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Abstract. An algorithm is developed to compute interval bounds on the set of all solutions to an
overdetermined system of interval linear equations.

1. Introduction

Given the real (n × n) matrix A and the (n × 1) column vector b, the linear system
of equations

Ax = b (1.1)

is consistent if there is a unique (n × 1) vector x for which the system in (1.1) is
satisfied. If the number of rows in A and elements in b is m �= n, then the system is
said to be either under- or overdetermined depending on whether m < n or n < m.
In the overdetermined case, if m− n equations are not linearly dependent, there is
no solution vector x that satisfies the system. Solutions in the underdetermined case
are not unique.
In the point (non-interval) case, there is no generally reliable way to decide if

an overdetermined system is consistent or not. Instead a least squares approximate
solution is generally sought. In the interval case, it is possible to delete inconsistent
cases and bound the set of solutions to the remaining consistent equations. In this
note, we consider the problem of solving overdetermined systems of equations in
which the coefficients are intervals. That is, we consider a system of the form

AIx = bI, (1.2)

where AI is an interval matrix of m rows and n columns with m > n. The interval
vector bI has m components. Such a system might arise directly or by linearizing
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an overdetermined system of nonlinear equations, see [6]. The width of intervals in
(1.2) generally represent measurement errors. The goal is to eliminate all inconsis-
tent solutions. Least squares approximate solutions do not eliminate inconsistent
solutions and therefore do not solve the present problem. Bentbib [1] provides a
least squares approximate solution to overdetermined interval linear systems.
The solution set of (1.2) is the set of vectors x for which there exists a real

matrix A ∈ AI and a real vector b ∈ bI such that (1.1) is satisfied. The set of
systems of equations defined in (1.2) is inconsistent if its solution set is empty.
When the data in AI and bI are fallible, at least one A ∈ AI and/or b ∈ bI will
generally exist such that (1.1) is inconsistent. Our goal is to implicitly exclude at
least some of these cases. For example, the redundancy resulting from the fact that
there are more equations than variables might be deliberately introduced to sharpen
the interval bound on the set of solutions to (1.1). A simple example of how this
can come about is discussed in [5]. In Section 3, we show how this sharpening is
accomplished.
We shall simplify the system using Gaussian elimination. In the point case, it is

good practice to avoid forming normal equations from the original system. Instead
one performs elimination using orthogonal operation matrices to triangularize the
coefficientmatrix. See [4]. After thisfirst phase, the normal equations of this simpler
system can be formed and solved. Our procedure begins with a phase similar to the
first phase just described. However, we do not quite complete the usual procedure.
We have no motivation to use orthogonal operations because we do not form the
normal equations. This is just as well because interval orthogonal matrices do not
exist.
When using interval Gaussian elimination, it is generally necessary to precon-

dition the system to avoid excessive widening of intervals due to dependence. In
Section 2, we show how preconditioning can be done in the present case where AI

is not square. See [2] for a more thorough discussion of this topic.

2. Preconditioning

We now describe one way to obtain the preconditioning matrix. Let Ac denote
the center of the interval matrix AI. Note that Ac can be computed using rounded
arithmetic since only an approximation is needed. Again using approximate arith-
metic, perform Gaussian elimination to transform Ac into upper trapezoidal form.
Elements in positions (i, j) with i < j should be eliminated when possible. Row
pivoting is to be used. Column pivoting can also be used.
The operations to transform Ac are also performed (approximately) on an iden-

tity matrix of order m. The matrix resulting from these operations is the desired
preconditioning matrix B. To precondition (1.2) we multiply by B. We obtain

MIx = rI, (2.1)
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whereMI = BAI is an m by n interval matrix and rI = BbI is an interval vector of
m components. When computing MI and rI, we use interval arithmetic to bound
rounding errors.

3. Elimination

We now perform elimination on the preconditioned equations. We apply an interval
version of Gaussian elimination to the system MIx = rI thereby transforming MI

into almost (see below) upper trapezoidal form. This procedure only fails when
all possible pivot elements contain zero. Note that after preconditioning, no pivot
selection is performed during the elimination to obtain a result with the form[

TI

WI

]
x =

[
uI

vI

]
, (3.1)

where TI is a square upper triangular interval matrix of order n, and uI and vI are
interval vectors of n and m − n components, respectively. The submatrix WI is a
matrix of m−n rows and n columns. It is zero except in the last column. Therefore,
we can represent it in the form

WI =
[
0 zI

]
,

where 0 denotes an m − n by n − 1 block of zeros, and zI is a vector of m − n
intervals.
We now have a set of equations

Zixn = Vi (i = 1,…,m− n). (3.2)

Also,

Tnnxn = Un. (3.3)

Therefore, the unknown value xn is contained in the interval

Xn =
Un

Tnn

m−n⋂
i=1

Vi
Zi
. (3.4)

Taking this intersection is what implicitly eliminates fallible data from AI and bI.
It is this operation that allows us to get a sharper bound on the set of solutions to
the original system in (1.2) than might otherwise be obtained.
If the original system contains at least one consistent set of equations, the

intersection in (3.4) must not be empty.
Knowing Xn, we can backsolve (3.1) for Xn−1,…,X1. From (3.1), this takes

the standard form of backsolving a triangular system TIx = uI. Sharpening Xn
using (3.4) also produces sharper bounds xI on other components of x when we
backsolve.
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Rohn [3] provides an iterative method for bounding the solution set. With
sufficient effort, the optimal bounding set can be computed. However, because of
the required computing Rohn recommends his procedure only for moderately sized
problems. Our (much faster) procedure will generally not sharply bound the optimal
solution because of interval width caused by dependence.

4. Inconsistency

Suppose the initial equations (1.2) are inconsistent. Then equations (3.2) and (3.3)
might or might not be consistent. Interval widening due to dependence and roundoff
can cause the intersection in (3.4) to be non-empty.
Nevertheless, suppose we find that the intersection in (3.4) is empty. This event

proves that the original equations in (1.2) are inconsistent. Proving inconsistency
might be the signal that a theory is measurably false, which might be an extremely
enlightening event. On the other hand, inconsistency might mean no more than
invalid measurements have been made. These possibilities are discussed in [5].
If invalid measurements are suspected, it might be important to discover which
equation(s) in (1.2) are inconsistent. We might know which equation(s) in the
transformed system (3.1) must be eliminated to obtain consistency. However, an
equation in (3.1) is generally a linear combination of all the original equations
in (1.2). Therefore, to establish consistency in the original system, we generally
cannot determine which of its equation(s) to remove.
Wemight be able to determine a likely removal candidate by using the following

steps:

1. Remove enough equations from (3.1) that the intersection in (3.4) is not empty.

2. Solve the modified version of (3.1) for Xn−1,…,X1. This process cannot fail if
the elimination process to obtain (3.1) does not fail.

3. Substitute the solution into the original system (1.2). Any equation in (1.2) is
a removal candidate if its left and right members do not intersect.
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