m, w2 = [105.8, 113.1] kN /m,
w3 = [49.255, 52.905] kN /m, w4 = [49.255, 52.905] kN /m.

(4.1)

All other parameters (the cross-sectional area, moment of inertia, and modulus of
elasticity of each member) are considered uncertain as well, and the variations
are 1% of their nominal values. The intervals used are summarized in Table 3. In
both cases, it is assumed that all interval variables vary independently within their
bounds.
There are thirty-four interval variables involved in this case. The combinatorial

method requires 234 deterministic FEA, which is computationally infeasible and
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Figure 4. Two-bay two-floor frame.

Table 4. Bounds of selected nodal displacement for the two-bay
two-floor frame with stiffness uncertainty and load uncertainty.

Monte Carlo Sampling Present IFEA
Displ. LB UB LB UB

u5 (cm) −0.76882 −0.65149 −0.78265 −0.62739
v5 (cm) −0.24745 −0.22655 −0.24778 −0.22610
5 (rad) −0.00414 −0.00351 −0.00417 −0.00348
u9 (cm) −1.52209 −1.34186 −1.56420 −1.29056
v9 (cm) −0.20962 −0.19119 −0.21009 −0.19064
9 (rad) 0.00519 0.00603 0.00515 0.00607

Table 5. Bounds of selected member nodal forces for the two-bay two-floor frame with
stiffness uncertainty and load uncertainty.

Monte Carlo Sampling Present IFEA
Member (node) Nodal force LB UB LB UB

B2 Axial (kN) 218.23 240.98 216.35 242.67
(left node) Shear (kN) 833.34 892.24 832.96 892.47

Moment (kN-m) 1842.86 1979.32 1839.01 1982.63

C5 Axial (kN) −618.63 −573.34 −619.00 −573.29
(bottom node) Shear (kN) −288.69 −261.16 −289.84 −259.59

Moment (kN-m) −683.94 −619.79 −688.02 −614.90
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Figure 5. Large scale truss

does not provide the exact solution in this case. Monte Carlo sampling method is
used instead to evaluate the quality of the results obtained by the present interval
FEA. One million samples are made.
The displacement at node 5 and node 9 and themember nodal force ofmember B2

(left node) and C5 (bottom node) are summarized in Tables 4 and 5, respectively.
As seen from the tables, the solution obtained by the present method tightly

encloses the one from Monte Carlo sampling method. This suggests that the over-
estimation of the bounds obtained by the present interval FEA is small, and tight
bounds are obtained.
To investigate the ability of the developed interval FEA to handle problems with

a large number of interval variables, its scalability and computational efficiency
are analyzed. A series of truss problems with increasing number of members are
considered [52]. The trusses are adopted from the work of Pownuk [39], [40]. The
configuration of the truss structure is shown in Figure 5, where the truss consists of
m bays and n stories.
Concentrated nodal loads are applied in the horizontal direction at the left edge

nodes and in the vertical direction at the top edge nodes, as illustrated in Figure 5.
The loads are deterministic with value of P for each concentrated nodal load. Each
element is assigned two interval variables for its cross-sectional area and modulus
of elasticity, respectively. Hence, the total number of interval variables is twice the
number of elements in the structure. It is assumed that the midpoint of the cross-
sectional area of all elements is A, and the midpoint of the modulus of elasticity
of all elements is E. For all interval variables, the introduced uncertainty is 1%
of their midpoint values. Therefore, for ith element, the cross-sectional area is
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Table 6. Truss structures analyzed.

Truss (story × bay) Num. elements Num. interval variables

3 × 10 123 246
4 × 12 196 392
4 × 20 324 648
5 × 22 445 890
5 × 30 605 1210
6 × 30 726 1452
6 × 35 846 1692
6 × 40 966 1932
7 × 40 1127 2254
8 × 40 1288 2576

Ai = [0.995, 1.005]A, and the modulus of elasticity is Ei = [0.995, 1.005]E. All
interval variables are assumed to vary independently within their bounds.
In most prior studies of the FEA dealing with interval variables, the number of

interval variables considered is rather small (� 100). In this example, a total of
ten trusses are analyzed with the number of interval variables ranging from 246 to
2576. In this sense, the problems considered here is “large” scale.
Table 6 lists the combinations of story (n) and bay (m) for each truss and the

corresponding number of elements and interval variables. The scalability of the
present method is examined through the study of how its performance varies with
increasing number of interval variables.
Due to the large number of interval variables in this example, the combinatorial

method is infeasible, and the näıve interval FEA does not converge. The sensitivity
analysis method [39], [40] is used for the evaluation of the present method. The
sensitivity analysis method is based on the monotonicity assumption of the response
quantities, and it can provide a good inner bound when the parameter uncertainty
is small.
The results for a typical displacement, namely the vertical displacement at

the right upper corner (node D) of the trusses are summarized in Table 7. The
displacement vD has the form

vD = a
PL
EA

.

Only the dimensionless part a is presented in the table. Table 7 compares the
solutions obtained by the present method with those from the sensitivity analysis.
The midpoint solution d0 is also listed, i.e., the deterministic solution obtained
when the parameters take their midpoint (nominal) values.
From Table 7, it is observed that the solutions obtained from the present method

are slightly wider than those from the sensitive analysis method in all problems. In
the three-story ten-bay truss involving 246 interval variables, the relative difference
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Table 7. Bounds for vertical displacement at node D of the trusses, with 1% uncertainty in
cross-sectional area and modulus of elasticity.

Truss Midpoint Sensitivity Anal. Present IFEA
story×bay solution d0 LB UB LB UB LB UB wid/d0

3×10 2.5447 2.5143 2.5756 2.5112 2.5782 0.12% 0.10% 2.64%
4×12 3.4193 3.3782 3.4612 3.3723 3.4664 0.18% 0.15% 2.75%
4×20 3.3001 3.2592 3.3418 3.2532 3.3471 0.18% 0.16% 2.84%
5×22 4.1309 4.0791 4.1837 4.0690 4.1928 0.25% 0.22% 3.00%
5×30 4.1005 4.0486 4.1532 4.0386 4.1624 0.25% 0.22% 3.02%
6×30 4.9246 4.8617 4.9886 4.8462 5.0030 0.32% 0.29% 3.18%
6×35 4.9111 4.8482 4.9751 4.8326 4.9895 0.32% 0.29% 3.19%
6×40 4.9054 4.8425 4.9694 4.8270 4.9838 0.32% 0.29% 3.20%
7×40 5.7201 5.6461 5.7954 5.6236 5.8166 0.40% 0.37% 3.37%
8×40 6.5422 6.4570 6.6289 6.4259 6.6586 0.48% 0.45% 3.56%

LB = |LB− LB | / LB . UB = |UB− UB | / UB . wid / d0 = (UB− LB) / d0.

between these two solutions is 0.12% and 0.1% for the lower bound and upper
bound, respectively. As the problem scale increases to eight-story forty-bay with
2576 interval variables, the relative difference between these two solutions is 0.48%
and 0.45% for the lower bound and upper bound, respectively. This comparison
indicates that the present method yields sharp results for large scale problems, and
the accuracy remains at the same level with the increase of problem size.
Additional useful information listed in Table 7 is the ratio of the present IFEA

solution to the midpoint solution. This ratio gives an estimation of the uncertainty
in the response resulting from the uncertainty in the parameter. The results show
reasonable values of the displacement variations in all problems, ranging from
2.64% to 3.56%.
Next, we investigate the computational efficiency of the present interval FEA.

Table 8 summarizes the problem scale, iteration number, and total computational
time of each problem solved by the present method. The table also contains iteration
time and matrix inversion time, as well as their ratios to the total computational
time. The reported time is the CPU time.
The computations were carried out on a PC with Intel Pentium4 2.4 GHz CPU

with 1GB RAM under Windows XP. According to the data in Table 8, the total
computational time, the iteration time and the matrix inversion time are plotted as
functions of the number of interval variables, shown in Figure 6.
Table 8 suggests that the number of iterations needed to achieve convergence are

comparable for all the problems. As compared to the matrix inversion, the iterations
take much less time, ranging from 8.7% to 19.5% of total computational time.
The results in Table 8 also indicate that the percentage of the CPU time spent

calculating the matrix inverse ranges from 78.4% to 90.7%. For most problems, the
percentage is around 90%.
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Table 8. CPU time for the truss analyses with the present interval FEA (unit: seconds).

Truss (story × bay) nv Iterations ti tr t ti / t tr / t

3 × 10 246 4 0.14 0.56 0.72 19.5% 78.4%
4 × 12 392 5 0.45 2.06 2.56 17.7% 80.5%
4 × 20 648 5 1.27 8.80 10.17 12.4% 86.5%
5 × 22 890 5 2.66 21.48 24.38 10.9% 88.1%
5 × 30 1210 6 6.09 53.17 59.70 10.2% 89.1%
6 × 30 1452 6 11.08 89.06 100.77 11.0% 88.4%
6 × 35 1692 6 15.11 140.23 156.27 9.7% 89.7%
6 × 40 1932 6 20.11 208.64 230.05 8.7% 90.7%
7 × 40 2254 6 32.53 323.14 358.76 9.1% 90.1%
8 × 40 2576 7 48.454 475.72 528.45 9.2% 90.0%

nv: Number of interval variables. ti: Total CPU time for iterations.
tr: CPU time for matrix inverse calculation. t: Total computational CPU time.
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Figure 6. Computation time vs problem scale.

It is observed that the computational time increases approximately cubically
with the number of interval variables for the present interval FEA. A good fit to the
data in Table 8 can be found with

t = 8.5 × 10−8n2.8707v ,

where t is the total computational CPU time, and nv is the number of interval vari-
ables. Hence, the present interval FEA has an approximately cubic computational
complexity.
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5. Conclusion

In this paper a new formulation for interval FEM is presented. Uncertain loads and
stiffness are introduced as interval numbers. The major difficulty associated with
the IFEM is the overestimation due to the dependency effect: the computed range of
the response is much wider than the actual range. For engineering application, the
physical nature of the problem must be considered to control the overestimation. In
the present approach, an element-by-element technique is used and compatibility
conditions are ensured by the Lagrange multiplier method. The resulting linear
interval equation is solved using the Brouwer’s fixed point theory with Krawczyk’s
operator and a newly developed overestimation control. We eliminate most sources
of overestimation, and a very sharp enclosure for the system’s displacement and
forces are obtained simultaneously and have the same level of accuracy. The numer-
ical examples also illustrated the present formulation’s scalability.
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3. Apostolatos, N. and Kulisch, U.: Grundzüge einer Intervallrechtung für Matrizen und einige
Anwwendungen, Elektron. Rechenanlagen 10 (1968), pp. 73–83 (in German).

4. Bathe, K.: Finite Element Procedures, Prentice Hall, Upper Saddle River, 1996.
5. Ben-Haim, Y. and Elishakoff, I.: Convex Models of Uncertainty in Applied Mechanics, Elsevier
Science, Amsterdam, 1990.

6. Berleant, D.: Automatically Verified Reasoning with Both Intervals and Probability Density
Functions, Interval Computations (2) (1993), pp. 48–70.

7. Buonopane, S. G., Schafer, B. W., and Igusa, T.: Reliability Implications of Advanced Analysis
in Design of Steel Frames, in: Proc. ASSCCA’03, Sydney, 2003.

8. Chen, S. H., Lian, H. D., and Yang, X. W.: Interval Static Displacement Analysis for Structures
with Interval Parameters, Int. J. Numer. Methods Engrg. 53 (2002), pp. 393–407.

9. Cook, R. D., Malkus, D. S., and Plesha, M. E.: Concepts and Applications of Finite Element
Analysis, John Wiley & Sons, 1989.

10. Dempster, A. P.: Upper and Lower Probabilities Induced by a Multi-Valued Mapping, Ann. Mat.
Stat. 38 (1967), pp. 325–339.
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