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Abstract. Uncertainty assessment in basin modeling and reservoir characterization is traditionally
treated by geostatistical methods which are normally based on stochastic probabilistic approaches.
In this paper, we present an alternative approach which is based on interval arithmetic. Here, we
discuss a finite element formulation which uses interval numbers rather than real numbers to solve
the transient heat conduction in sedimentary basins. For this purpose, a novel formulation was
developed to deal with both the special interval arithmetic properties and the transient term in the
differential Equation governing heat transfer. In this formulation, the “stiffness” matrix resulting
from the discretization of the heat conduction equation is assembled with an element-by-element
technique in which the elements are globally independent and the continuity is enforced by Lagrange
multipliers. This formulation is an alternative to traditionalMonte Carlo method, where it is necessary
to run a simulation several times to estimate the uncertainty in the results. We have applied the newly
developed techniques to a one-dimensional thermal basin simulation to assess their potential and
limitations. We also compared the quality of our formulation with other solution methods for interval
linear systems of equations.

1. Introduction

Determinist numerical simulations are normally used to predict the behavior of
geological systems. The predicted behavior or performance is normally used for risk
assessment.Awell known limitation of determinist simulations is that they provide a
single set of results that do not convey information about the uncertainty associated
with input parameters or coefficients. To overcome this limitation, uncertainty
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assessment is typically coupled with stochastic probabilistic approaches in which
the input simulation parameter set is stochastically defined and multiple simulations
are executed to estimate the uncertainty associated with a probabilistic distribution
of the input parameter space. While effective, this approach is rather expensive
computationally. In addition, in deterministic numerical simulations, such as the
traditional finite element approach, all the parameters are assumed to be precisely
known. However, frequently in basin modeling this is not the case, since imprecise
or fuzzy information may be present in the geometry, age, and material properties of
the basin. Stochastic or probabilistic approaches have been developed to account for
these kinds of uncertainties. However, in these approaches material properties are
normally treated as random variables despite the fact that some geological processes
are not controlled by random phenomena. In this work, we present an alternative
to the stochastic probabilistic approaches which is based on interval mathematics
to assess uncertainty. We have applied the newly developed techniques to a one-
dimensional thermal basin simulation to assess their potential and limitations.
Interval mathematics is a generalization in which interval numbers replace real,

or exact crisp, numbers, interval arithmetic replaces real arithmetic and interval
analysis replace real analysis [3]. Fuzzy numbers can be represented by confidence
intervals and calculations can be performed through interval mathematics. For a
introduction to interval and fuzzy arithmetic we recommend reading [5], [12],
and [25]. Appendix A summarizes the most common interval operations and their
properties. To be unconditionally stable, the numerical solution of partial differential
equations (PDEs), governing the heat and fluid transfer in porous media, normally
requires that the time discretization is implicit. This stable solution leads to a set of
simultaneous linear system of equations. When fuzzy numbers are used to represent
material properties, such as thermal conductivity, the description of the resulting
linear system is no longer crisp, but is ambiguous or imprecise. This requires the
linear system to be solved using a non-classic approach and unfortunately, there are
very few efficient methods described in the literature to solve these systems. It is
noteworthy that the solution of interval linear system is combinatorial in nature and
the result is a convex hull bounding all possible solutions for the imprecise input
system. The combinatorial method is the most accurate method for solving interval
systems of equations, generally they are inner bounds. In this method, the system
of equation is solved for all combinations of interval numbers using their upper and
lower bounds. Needless to say, the combinatorial method is extremely expensive
and cannot solve large systems. However, it can be used to evaluate the accuracy of
other methods for small systems. A method is said to overestimate the results when
they are larger than the hull estimated by the combinatorial method.
The classic approaches to solve interval linear systems, such as Gaussian elimi-

nation, fail to solve interval systems because of some special properties of interval
arithmetic, such as the subcancel property, in which one number minus itself is
not zero, and one number divided by itself is not the unit. These properties require
extensive modifications to the algorithms to solve the systems. In addition, the
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overestimation induced by variable repetition in a mathematical expression makes
it especially difficult to deal with interval numbers. In the literature, several papers
have described methods to solve interval linear systems of equations. For example,
Neumaier [25] proposed a preconditioning variation to Gauss Elimination and the
Gauss Seidel Method. Unfortunately, these techniques generate overestimation in
the solution and they also fail to solve both large problems and systems with large
interval widths. Rao [29] discussed an optimization method using algorithm Powell
to solve interval linear systems. This method is very expensive and frequently gen-
erates results in which the range is too tight, underestimating the results. Recently
Muhanna [18] presented an interval-based finite element formulation which makes
use of an Element-by-Element (EBE) technique to calculate the solution of steady-
state problems in mechanics. This avoids most sources of overestimations and
computes a very sharp solution hull. In this paper, we extend the EBE technique to
handle time dependent problems. In addition, we briefly describe a C++ library that
we implemented with the combinatorial, preconditioned Gauss elimination, Gauss
Seidel, and the Powell methods to solve interval linear systems of equations.
Throughout this paper, boldface will denote intervals, lower case will denote

scalar quantities, and upper case will denote vectors and matrices. Underscores
will denote lower bounds of intervals and overscores will denote upper bounds of
intervals.

2. Heat Transfer in Sedimentary Basins

To illustrate the interval-based uncertainty analysis in basin modeling, we discuss
the effect of uncertainty in the thermal conductivity of rocks on the predicted
temperature evolution of a given basin. The thermal conductivity of sedimentary
rocks is a material property which is well known to vary largely in nature and
the impact of its variation can be evaluated with interval mathematics. Thermal
conductivity is a key parameter in the partial differential equation that governs the
heat transfer in compacting porous sediments [8]:

[
(1− ) ƒcƒ + scs

]
T
t
=

Z

[
b(1− )

T
Z

]
− ƒcƒqƒ

T
Z
+

Qh

(1− )
, (2.1)

where:

= sediment porosity,

ƒ = pore fluid density,

cƒ = pore fluid specific heat,

s = solid grain density,

cs = solid grain specific heat,

T = temperature,

t = time,
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b = bulk (solid + fluid) thermal conductivity of sediments,

Z =
z2∫
z1
(1− ) dz = fully compacted depth,

qƒ = darcian fluid velocity,

Qh = heat source/sink.

Equation (2.1) describes the transfer of heat within the sediments via diffusion
and advection processes. The bracketed term in the left-hand side of (2.1) is the
sediment bulk heat capacity. The first term in the right hand side describes the
conduction of heat, the second term represents the advection due to fluid carriage
of heat and the final term accounts for the heat gained or lost sources or sinks. The
respective essential and natural boundary conditions used to solve (2.1) are:

T(Sz) = Tsurf(t), (2.2)

b(1− )
T
Z

∣∣∣∣
z=0

= Q(t), (2.3)

where Tsurf is the temperature at the interface water-sediment and Q(t) is the basal
heat flux entering the basin. This heat flux can be calculated by the degree of crustal
and lithospheric mantle thinning as described by McKenzie [7]:

Q(t) = aTm
a

[
1 +

∑
n=1

sin
(
n

)
exp

(−n2 2 t
a2

)]
, (2.4)

where:

a = lithosphere thermal conductivity,

Tm = mantle temperature,

a = lithosphere thickness,

= (ka / c) = thermal diffusivity,

c = specific heat,

= (a2 / 2k) = thermal decay,

= lithosphere extension factor.

For deterministic solutions, we have used the data displayed in Tables 1 and 2.
Table 1 shows the physical properties for typical sediments and Table 2 presents
typical lithospheric parameters.

3. Traditional Finite Element Formulation for the Transient Heat
Conduction

Before we discuss the interval finite element formulation, we briefly review the
traditional deterministic Galerkin finite element formulation for solving (2.1). By
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Table 1. Physical properties of selected lithologies,where: 0 = surface porosity;
b = porosity decay coefficient; = density; = thermal conductivity; C =
heat capacity.

Lithology 0 b C
(1/km) (g/cm3) (W/m oC) (J/kg oC)

Shale 63.0 0.58 2.68 1.5 950.0
Silt 56.0 0.39 2.68 2.0 860.0
Sandstone 50.0 0.50 2.65 3.0 750.0
Limestone 60.0 0.44 2.72 2.5 860.0
Chalk 70.0 0.71 2.67 3.5 800.0
Salt 0.05 0.005 2.20 5.5 854.0
Basalt 5.00 0.0 2.85 2.0 775.0

Table 2. Lithosphere properties.

Thermal diffusivity 0.008 (m2/s)
Thermal expansion coefficient 0.000034 (1/◦C)
Crustal thickness 31200.0 (m)
Lithosphere thickness 125000.0 (m)
Temperature at the lithosphere base 1333.0 (◦C)
Mantle density 3330 (kg/m3)
Crustal density 2800 (kg/m3)
Constant basement heat flow 41.84 (mW/m2)

neglecting the advection term in (2.1), this equation then describes a general dif-
fusion problem which can be stated as an initial-boundary value problem (IBV). It
can be expressed in a general form by the following differential equation [1]:

µ(x)
U(x, t)
t

−
x

(
(x)

U(x, t)
x

)
= ƒ(x, t). (3.1)

When (3.1) is applied to heat conduction, its symbols represent:

U(x, t) = T(x, t) = temperature,

µ(x) = (x)c(x) = heat storage,

ƒ(x, t) = Q(x, t) = heat source,

(x) = density,

c(x) = specific heat.

IBV problems consists of finding U = U(x) satisfying (3.1) x and the
prescribed boundary conditions (BCs) which are assumed take the form:

U(x) = g(x) x g, (3.2)
U
x
= h(x) x h, (3.3)
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where is the domain and the boundary, g and h are given functions, g is the
essential, or Dirichlet BC, and h is the natural, or Newman BC.
Approximating U = Na and solving (3.1) by the Galerkin method in space and

the fully implicit method in time using the backward finite difference [1, p. 459]
results into the following element equations:

[keff]{a}n = {ƒeff}, (3.4)

where:

[keff] =
1
tn
[c] + [k], (3.5)

{ƒeff} = {ƒ}n +
(
1
tn
[c]

)
{a}n−1, (3.6)

tn = time step n,

{a}n−1 = solution for the time-step n− 1,
N = shape functions.

The coefficients of the element “stiffness” (k) and accumulation (c) matrices are
given by:

k =


 L

−
L

−
L L


 , c =



1
3
µL

1
6
µL

1
6
µL

1
3
µL


 , (3.7)

where L is the length of 1D finite element. The accumulation matrix represents the
element heat storage capacity, µ. For the global solution of the IBV problem, the
elements are assembled in a global stiffness Keff and in a global Feff vector. Then a
linear system of equations is solved for the primary variable a:

[Keff]{a}n = {Feff}, (3.8)

[Keff] =
nel
A
e=1

keff,

{Feff} =
nel
A
e=1

ƒeff,

where symbol A represents the assembly operation.

4. The Element-by-Element (EBE) Formulation with Element Overlap

A straightforward way to transform the traditional finite element formulation into
a interval finite element formulation is to replace the real “stiffness” matrix by an
interval, or fuzzy, stiffness matrix and solve the resulting interval linear system.
Unfortunately, the direct solution of this linear system of equations can produce
overestimated results and arithmetic operation problems [6]. This occurs due to
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Figure 1. EBE scheme for a mesh with 2 elements. The nodes are split and renumbered
producing 4 overlapping elements.

the large number of arithmetic operations and the width of the intervals numbers
during the solution process. Muhanna [18] proposed an EBE finite element method
for steady-state problems that avoids a great number of these operations. In his
method, the assembly operation is modified by keeping the elements effectively
disconnected and enforcing continuity in the mesh by using Lagrange constraints.
Using this approach, the stiffness matrix can be factored in to two matrices: one
interval diagonal matrix and another real banded matrix. The inversion of these
matrices is done separately and involves very few interval arithmetic operations
because the inversion of the diagonal matrix requires a single interval division
per row. In spite of this advance, this method is not directly applied to transient
problems in which the stiffness matrix has the contribution of the heat capacity
term (C matrix). In this case, the resulting stiffness matrix cannot be factored using
the same algorithm that was described for the steady-state case.
In the sequence, we discuss a new formulation to extend the EBE formulation to

solve interval transient heat conduction problems. The goal of this formulation is
the same as the steady-state formulation described previously, that is, to factor the
global stiffness matrix into two matrices, one interval diagonal and another banded
real, to reduce the number of arithmetic operations involving interval numbers
during the solution of the linear system.
Figure 1 illustrates the EBE formulation using a one-dimensional thermal basin

modeling example. In this example, there are three stratigraphic horizons (Hi,
i = 1…3) and two layers (Ci, i = 1…2) represented by the traditional finite element
mesh with three nodes (horizons) and two elements (layers). The heat flux is
specified (natural condition) at the bottom (Q(t)) and the surface temperature is
specified (essential boundary) at the top (Tsurf). Each layer i, has its own physical
properties: conductivity ( i), heat capacity (µi), and thickness (Li).
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The overlapping elements are on the right (Figure 1). There is essentially one
mesh for the conductivity ( mesh) overlapping with another one for the heat
capacity (µ mesh). The thermal conductivity and the heat capacity are interval
numbers represented by α = [ , ] and the µ = [µ, µ]. After the mesh split, the
nodes are duplicated, node 1 becomes 1 and 5; node 2 becomes 2, 3, 6, 7; and node 3
becomes 4, 8. The mesh compatibility, or the resulting continuity, has to be enforced
and thus constraining equations must be satisfied: T1 = T5; T2 = T3 = T6 = T7;
T4 = T8, where T is temperature.
The global linear system of equations with the node compatibilities using the

EBE formulation with overlap for this mesh is:


α1
L1

-α1
L1

1 0 0 0 0

-α1
L1

α1
L1

0 1 1 1 0

α2
L2

-α2
L2

0 0 -1 0 0 0

-α2
L2

α2
L2

0 0 0 0 1

µ1L1
3 t

µ1L1
6 t -1 0 0 0 0

0
µ1L1
6 t

µ1L1
3 t 0 0 -1 0 0

µ2L2
3 t

µ2L2
6 t 0 0 0 -1 0

µ2L2
6 t

µ2L2
3 t 0 0 0 0 -1

1 0 0 0 -1 0 0 0 0 0 0 0 0
0 1 -1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 -1 0 0 0 0 0 0 0
0 1 0 0 0 0 -1 0 0 0 0 0 0
0 0 0 1 0 0 0 -1 0 0 0 0 0







T1
T2
T3
T4
T5
T6
T7
T8

λ1
λ2
λ3
λ4
λ5




=




P1
P2
P3
P4
P5
P6
P7
P8

0
0
0
0
0




(4.1)

or more compactly:[
K CT

C 0

]{
T
λ

}
=
{
P
0

}
, (4.2)

where K is the stiffness matrix, C is the compatibility node matrix, T the unknown
temperature, λ the vector of Lagrange multipliers, and P is the heat source. The
first two blocks in the diagonal of the stiffness matrix in (4.1) are from the thermal
conductivity mesh. The third and fourth blocks are from to heat capacity elements.
The 0, 1, and −1 coefficients are from the constraining equations used to enforce
the node compatibilities. The linear system of equation above can also be written
as:

KT + CTλ = P, (4.3)

CT = 0. (4.4)

The stiffness matrix (K) can be written as the product of two matrices:

K = DS, (4.5)
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where D is an interval diagonal matrix and S is a banded real matrix:

D =




α1

L1
α1

L1
α2

L2
0

α2

L2
µ1L1

t

0 µ1L1
t

µ2L2
t

µ2L2
t




, (4.6)

S =




1 −1
−1 1 0

1 −1
−1 1

1
3

1
6

1
6

1
3

0 1
3

1
6

1
6

1
3




. (4.7)

Since the diagonal matrix D has the interval numbers (α and µ), its inverse is
obtained trivially. The Smatrix is block diagonal and singular (the second line equals
to the first multiplied by −1) and, thus, cannot be directly inverted. Substituting
(4.5) in (4.3) results in:

DST = P− CTλ. (4.8)

Multiplying (4.4) by DCT , and adding the result to (4.8), after some algebraic
operations we obtain:

D(ST + CTCT) = P− CTλ. (4.9)

If we define Q = CTC and R = S + Q we have:

DRT = P− CTλ. (4.10)

Finally, the temperature solution vector can be obtained from (4.10) by:

T = R−1D−1(P− CTλ). (4.11)
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This equation can be further simplified by defining the vector:

V = (P− CTλ) = (v1, v2, v3, v4, v5, v6, v7, v8)
T , (4.12)

then (4.11) becomes:

T = R−1Mδ, (4.13)

where:

M =




v1 0 0 0
v2 0 0 0
0 v3 0 0
0 v4 0 0
0 0 v5 0
0 0 v6 0
0 0 0 v7
0 0 0 v8
1 0 0 0




and δ =




L1
α1
L2
α2
t

µ1L1
t

µ2L2




. (4.14)

The matrix M has dimensions (4 × number of elements) × (2 × number of ele-
ments) and the vector δ has dimensions 2 × number of elements. The rows of the
vector δ are essentially the diagonal values of D−1. Because the interval numbers
occur only once in this vector, we avoid interval operation repetition with the same
number. The matrix sizes are twice as large as the EBE for steady-state formulation
because of the mesh duplication. This is the main cost of using this technique to
reduce the number of interval operations.

5. Details of the Implementation

We have implemented a new library to solve interval linear systems of equations
using Object-Oriented (OO) technologies in C++. By making use of templates
and traits techniques we have been able to develop a library that can solve a lin-
ear systems of equations for distinct types of numbers such as real, interval and
fuzzy, using the same implementation. This library can also handle different matrix
storage structures such as dense, banded, and tridiagonal. In this library, we have
implemented the following methods: (1) preconditioned Gauss-Seidel [6]; (2) Pre-
conditioned Gaussian elimination [6]; (3) optimization using Powell’s method [28];
and (4) the combinatorial method [16]. Figure 2 is a graphical representation of
a fuzzy linear system of equations with triangle numbers. It shows that a fuzzy
system can be solved by -cuts planes of interval linear system of equations.
In Figure 3, we display the class derivation scheme for numbers and matrices,

as well as the main algorithm classes for the solution of linear systems. Following
the OO approach, each class number is responsible for its operations (addition,
subtraction, multiplication, division, absolute value, etc). This data encapsulation
approach is also applied to each matrix class which is responsible for its own
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Figure 2. Fuzzy linear system of equations.

Figure 3. Derivation class for number types.

matrix operations (LU decomposition, vector multiply, inverse, determinant, rank,
etc). We used the classes implemented by Deodato [2] for interval and fuzzy
number operations. In his implementation, the fuzzy number is subdivided in -
cuts confidence intervals. We made extensive use of operator overloading, inlining,
and templates in our implementation.
By using templates and the generic programming approach [11], we were able to

have a single implementation for the solution of the system (AX = Y), independent
of the number type and matrix structure. The matrix and number types are template
parameters implemented by the template specialization techniques.
This is a definitive advantage of generic programming, the algorithm does not

need to know the details of the data structures used as long a common interface is
provided for each number or matrix type. Then, the numbers and matrix operations
are the responsibility of the numbers and the matrix classes respectively. Conse-
quently, the same algorithm works regardless of the type of the matrix or number
provided.
In order to apply the concepts discussed so far in this paper, we modified a

one-dimensional basin modeling software denominated GEOFEM—Geological
applications Of the Finite Element Method [8] which was originally written in C, to
produce C++ (GEOFEM++) in to perform interval and fuzzy operations. A specific
EBE assembly operation was added to this software to obtain the global stiffness
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matrix. We have adapted GEOFEM++ to perform Monte Carlo simulations with
uniform, triangular, normal, and exponential density distributions.

6. Application to a Real, Multi-Layer Geological Case

In this section, we apply the techniques discussed in this paper and we compare
the performance with more traditional methods to assess uncertainty. For the sake
of simplicity, we discuss initially a very simple example to evaluate the algorithm
efficiency in relation to the size of the mesh and the width of the interval numbers,
after this, we applied the formulation to real data. So we performed four tests:

1. initial synthetic model,

2. increasing the number of elements,

3. increasing the interval numbers width,

4. test with real data.

For this discussion we consider the thermal conductivity uncertain.

6.1. INITIAL SYNTHETIC MODEL

In Figure 4, we display a one-dimensional mesh representing the present-day col-
umn of sediments with 4 elements (layer) and 5 nodes (horizons). Table 3 shows
the thermal conductivity values used in this test.
We calculated the evolution of this mesh over time, the results for a single node

of the mesh at the present-day time are shown in Table 4. The value (15.86◦C) is the
result of a traditional deterministic simulation using real numbers (crisp solution) for
the thermal conductivity (center value in Table 3). In the sequence, the Monte Carlo
(MC) method was applied with 1000 experiments using a uniform distribution,
and the results provide a range of uncertainty for the temperature between 15.31
to 16.41◦C. For the uniform distribution, the average value is the same as the
crisp solution. Note that an uncertainty of 13% to 17% in the thermal conductivity
of the sediments induced a lower than 7% uncertainty in the temperature. The
combinatorial method provides the range between 15.28 and 16.44, close to the
MC method but with a little wider interval. Preconditioned Gaussian elimination
and the Gauss-Seidel results are clearly overestimated, whereas Powell method
generated a much tighter solution. Clearly, a poor selection of the interval solution
method can provide inaccurate solutions. The EBEmethod provided a good solution
close to the combinatorial method. This shows the advantages and limitations of
the interval methods. In our opinion, the EBE method and MC method were able
to assess the uncertainty accurately in this simple case.
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Figure 4. The elements in the mesh represent geological layers and the nodes the horizons.
The respective age, in million of years (My) of each horizon, is shown on the right of the
node numbers.

Table 3. Thermal conductivities values for
shale and sandstone (Wm−1K−1).

Lithology Interval Value

Shale [1.45, 1.55]
Sandstone [2.90, 3.10]

Table 4. Comparison among different solution methods for
node 3 for the mesh displayed in Figure 4.

Method Temperature (◦C)

Crisp 15.86
Monte Carlo (MC) [15.31, 15.86, 16.41]
Preconditioned Gauss Elimination [12.38, 15.86, 21.80]
Preconditioned Gauss-Seidel [10.77, 15.86, 26.35]
Combinatorial [15.28, 15.86, 16.44]
Powell [15.73, 15.86, 16.01]
EBE [14.95, 15.86, 16.85]
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Figure 5. Mesh with 8 elements.

Table 5. Results for the node 5 of the mesh shown in Figure 5.

Method Temperature (◦C)

Crisp 15.66
Monte Carlo (MC) [15.31, 15.66, 16.01]
Preconditioned Gauss Elimination Failed
Preconditioned Gauss-Seidel [4.07, 15.66, 37.89]
Combinatorial [15.22, 15.66, 16.10]
Powell [15.64, 15.66, 15.93]
EBE [15.15, 15.66, 16.17]

6.2. INCREASING THE NUMBER OF ELEMENTS

In this experiment, we doubled the number of elements in the mesh as shown in
Figure 5. The results for the node 5 are presented in Table 5.
When the number of the elements increases, the number of operations to invert

the interval global stiffness matrix also increases, leading to potential problems
for example, related to excessive overestimation. This can be verified in Table 5,
especially for the Preconditioned Gauss-Seidel method. For this case, the precon-
ditioned Gaussian elimination failed. This failure occurred due the large number of
operations with interval number during the pivoting phase of the Gaussian elimina-
tion. The large number of operation tends to increase the width of interval number.
This width may include zero in the range, making the interval division underdeter-
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Table 6. Thermal conductivity for
shale and sand (W/m ◦K).

Lithology Interval Value

Shale [1.40, 1.66]
Sandstone [2.80, 3.20]

Table 7. Results increasing the thermal conductivity width of
the shale and sand as shown in Table 6.

Method Temperature (◦C)

Crisp 15.86
Monte Carlo (MC) Failed
Preconditioned Gauss Elimination Failed
Preconditioned Gauss-Seidel [14.68, 15.86, 16.92]
Combinatorial Failed
Powell [14.95, 15.86, 16.63]
EBE [14.38, 15.86, 17.34]

mined. Similarly to the previous case, results of Powell’s method were again too
tight, and the MC and EBE methods provided good results.

6.3. INCREASING THE INTERVAL NUMBERS WIDTH

To evaluate the effect of a wider range of uncertainty, we used the new interval
values of Table 6. The results for this experiment of the application of the selected
methods are shown in Table 7. We used the same four-element mesh as displayed
in Figure 4.
The increase in the range of uncertainty caused further deterioration in the

quality of some of the solution methods. In this case, the preconditioned Gauss
Elimination and Gauss- Seidel failed to converge. Powell’s method converged to an
incorrect result. EBE is the only interval method studied that provided results with
good quality. It is interesting to note that the MCmethod resulted in slightly tighter
result when compared with the solution hull. This result could be even tighter if
one included a density distribution with a shape different from the box distribution
we selected.

6.4. MULTI-LAYER GEOLOGICAL EXAMPLE

As the last evaluation case,we applied the EBE,MCandCombinatorialmethods to a
well with real data. The stratigraphy is described in Table 8. There is 24 horizons and
23 layers, the Layer 23 is between the horizon 24 (depth = 7194 m, age = 135 My)
and the horizon 23 (depth = 6500 m, age = 125 My), one source rock and one
reservoir.
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Table 8. The well’s stratigraphy used in our analysis.

Layers Depth Age Lithology Interval Thermal
(m) (My) Conductivity (W/m ◦K)

Layer 1 142.60 0.00 SHALE [1.78, 2.18]
Layer 2 433.52 0.67 SHALE [1.78, 2.18]
Layer 3 981.17 2.44 SHALE [1.78, 2.18]
Layer 4 1197.99 13.20 SHALE [1.78, 2.18]
Layer 5 1260.56 14.62 SHALE [1.78, 2.18]
Layer 6 1362.75 23.55 SHALE [1.78, 2.18]
Layer 7 1477.46 23.58 90SHALE10SAND [1.88, 2.30]
Reservoir 1708.51 37.01 91SAND9SHALE [2.72, 3.32]
Layer 9 2129.39 61.46 82SAND18SHALE [2.62, 3.20]
Layer 10 2158.64 63.16 77SHALE23SAND [2.02, 2.46]
Layer 11 2253.68 68.69 90SAND8SHALE2MARL [1.87, 2.29]
Layer 12 2377.62 75.89 95SILT5SAND [1.97, 2.41]
Layer 13 2408.27 77.67 77SAND17SHALE6SILT [2.58, 3.16]
Layer 14 2484.35 82.09 75SAND23SHALE2SILT [2.56, 3.12]
Layer 15 2905.23 84.11 70SAND20SILT10SHALE [2.53, 3.09]
Layer 16 3494.79 85.08 50SILT40SHALE10SAND [1.95, 2.39]
Layer 17 3861.44 85.69 SILT [1.93, 2.35]
Layer 18 3884.26 96.00 68SHALE32SILT [1.83, 2.23]
Layer 19 3951.24 110.92 65SAND23DOLOMITE12SILT [3.83, 4.69]
Layer 20 3972.91 112.00 HALITA [5.12, 6.26]
Layer 21 3979.57 113.00 CONGLOMERADE [2.55, 3.11]
Source Rock 5500.00 118.00 COQUINE [2.64, 3.22]
Layer 23 6500.00 125.00 CONGLOMERADE [2.55, 3.11]

7194.00 135.00

The number before the lithology composition (Lithology column) is the per-
centage of each lithology, for instance, 90SHALE10SANDmeans that in this layer
there is 90% of shale and 10% of sand. The interval thermal conductivity was gotten
by an error of 10% in the crisp values. For the Crisp method was used the midpoint
of the interval thermal conductivity. The surface temperature is 18◦C and the heat
flux in the basement is 41.8 mW/m2 for all ages.
For this analysis we assumed no variation in the paleobathymetry and sea-level

over time. We built a finite element mesh with 69 elements, 3 elements per layer, to
represent the stratigraphy listed in Table 8. For this modeling, we used the approach
described in [9] and [10], which make use of a fully compacted coordinate system,
to eliminate mesh deformation over time. Figure 6 summarizes the temperature
calculation at the present-day time.
In this figure, we display the results for Crisp, Combinatorial (Comb), Monte

Carlo (MC), and EBEmethods. The other methods (Preconditioned Gauss Elimina-
tion, Preconditioned Gauss-Seidel and Powell) failed for this case. The uncertainty
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Figure 6. Temperature × depth for the data of Table 8.

Table 9. Temperature at depth 5500 m.

Method Temperature (◦C)

EBE [151, 128]
Combinatorial [132, 147]
Monte Carlo [135, 144]
Crisp 139

increases with the depth due to the transient numerical solution. Note that, the EBE
results were slightly outside the hull of the solution defined by the combinatori-
al method and the MC was between the EBE and Combinatorial results. Details
can be seen in Table 9 which represents the values to the depth 5500 m. Enclo-
sure algorithms [30] can obtain one narrower solution than EBE method. For the
MC simulations, we used a uniform distribution of the thermal conductivity with
1000 scenarios and 15 histogram classes.
The EBE simulation took approximately 25 seconds and the MC took 150 min-

utes on an Intel P4 machine with 1.7GHZ and 1GB of RAM. The good quality of
the EBE result was only achievable due to the EBE formulation that significantly
reduces the number of interval operations.
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7. Conclusions

In this work we evaluated the potential and limitations of an interval possibilistic
approach to assess uncertainty in basin modeling. The interval arithmetic approach
is an alternative to traditional probabilistic stochastic methodology. We extended
the interval finite element EBE formulation to the transient heat transport equation.
This formulation provided good results within the hull of possible solutions with a
quality similar to the Monte Carlo method. However, the EBE formulation has the
advantage of being able to perform the uncertainty analysis with a single simulation,
requiring much less computational resources.
Here we compared the EBE formulation with the more traditional solutions for

interval systems of equations and EBE has proved to be the most robust. The Pre-
conditioned Gaussian elimination and Gauss-Seidel methods do not performed well
with large meshes, either providing excessive overestimates or failing to converge.
In addition, these methods also had problems to deal relatively wide numbers. Pow-
ell’s method may produce incorrect or excessively tight results in basin modeling.
The Combinatorial method, which provides the exact convex hull of the possible
solutions, cannot be used in practical problems since it requires 2n operations and
becomes rapidly unviable when the number of interval variables grows.
TheMonte Carlo method gives adequate results to the uncertainty analysis when

there is sufficient statistical information about the variables. The MC method has
the advantage of allow the analysis of multiple uncertain variables simultaneously
without the need to change simulation applications. The major problem with the
MC method is the computational cost.
The EBE with element overlap seems to be a viable alternative for one-

dimensional basin modeling due to the quality of its results for the solution of
transient problems. However further studies are necessary to analyze its possible
application to multidimensional basin modeling using more parameters as interval
numbers.
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Appendix: Interval Arithmetic Notations and Operations

An interval number x is represented by:

x = [x, x],

where:

x = lower bound,

x = upper bound,

x̃ = is a real number that belongs to the interval number x = [x, x],

x̀ = is the real number midpoint of x.

wid x = x− x is the width of the interval number x.

Operations:

x + y = �x + y, x + y�,
x− y = �x− y, x− y�,
x × y = �min{xy, xy, xy, x y}, max{xy, xy, xy, x y}�,
1
x
=

[
1
x
,
1
x

]
, if x × x > 0.

Properties:

x(y ± z) xy ± xz; x, y, z R,

x− y (x + z)− (y + z),
x / y (xz) / (yz),

x− x �= 0, 0 (x− x),

x / x �= 1, 1 x / x.

Note that when there is a repetition of a variable in a mathematical expression
we get an overestimated result.


