
Reliable Computing (2006) 12: 171–192

A General Reliable Quadratic Form:
An Extension of Affine Arithmetic

FRÉDÉRIC MESSINE � and AHMED TOUHAMI
ENSEEIHT–IRIT, CNRS–UMR 5505, 2 rue C. Camichel, 31071 Toulouse Cedex, France,
e-mail: {Frederic.Messine, Ahmed.Touhami}@enseeiht.fr

(Received: 23 June 2003; accepted: 18 June 2005)

Abstract. In this article, a new extension of affine arithmetic is introduced. This technique is based on
a quadratic form named general quadratic form. We focus here on the computation of reliable bounds
of a function over a hypercube by using this new tool. Some properties of first quadratic functions and
then polynomial ones are reported. In order to show the efficiency of such a method, ten polynomial
global optimization problems are presented and solved by using an interval branch-and-bound based
algorithm.

1. Introduction

This paper is dedicated to the study of a new reliable automatic way to generate
bounds of a (polynomial) function ƒ over a hypercube X ⊆ R

n. We denote by
ƒ(X) = [min

x∈X
ƒ(x),max

x∈X
ƒ(x)] the range of ƒ over the box X.

Interval arithmeticwas developed in the 1960s byMoore [11]. This is a basic tool
which allows to construct interval inclusion functions, denoted by F (corresponding
to a function ƒ), such that ƒ(X) ⊆ F(X) = [FL(X),FU(X)]. These bounds are said to
be reliable if no numerical error can produce a wrong bound.
The natural extension of a function into interval is an inclusion function. Using

interval arithmetic and Taylor expansions (for instance, of the first order), it is
possible to construct more efficient inclusion functions, [10]–[12].

Affine arithmetic was proposed and developed recently by Stolfi et al. [1]–[5],
although a similar tool, the generalized interval arithmetic, has been developed in
1975 by Hansen [7]. Affine arithmetic was first applied to infographic problems
and surface intersection problems [1]; the principle is to keep affine information
during the computations of bounds. Like generalized interval arithmetic [7], affine
arithmetic was developed to take into account the problems of the dependencies
of the variables generated by interval computations. This tool permits to limit
some negative effects of interval arithmetic, namely the link between different
occurrences of the same variable. For example, ƒ(x) = x − x with x ∈ X = [0, 1]

� The work of the first author was also supported by the Laboratoire de Mathématiques Appliquées
CNRS–FRE 2570, Université de Pau et des Pays de l’Adour, France, and by the Laboratoire
d’Electrotechnique et d’Electronique Industrielle CNRS–UMR5828,GroupEM3, INPT–ENSEEIHT.

c© Springer 2006DOI: 10.1007/s11155-006-7217-4

172 FRÉDÉRIC MESSINE AND AHMED TOUHAMI

gives F(X) = [−1, 1] �= 0 using interval arithmetic. In that case, [0, 0] is obtained
using affine and generalized interval arithmetics. Affine arithmetic as defined in
the first paper [1] was not reliable. However, by rounding some coefficients used
in the affine operations, Stolfi et al. have obtained a reliable affine arithmetic; it is
explained in detail in [5].
In a previous work of the first author [9], two new affine forms and one quadratic

form were introduced. All these techniques (including affine arithmetic) were used
in an interval branch-and-bound algorithm in order to improve its efficiency at
finding the global minimum, see [3], [9]. The purpose here is to extend [9] by con-
sidering the complete quadratic form and by developing the associated operations.
In this work, only the operations +, −, × are developed and then only polynomial
functions can be considered. However, it should be possible and rather simple to
extend this work in order to consider more general functions; this is due to the
conversions of the general quadratic form into another one (or into an interval) and
to the combination of these conversions and the calculus using the corresponding
different forms.
This new form, named general quadratic form, has intrinsic properties mainly

concerning quadratic functions. The purpose of this technique is to conserve affine
information as well as quadratic information (about the error due to a non-affine
operation) during the computations. Therefore, this added information permits to
improve the quality of the computed bounds, in spite of the expansion of the
complexity of such an algorithm. The gain of this technique is validated on some
global optimization polynomial problems.
Section 2 is dedicated to describing affine arithmetic introduced by Stolfi et

al. [1]–[5], and the forms proposed by the first author in [9]. Then, the general
quadratic form and its associated operations are detailed in Section 3. Some theo-
retical properties of the efficiency of the bounds are reported in Section 4. Section 5
describes the way to render the bounds computed by this technique reliable. Sec-
tion 6 is devoted to applying this technique to global optimization, by inserting
it into one of the classical interval branch-and-bound algorithms. Therefore, some
techniques based on this interval branch-and-bound algorithm which uses some
different inclusion functions are compared on ten polynomial examples to show the
efficiency of the general quadratic form in global optimization.

2. Affine Arithmetic and Associated Known Forms

The purpose of this section is to recall the affine arithmetic developed by Stolfi et
al. [1]–[5] and the three affine and quadratic forms introduced in [9].

2.1. STANDARD AFFINE ARITHMETIC

A standard affine form, as defined in [1], is denoted by:

x̂ = x0 + x1ε1 + · · · + xnεn = x0 +
n∑
i=1

xiεi, (2.1)

A GENERAL RELIABLE QUADRATIC FORM... 173

where xi are the real known coefficients (stored as floating point numbers) and εi
are symbolic variables which are called noise-symbolic variables. The values of
these variables are unknown but belong to the interval [−1, 1].
The conversions between affine forms and intervals are performed as follows:

• Interval −→ Affine Form:

X = [xL, xU]

−→ x̂ =
xL + xU

2
+
xL − xU

2
εk, (2.2)

where εk represents the uncertainty of the value x, and where k is the new
increment of the new symbolic variable (k ← k + 1 after each conversion).

• Affine Form −→ Interval:

x̂ = x0 +
n∑
i=1

xiεi

−→ X = x0 +

(
n∑
i=1

|xi|
)
× [−1, 1]. (2.3)

All the standard operations such as +, −, ×, as well as other classical functions
such as x2,

√
x, sin(x), cos(x), are redefined for affine forms. In this work, only

polynomial functions are considered, so only the operations +, −, × are necessary;
for details on other operations and functions see [1]–[5].
Affine operations on affine forms are performed as follows:

x̂ ± ŷ = (x0 ± y0) +
n∑
i=1

(xi ± yi)εi,

a ± x̂ = (a ± x0) ±
n∑
i=1

xiεi, (2.4)

a × x̂ = ax0 +
n∑
i=1

axiεi,

where x̂ and ŷ are affine forms and a is a real number.
It is obvious that multiplication, division, square and square root functions are

not affine functions. Consequently, these non-affine results should be approximated
by an affine form. Thus, another supplementary term zkεk must be inserted in order
to represent the error due to the affine approximation [1]–[5]. For multiplication,
we have:

x̂ × ŷ =

(
x0 +

n∑
i=1

xiεi

)
×

(
y0 +

n∑
i=1

yiεi

)

= x0y0 +
n∑
i=1

(x0yi + xiy0)εi +

(
n∑
i=1

xiεi

)(
n∑
i=1

yiεi

)
.

174 FRÉDÉRIC MESSINE AND AHMED TOUHAMI

An efficient approximation which keeps the inclusion property is:

x̂ × ŷ = x0y0 +
n∑
i=1

(x0yi + xiy0)εi +

(
n∑
i=1

|xi| ×
n∑
i=1

|yi|
)
εn+1. (2.5)

This approximation is not the best one, but it seems to be the most efficient (a
compromise between the quality of bounds and the complexity of the induced
algorithm). It is the approximation used in affine arithmetic [1]–[5]. Note that a new
symbolic variable εn+1 (k = n+ 1) is included in the affine form with the coefficient
n∑
i=1

|xi| ×
n∑
i=1

|yi|, which is the upper limit due to the affine approximation.

Remark 2.1. In the process of performing a non-affine operation, such as a multi-
plication, the affine form increases in size by one supplementary new term. This
technical difficulty is discussed and solved in [9].

Therefore, by using affine arithmetic, it is possible to define a new inclusion
function of ƒ, denoted by AF:

1. Let us consider the hypercube X ⊆ R
n and the n intervals Xi converted into n

affine forms:

Xi −→ x̂i =
xiL + xiU

2
+
xiL − xiU

2
εi.

A new symbolic variable εi is introduced for each conversion.

2. Each occurrence of a variable xi in an expression of ƒ is replaced by the
corresponding affine form x̂i and all the operations +, −, × are replaced by the
corresponding affine operations.

3. The affine computations are performed and the affine result r̂ is obtained.

4. The resulting affine form r̂ is then converted into the interval [r̂] = [rL, rU]
which is an enclosure of the direct image of ƒ over the considered box X.

Hence, ƒ(X) ⊆ AF(X) = [r̂].

The affine arithmetic so defined is not reliable. However by performing efficient
rounding operations inside the affine computations, a reliable affine arithmetic was
defined; see [5] for details.

2.2. EXTENDED FORMS

These forms are extensions of the standard affine form. They allow to reduce the
difficulties induced by the use of this tool: the fact that affine forms grow by per-
forming non-affine operations and the fact that positive and negative errors cannot
be computed separately. The three forms presented in [9] are recalled hereafter; for
the arithmetic using these three forms, see [9].

• First Affine Form. The main idea is to conserve all the errors in a single
symbolic variable εn+1. This form has the advantage that the resulting form does

A GENERAL RELIABLE QUADRATIC FORM... 175

not grow by performing a non-affine operation. The bounds produced in this
way are equal to those produced by the inclusion function AF. The first affine
form can be formulated as follows:

x̂ = x0 +
n∑
i=1

xiεi + xn+1εn+1,

where the new variable εn+1 ∈ [−1, 1] represents the totality of the errors
introduced by performing non-affine operations; only one supplementary term
is added. This allows us to control the size of the resulting affine forms during
the computations. The corresponding inclusion function based on this form is
denoted by AF1.

• Second Affine Form. Starting from AF1, a second form is generated by intro-
ducing two new symbolic variables in order to control the positive and negative
errors. This second affine form is formulated as follows:

x̂ = x0 +
n∑
i=1

xiεi + xn+1εn+1 + xn+2εn+2 + xn+3εn+3,

where the positive errors are represented by εn+1 ∈ [0, 1] and the negative ones
by εn+2 ∈ [−1, 0]; εn+3 ∈ [−1, 1] represents the other possible errors. All the
coefficients xn+1, xn+2, and xn+3 are always positive numbers. The corresponding
inclusion function based on this form is denoted by AF2.

• First Quadratic Form. A first quadratic affine form was also generated in [9]
by introducing symbolic variables in order to keep the information about the
square terms during some quadratic or polynomial computations:

̂̂x = x0 + n∑
i=1

(xiεi + xi+nε
2
i) + x2n+1ε2n+1 + x2n+2ε2n+2 + x2n+3ε2n+3,

where ε2i = εi+n ∈ [0, 1], ε2n+1 ∈ [0, 1], ε2n+2 ∈ [−1, 0], and ε2n+3 ∈ [−1, 1]. In
this form, a quadratic supplementary information is kept by using the terms ε2i .
The corresponding inclusion function based on this quadratic form is denoted
by QF.

3. General Quadratic Form

In this section, the general quadratic form is defined. It is an extension of the
previous extended forms which generated the inclusion functions AF, AF1, AF2,
and QF. In this paper, the complete quadratic form is considered, in contrast toQF
which is a partial quadratic form.
A general quadratic form is represented by ̂̂x:̂̂x = εTAε + bTε + c + e+εn+1 + e

−εn+2 + eεn+3

=
n∑

i, j=1

aijεiεj +
n∑
i=1

biεi + c + e
+εn+1 + e

−εn+2 + eεn+3, (3.1)

176 FRÉDÉRIC MESSINE AND AHMED TOUHAMI

where A ∈ R
n×n, b ∈ R

n, c ∈ R , (e+, e−, e) ∈ (R +)3 and εi ∈ [−1, 1],∀i ∈ {1, …, n},
εn+1 ∈ [0, 1], εn+2 ∈ [−1, 0], and εn+3 ∈ [−1, 1]. The symbolic variables εn+1, εn+2,
and εn+3 represent the noise for the errors during non-affine computations.
The conversions between intervals, affine forms, and general quadratic forms

are performed as follows:

• Interval −→ General Quadratic Form:

X = [xL, xU]

−→ ̂̂x = εTAε + bTε + c + e+εn+1 + e
−εn+2 + eεn+3

with



A = 0,

b =
(
0,…, 0,

xL − xU

2
, 0, …, 0

)
,

c =
xL + xU

2
,

e+ = 0,

e− = 0,

e = 0.

The rank i where bi =
xL − xU

2
is generally determined by the variable x. When a

vector x ∈ R
n is considered, then the rank i corresponds to xi.

• General Quadratic Form −→ Interval:̂̂x = εTAε + bTε + c + e+εn+1 + e
−εn+2 + eεn+3

=
n∑

i, j=1

aijεiεj +
n∑
i=1

biεi + c + e
+εn+1 + e

−εn+2 + eεn+3

−→ X =
n∑

i, j=1
i �= j

[−|aij|, |aij|] +
n∑
i=1

[−|bi|, |bi|] +
n∑
i=1

aii[0, 1] + [|c|, |c|]

+ [0, e+] + [−e−, 0] + [−e, e].
• General Quadratic Form −→ Affine Form:̂̂x = εTAε + bTε + c + e+εn+1 + e

−εn+2 + eεn+3

=
n∑

i, j=1

aijεiεj +
n∑
i=1

biεi + c + e
+εn+1 + e

−εn+2 + eεn+3

−→ x̂ = c +
n∑
i=1

biεi + αεn+1,

with α = max{|IL|, |IU|}, where I = [−(e + e−), (e + e+)] +
n∑
i=1

n∑
j=1
[−|aij|, |aij|].

A GENERAL RELIABLE QUADRATIC FORM... 177

• Affine Form −→ General Quadratic Form:

x̂ = x0 +
n∑
i=1

xiεi

−→ ̂̂x = εTAε + bTε + c + e+εm+1 + e
−εm+2 + eεm+3,

with



A = 0,

bi = xi, ∀i ∈ {1, …,m},
bi = 0, ∀i ∈ {m + 1,…, n},
c = x0,

e =
m∑

i=n+1

|xi|,

e+ = 0,

e− = 0.

Remark 3.1. Note that m can be different from n. If m = n, then e = 0. Otherwise,
it is interesting to consider m < n because the affine form x̂, generated after some
non-affine operations, will be longer than the number of variables (by adding some
extra error terms) whereas generally, the size of our general quadratic form must
correspond to the number of variables.

The affine operations on general quadratic forms are performed as follows. Let̂̂x and ̂̂y be two general quadratic forms and a a real number, with
̂̂x = εTAxε + b

T
x ε + cx + e

+
x εn+1 + e

−
x εn+2 + exεn+3,̂̂y = εTAy ε + b

T
y ε + cy + e

+
y εn+1 + e

−
y εn+2 + eyεn+3.

We obtain:

−̂̂x = −εTAxε − bTx ε − cx + e
−
x εn+1 + e

+
x εn+2 + exεn+3,̂̂x + ̂̂y = εT (Ax + Ay)ε + (bx + by)

Tε + (cx + cy) + (e
+
x + e

+
y)εn+1

+ (e−x + e
−
y)εn+2 + (ex + ey)εn+3,̂̂x− ̂̂y = εT (Ax − Ay)ε + (bx − by)

Tε + (cx − cy) + (e
+
x + e

−
y)εn+1

+ (e−x + e
+
y)εn+2 − (ex + ey)εn+3,̂̂x ± a = εTAxε + b
T
x ε + (cx ± a) + e

+
x εn+1 + e

−
x εn+2 + exεn+3,

a × ̂̂x =


εT (a × Ax)ε + (a × bx)Tε + a × cx
+ a × e+x εn+1 + a × e

−
x εn+2 + a × exεn+3, if a > 0,

εT (a × Ax)ε + (a × bx)Tε + a × cx
+ |a| × e−x εn+1 + |a| × e+x εn+2 + |a| × exεn+3, if a < 0.

178 FRÉDÉRIC MESSINE AND AHMED TOUHAMI

For multiplication (a non-affine operation), the following computations are per-
formed:̂̂x × ̂̂y = εTA×ε + b

T
× ε + c× + e

+
× εn+1 + e

−
× εn+2 + e×εn+3, (3.2)

with


A× = cyAx + cxAy + bxbTy ,

b× = cybx + cxby,

c× = cxcy.

It remains to explain how the errors e+× , e
−
× , e× are computed. These computations

are done in the following four steps. In order to simplify the equations, we use the
following symbols, for all real x:

[x]+ =

{
x if x > 0,

0 otherwise
and [x]− =

{ |x| if x < 0,

0 otherwise.

1. Errors of the type εTAxε × εTAyε.

The positive terms are:

e+× :=
n∑
i=1

[(ax)ii(ay)ii]
++

n∑
i, j=1
j �= i

(
[(ax)ii(ay)jj]

++ [(ax)ij(ay)ij]
+ + [(ax)ij(ay)ji]

+).
The negative terms are:

e−× :=
n∑
i=1

[(ax)ii(ay)ii]
−+

n∑
i, j=1
j �= i

(
[(ax)ii(ay)jj]

−+ [(ax)ij(ay)ij]−+ [(ax)ij(ay)ji]−
)
.

The other terms are:

e× :=
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

|(ax)ij(ay)kl|,

where i, j, k, l are not in the previous four cases, i.e. i = j = k = l, i = j and k = l,
i = k and j = l, i = l and j = k.

2. Errors of the type bTx ε × εTAyε and bTy ε × εTAxε.

In that case, there is no positive or negative error, the other terms are:

e× := e× +
n∑
i=1

n∑
j=1

n∑
k=1

(|(bx)i(ay)kl| + |(by)i(ax)kl|).
3. Errors due to the multiplication of an element of the matrix A by an error e+,
e−, or e.
The positive terms are:

e+× := e
+
× +

n∑
i=1

(
e+x [(ay)ii]

+ + e+y [(ax)ii]
+ + e−x [(ay)ii]

− + e−y [(ax)ii]
−).

A GENERAL RELIABLE QUADRATIC FORM... 179

The negative terms are:

e−× := e
−
× +

n∑
i=1

(
e−x [(ay)ii]

+ + e−y [(ax)ii]
+ + e+x [(ay)ii]

− + e+y [(ax)ii]
−).

The other terms are:

e× := e× + (e
+
y + e

−
y + ey)

×


n∑
i=1

((|(bx)i| + |(by)i|) + n∑
j=1
j �= i

(|(ax)ij| + |(ay)ij|)
) .

4. Errors due to the multiplication of the errors, or the multiplication of an error
and a constant.

The positive terms are:

e+× := e
+
× + e

+
x [cy]

+ + e+y [cx]
+ + e−x [cy]

− + e−y [cx]
− + e+x e

+
y + e

−
x e

−
y .

The negative terms are:

e−× := e
−
× + e

+
x [cy]

− + e+y [cx]
− + e−x [cy]

+ + e−y [cx]
+ + e+x e

−
y + e

−
x e

+
y .

The other terms are:

e× := e× + exe
+
y + exe

−
y + eye

+
x + eye

−
x + 2exey.

The construction of the corresponding inclusion function proceeds, as in the
standard affine arithmetic, by replacing the forms, the operations, and the conver-
sions. We denote the inclusion function induced by the general quadratic form by
GQF.

4. Properties and Comparisons

This section discusses some properties of the bounds produced by GQF for qua-
dratic and polynomial functions. This leads us to some comparisons between the
different forms.

X represents the hypercube where the function is studied. The following nota-
tions are used during this section: X = X1 × · · · × Xi × · · · × Xn, with Xi = [xLi , xUi] ⊆
R and mi = xLi + x

U
i , wi = x

L
i − xUi , such that Xi =

[
mi + wi
2

, mi − wi
2

]
.

4.1. PROPERTIES FOR QUADRATIC FUNCTIONS

Let us denote ƒ(x) = xTAx + bTx + c, a quadratic function from X ⊆ R
n to R .

Change the variables xi ∈ Xi by εi ∈ [−1, 1], such that xi = mi
2
+ wi

2
εi. Therefore

a new quadratic function depending on variables εi is obtained. Let us denote this

180 FRÉDÉRIC MESSINE AND AHMED TOUHAMI

quadratic function by g(ε). By the construction of g, we have that ƒ(x) = g(ε) for all

x ∈ X (for each variable xi ∈ Xi we have a corresponding variable εi =
2xi − mi

wi
).

Let us denote g by:

g(ε) = εTAxε + b
T
x ε + cx = ƒ(x).

We obtain:

εTAxε =
1
4

n∑
i, j=1

aijwiwjεiεj,

bTx ε =
n∑
i=1

{
1
2
biwi +

1
4

n∑
j=1

(aij + aji)miwj

}
εi,

cx =
1
2

n∑
i=1

[
1
2

n∑
j=1

aijmj + bi

]
mi + c.

PROPOSITION 4.1. Considering a quadratic function ƒ and its associated qua-
dratic function g as explained above, we have:

min
x∈X

ƒ(x) = min
ε ∈[−1, 1]n

g(ε) and max
x∈X

ƒ(x) = max
ε ∈[−1, 1]n

g(ε).

Proof. The proof is evident, because ƒ(x) = g(ε) by definition and x ∈ X implies
ε ∈ [−1, 1]n. �

THEOREM 4.1. If matrix A is symmetric and positive definite and xLi �= xUi ,
∀i ∈ {1,…, n} (equivalent to wi �= 0, ∀i), then Ax =

1
4
(aijwiwj)1≤ i, j≤n is also

symmetric and positive definite, and vice versa.

Proof. Because ∀(i, j) ∈ {1,…, n}2,wjwi > 0, and the set of symmetric matrices
S
n such that S n = {A ∈ R

n×n | A = AT} is a subspace of R n×n. �

Remark 4.1. If the matrix A is symmetric then bTx ε =
1
2

n∑
i=1

[n∑
j=1

aijmjwi + biwi
]
εi.

By denoting QNEƒ the inclusion function obtained by the natural extension into
interval of the expression ƒ written as a quadratic standard form ƒ(x) = xTAx+bTx+c,
we obtain:

QNEƒ(X) =
n∑

i, j=1
i �= j

aijXiXj +
n∑
i=1

(aiiX
2
i + biXi) + c.

A GENERAL RELIABLE QUADRATIC FORM... 181

Attention must be paid to the way this interval result is obtained because
X2i ⊆ Xi × Xi. Similarly, QNEg denotes the inclusion function when g is con-
sidered instead of ƒ.

PROPOSITION 4.2. For all X ⊆ R
n, GQF(X) = QNEg([−1, 1]n).

Proof. This is due to the construction of the arithmetic of the general quadratic
form. �

PROPOSITION 4.3. If each component of the center of X is equal to 0 then
GQF(X) = QNEƒ(X).

Proof. If each component of the center of X is equal to 0 then mi = 0 and then,

wiεi = 2xi ∀i ∈ {1, …, n}. Furthermore, xLi = −xUi and then wi
2
× [−1, 1] = Xi. This

implies that QNEƒ(X) = QNEg([−1, 1]n) and the result follows. �

It is interesting to compare GQF with QNEƒ for quadratic functions. We have
performed a lot of numerical tests (> 500) using the MATLAB toolbox INTLAB,
see [8]. In all cases, the two bounds were better using the GQF inclusion func-
tion than directly QNEƒ. Our quadratic function ƒ has been generated using the
command rand which yields uniformly distributed random numbers. Concern-
ing the hypercube X, each interval component is defined by the midpoint and the
radius which are produced randomly, using the commands midrad and rand;
for instance, Xi = midrad(rand(1),5*rand(1)) ⊆ [−5, 6]. The following
randomly generated example of size 6 illustrates this:

A =



−1.471 1.037 4.318 1.721 0.028 1.822
3.131 −2.278 −0.340 3.381 2.094 −1.972

−4.901 −3.011 −0.813 −4.803 −0.711 0.416
−3.611 −4.847 3.462 1.812 −1.953 −3.491
−2.972 2.467 0.251 −1.205 −3.103 1.979
−3.012 −0.549 −2.973 3.318 −3.065 −1.216


,

b =



3.600
3.536
0.935

−0.034
3.990
3.216


,

c = 0,

X = ([−2.640, 5.539], [−0.107, 3.312], [−3.808,−0.396],
[−3.294, 3.976], [−6.099, 2.285], [−1.171, 2.532]).

The bounds areGQF(X) = [−797.6, 722.8] andQNEƒ(X) = [−1181.1, 1094.5].
In the above examples, we obtained thatQNEƒ(X) �⊆ GQF(X). Furthermore, we

had GQF(X) ⊆ QNEƒ(X) for all the randomly generated examples.

182 FRÉDÉRIC MESSINE AND AHMED TOUHAMI

PROPOSITION 4.4. There exist such quadratic functions ƒ and such X that are
boxes of R n for which GQF(X) �⊆ QNEƒ(X).

Proof. Let us consider the following quadratic function:

ƒ(x) = xT


9 5 −6 5

−1 −8 1 8
8 0 9 −6
8 5 6 0

 x +


1
4

−8
8


T

x− 3, X = [−0.1, 1.7]4.

The natural extension into intervals gives QNEƒ(X) = [−86.411, 207.071], and
the inclusion function based on the general quadratic form, GQF(X) =
[−92.171, 157.311].
In this case, QNEƒ(X)

L > GQF(X)L and QNEƒ(X)
U > GQF(X)U . �

Remark 4.2. The efficiency of the two inclusion functions QNEƒ and GQF is
difficult to compare. Sometimes QNEƒ is the most efficient. Nevertheless, GQF
produces the best bounds in general. The counter-example in Proposition 4.4 was
difficult to construct, and actually we don’t have an example where both bounds
are more efficient using directly QNEƒ.

THEOREM 4.2. If ƒ is a quadratic function then the inclusion functions AF2, QF,
and GQF will produce exactly the same bounds:

AF2(X) = QF(X) = GQF(X) ⊆ AF(X) = AF1(X), ∀X ⊆ R
n.

Proof. By construction AF(X) = AF1(X) for all X ⊆ R
n, see [9].

By assumption, ƒ is a quadratic function. Denote by gAF1 , gAF2 , gQF, and gGQF
the resulting forms before their conversion into intervals after the computation of
the inclusion functions AF1, AF2, QF, GQF.
Hence, we obtain:

gGQF(ε) = g(ε) = εTAxε + b
T
x ε + cx,

gQF(ε) =
n∑
i=1

(
(bx)iεi + (ax)iiε

2
i

)
+ 0εn+1 + 0εn+2 +

n∑
i=1

n∑
j=1
i �= j

|aij|εn+3,

gAF2(ε) =
n∑
i=1

(bx)iεi +
n∑
i=1

[(ax)ii]
+εn+1 +

n∑
i=1

[(ax)ii]
−εn+2 +

n∑
i=1

n∑
j=1
i �= j

|aij|εn+3.

A GENERAL RELIABLE QUADRATIC FORM... 183

Denoting by NEƒ the extension of a function ƒ into interval, we get:

NEgGQF([−1, 1]n) = NEgGQF([−1, 1]n × [0, 1] × [−1, 0] × [−1, 1])
= NEgAF2 ([−1, 1]n × [0, 1] × [−1, 0] × [−1, 1]),

and then GQF(X) = QF(X) = AF2(X). �

4.2. GENERAL PROPERTIES

Let us now consider a polynomial function ƒ from R
n to R . The following properties

could be extended to other types of functions, but this is not considered in this
work.

PROPOSITION 4.5.

GQF(X) ⊆ QF(X) ⊆ AF2(X) ⊆ AF1(X) = AF(X).

Proof. This property is due to the fact that the form of AF1 is inside the form
of AF2. The form of QF includes the form of AF2 and is inside the form of GQF.
Therefore, the inclusion of the corresponding inclusion functions follows. �

The function g denotes the corresponding quadratic function due to the compu-
tations of the inclusion function GQF, and h is the complete function:

h(ε) = εTAxε + b
T
x ε + cx + e

+εn+1 + e
−εn+2 + eεn+3

= ƒ(x) = g(ε) + e+εn+1 + e
−εn+1 + eεn+3,

where h : R n+3 → R and g : R n → R .
The problem comes from the fact that in the general case, the coefficients e+, e−,

and e are not necessarily equal to 0 and therefore, there is no direct link between the
variables x and the three symbolic variables εn+1, εn+2, and εn+3 which are generated
during non-affine and non-quadratic computations. However in such case, we obtain
the following theorem:

THEOREM 4.3.

min
x∈X

ƒ(x) ≥ min
ε ∈[−1, 1]n , εn+1 ∈[0, 1],

εn+2∈[−1, 0], εn+3∈[−1, 1]

h(ε) = min
ε ∈[−1, 1]n

g(ε)− e− − e

≥ NELh ([−1, 1]n × [0, 1] × [−1, 0] × [−1, 1])
and

max
x∈X

ƒ(x) ≤ max
ε ∈[−1, 1]n , εn+1 ∈[0, 1],

εn+2 ∈[−1, 0], εn+3∈[−1, 1]

h(ε) = max
ε ∈[−1, 1]n

g(ε) + e+ + e

≤ NEUh ([−1, 1]n × [0, 1] × [−1, 0] × [−1, 1]).

184 FRÉDÉRIC MESSINE AND AHMED TOUHAMI

Proof. The demonstration is obvious because it follows from the definitions of
h and g. �

It is interesting to consider g(ε) because if the matrix Ax is symmetric and
positive definite then the unique solution will produce efficient bounds only by
solving a linear system.

Remark 4.3.We note that

NEh([−1, 1]n × [0, 1] × [−1, 0] × [−1, 1])
= [NELg ([−1, 1])n − e− − e, NEUg ([−1, 1])n + e+ + e].

EXAMPLE 4.1. The properties of this general quadratic form can be illustrated by
this simple example: ƒ(x1, x2) = x21x2 − x1x22 over [−1, 3]2. We have:

x21x2 − x1x
2
2 = (1− 2ε1)2(1− 2ε2)− (1− 2ε1)(1 − 2ε2)2
= (1− 4ε1 + 4ε21)(1− 2ε2)− (1− 4ε2 + 4ε22)(1− 2ε1)
= (1− 4ε1 + 4ε21 − 2ε2 + 8ε1ε2 − 8ε21 ε2)
+ (−1 + 4ε2 − 4ε22 + 2ε1 − 8ε1ε2 + 8ε1ε22)

= −2ε1 + 2ε2 + 4ε21 − 4ε22 − 8ε21 ε2 + 8ε1ε22 .

• AF(X) = AF1(X) = [−2ε1 + 2ε2 + 40ε3] = [−44, 44], with εn+1 = ε3 ∈ [−1, 1].
• AF2(X) = [−2ε1 + 2ε2 + 4ε21 − 4ε22 + 32ε5] = [−40, 40] = QF(X), with εn+3 =
ε5 = ε2n+3ε7 ∈ [−1, 1].

• GQF(X) = [−2ε1+2ε2 +4ε21 −4ε22 +16ε5] = [−24, 24], with εn+3 = ε5 ∈ [−1, 1].
• QNEƒ(X) = X21X2 − X1X22 = [−1, 3]2[−1, 3] − [−1, 3]2[−1, 3] = [−9, 27] −
[−9, 27] = [−36, 36].

In that case, QNEƒ is better than AF, AF1, AF2, and QF but GQF is the most
efficient.

5. Reliable General Quadratic Form

In [5], Stolfi et al. have developed a reliable arithmetic based on affine forms. The
way they proceed is based on some rounding of the floating point coefficients of the
intermediate resulting affine forms for each operation (affine or not). A similar way
is to convert all the floating point components into floating point intervals which
enclose the real values, i.e. use the rounded interval arithmetic inside the operations
of the affine forms. By this, the generalized interval analysis is constructed [7]. In
this work, only the second way is considered for affine forms; for a thorough survey
on reliable affine arithmetic refer to [5].

A GENERAL RELIABLE QUADRATIC FORM... 185

This section is dedicated to the representation of the general quadratic form
in such a way that it becomes reliable with regard to numerical errors. The basic
idea is to replace the floating point coefficients in quadratic forms by floating point
interval coefficients:

• the real matrix A is replaced by an interval matrix A, where each element
aij = [aij, aij] and where aij, aij are the closest inferior and superior floating point
numbers to the real coefficients aij,

• the real vector b is replaced by an interval vector b where each component
bi = [bi, bi] and where bi, bi are the closest inferior and superior floating point
numbers to the real coefficients bi,

• the real constant c is replaced by an interval c = [c, c] where c and c are the
closest inferior and superior floating point numbers to c,

• the real error e is replaced by an interval E = [eL, eU] where eL and eU are
the floating point numbers enclosing all the errors due to the non-quadratic
operations.

The reliable general quadratic form is represented by ̂̂x:
̂̂x = εTAε + bTε + c + E

=
n∑

i, j=1

[aij, aij]εiεj +
n∑
i=1

[bi, bi]εi + [c, c] + [e
L, eU], (5.1)

where εi, for all i ∈ {1, …, n+1}, are symbolic variables whose values are unknown
but belong to [−1, 1].
The affine operations on reliable general quadratic forms are performed as

follows. Consider ̂̂x and ̂̂y to be two reliable general quadratic forms and a a
floating interval:

̂̂x = εTAxε + b
T
x ε + cx + Ex,̂̂y = εTAyε + b
T
y ε + cy + Ey.

We obtain:

̂̂x ± ̂̂y = εT (Ax ± Ay)ε + (bx ± by)Tε + cx ± cy + (Ex + Ey),̂̂y ± a = εTAyε + b
T
y ε + (cy ± a) + Ey, (5.2)

a × ̂̂y = a × εTAyε + a × b
T
y ε + a × cy + a × Ey.

Concerning non-affine operations, for multiplying two reliable quadratic forms we
have:

186 FRÉDÉRIC MESSINE AND AHMED TOUHAMI

̂̂x × ̂̂y = εTA×ε + b
T
× ε + c× + E×, (5.3)

with



A× = cyAx + cxAy + bxb
T
y ,

b× = cybx + cxby,
c× = cycx,

E× = (Ey × ̂̂x) + (Ex × ̂̂y) + ((εTAxε)(εTAyε)
+ (bTx ε)(ε

TAyε) + (b
T
y ε)(ε

TAxε)
)
,

= (Eŷ̂x) + (Ex̂̂y) +
(

n∑
i=1

(by)iεi

)(
n∑

i, j=1

(ax)ijεjεi

)

+

(
n∑

i, j=1

(ax)ijεjεi +
n∑
i=1

(bx)iεi

)
n∑

i, j=1

(ay)ijεjεi.

The construction of the corresponding inclusion function proceeds in the same
way as for standard affine arithmetic, by only replacing the forms, the operations,
and the conversion subroutines. This new reliable inclusion function is denoted by
RGQF.

6. Application to Rigorous Global Optimization

In order to show the efficiency of inclusion functions based on the general quadrat-
ic form, 10 polynomial problems (see Table 1) of the following form are consid-
ered:

min
x∈X ⊆ R

n
ƒ(x), (6.1)

where X is a hypercube in R
n and ƒ is a polynomial function.

All these problems are solved by a basic interval branch-and-bound algorithm of
Moore and Skelboe, see [12]. These techniques are said to be rigorous in the sense
that no numerical error can generate wrong bounds. The bounds are computed
using the natural extension into interval, denoted by NE, a technique based on
Taylor expansions of the first order T1, and methods based on affine forms AF and
general quadratic forms GQF.
This algorithm is based on an interval branch-and-bound principle [12], but it

is modified in order to determine the global minimum ƒ∗ with maximum accuracy.
In fact, this algorithm stops when the precision of the global solution cannot be
improved by further computations; see the following algorithmnamedMAX-PREC.
Here, #its represents the number of loops, and mid(X) is a real vector (in fact it is
an interval vector which encloses the resulting real vector) whose components are
the center of the interval vector X, i.e. the middle of the hypercube X.

A GENERAL RELIABLE QUADRATIC FORM... 187

The MAX-PREC Algorithm.

εp, MAX are fixed by the users of the algorithm.

Begin

1. Y := X, initial box

2. Compute lower bound of ƒ over X: ƒ, and ƒ̃ := ƒ(mid(X))
3. Repeat

a) #its := 1

b) While (ƒ̃− ƒ > εp) Do

A standard Moore-Skelboe interval branch-and-bound

algorithm is used including the midpoint test and

different inclusion functions, see [12]

...

#its := #its+1

c) End Do

d) εp := εp ÷ 10

4. Until (ƒ̃− ƒ ≤ εp) or (#its = MAX)

5. The algorithm stops with the result: [ƒ, ƒ̃] with the accuracy

10 × εp.

End

6.1. NUMERICAL EXPERIMENTS

In this paragraph, we show some numerical results which illustrate the effectiveness
of inclusion functions based on the general quadratic forms by comparing them to
the well known classical ones. These inclusion functions are iteratively used in the
MAX-PREC algorithm.
In Table 1, we summarize, for each polynomial problem, the initial domain of

research and the global minimum ƒ∗. In particular, some of these functions came
from the literature [6], [7], [9], [10], [12] while others are randomly generated or
constructed specially for this paper.
All these numerical tests have been performed on a HP-UX 9000/800 with

4 GB memory; it is a 64-bit quadri-processor computer from the Laboratoire
d’Electrotechnique et d’Electronique Industrielle du CNRS/UMR 5828
ENSEEIHT-INP Toulouse. The code has been developed in Fortran 90. The type
real in Fortran 90 is defined as a single precision floating point which uses 32
bits. The double precision type is then defined using 64 bits. This corresponds to
Fortran 77 and the standard floating point IEEE norms. Nevertheless, it is possible
using Fortran 90 to define the number of bits to be used for the floating point
representation of real numbers; see the Fortran 90/95 specification for details.

188 FRÉDÉRIC MESSINE AND AHMED TOUHAMI

Table 1. Test functions.

Functions Initial Domain of Research

ƒ1(x) = 1 + (x21 + 2)x2 + x1x
2
2 X = [1, 2] × [−10, 10]

ƒ∗1 = −3.5
ƒ2(x) = x31x2 + x

2
2x3x

2
4 − 2x25x1 + 3x2x

2
4x5 X = [−10, 10]5

ƒ∗2 = −1042000
ƒ3(x) = (x1 − 2x2 − 7)2 + (2x1 + x2 − 5)2 X = [−2.5, 3.5] × [−1.5, 4.5]

ƒ∗3 = 0.45

ƒ4(x) = [1 + (x1 + x2 + 1)2 X = [−2, 2]2
(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)] Golstein Price function
× [30 + (2x1 − 3x2)2 ƒ∗4 = 3
(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)]

ƒ5(x) = (x1 − 1)(x1 + 2)(x2 + 1)(x2 − 2)x23 X = [−2, 2]3
ƒ∗5 = −36

ƒ6(x) = 4x21 − 2x1x2 + 4x22 − 2x2x3 + 4x23 − 2x3x4 X = [−1, 3]×[−10, 10]×[1, 4]×[−1, 5]
+ 4x24 + 2x1 − x2 + 3x3 + 5x4 ƒ∗6 = 5.77

ƒ7(x) = x31x2 + x
2
2x3x

2
4 − 2x25x1 + 3x2x

2
4x5 X = [−10, 10]5

− 1
6 x
5
5x
3
4x
2
3 ƒ∗7 = −1667708716.3372

ƒ8(x) = 4x21 − 2.1x41 +
1
3 x
6
1 + x1x2 − 4x22 + 4x

4
2 X = [−1000, 1000]2

Ratschek function
ƒ∗8 = −1.03162845348366

ƒ9(x) = 4x21 + 2x
2
2 − 5x21x3 + 6x3x24 X = [−10, 10]5

−x34 + 3x4x2 − x3x4 + 2x1x5 + 5x25x2 ƒ∗9 = −12001.8518518519
ƒ10(x) = 6.94x41 + 0.96x

3
1 + 9.68x

2
1 + 4.16x1 X = [−50, 50]2

+ 7.53x42 − 7.68x32 + 8.21x22 − 1.75x2 A random polynomial function
−7.45x1x2 + 9.15x1x22 + 3.70x1x32 − 4.81x21x2 ƒ∗10 = −0.61585524178857
−3.06x21x22 − 0.79x31x2 − 0.18

The MAX-PREC algorithm uses iteratively the following inclusion functions:
the natural extension into interval NE, a technique based on Taylor expansions of
the first order T1, AF, and GQF. The reliable inclusion functions based on affine
forms and general quadratic forms are denoted by RAF and RGQF. The following
discussion is based on reliable techniques, i.e. the first four columns of Table 2 and
Table 4. The two other results forAF andGQF are given to underline the efficiency
of such techniques in global optimization: Each optimization problem described in
Table 1 is solved in less than 3 seconds (the average is 1 second) with a very high
precision, see Table 2. The best results among the reliable methods are in bold in
Tables 2 and 4.

A GENERAL RELIABLE QUADRATIC FORM... 189

Table 2. Comparative tests of different inclusion functions.

Pbs NEDP T1DP RAFDP RGQFDP AFDP GQFDP
CPU εp CPU εp CPU εp CPU εp CPU εp CPU εp

ƒ1 49.9 10–5 0.3 10–13 0.4 10–13 0.4 10–13 0.5 10–13 0.5 10–13

ƒ2 0.6 10–8 146.1 10–8 1.0 10–8 2.0 10–8 0.9 10–8 1.0 10–8

ƒ3 13.9 10–7 0.4 10–14 0.5 10–14 0.6 10–14 0.5 10–14 0.7 10–14

ƒ4 612.0 1 9.9 10–12 6.1 10–12 3.2 10–12 1.5 10–12 1.4 10–12

ƒ5 130.1 10–4 1.0 10–12 0.9 10–12 1.2 10–12 0.9 10–12 0.8 10–12

ƒ6 307.6 10–1 135.8 10–12 13.4 10–12 15.8 10–12 2.0 10–13 1.8 10–13

ƒ7 0.6 10–5 — — 17.1 10–4 7.6 10–5 2.9 10–5 2.3 10–5

ƒ8 3.9 10–2 2.6 10–14 8.5 10–14 4.2 10–14 1.1 10–14 1.8 10–14

ƒ9 3.7 10–1 8.6 10–10 3.3 10–10 7.4 10–10 1.1 10–10 1.8 10–10

ƒ10 64.8 10–3 2.5 10–14 8.1 10–14 3.3 10–14 0.8 10–14 1.3 10–14

avg 118.7s 34.1s 5.9s 4.5s 1.2s 1.3s
(without ƒ7)

Table 3. Use of single precision arithmetic.

Pbs NE AF RAF GQF RGQF
CPU εp CPU εp CPU εp CPU εp CPU εp

ƒ4 561.9 1 0.5 10−3 7.5 10−3 0.8 10−3 2.2 10−3

ƒ5 5.4 10−3 0.3 10−4 114.2 10−4 0.3 10−4 23.8 10−4

ƒ6 295.5 10−1 0.8 10−4 8.2 10−4 1.6 10−5 5.2 10−4

The first thing that we must compare is the accuracy (εp) obtained by each
method. Therefore, assuming equal accuracy, the CPU times (CPU), the number of
iterations (#its) and the number of elements remaining in the list at the end of the
MAX-PREC algorithm (#clst) (similar to the number of clusters, [6]) can then
be compared.
We would like first to underline the importance of using double precision DP

representation for the floating point numbers in affine and quadratic forms. In
Tables 2 and 3, we see that the gains in the obtained accuracy (εp) are considerable
when the double representation is used inside affine and quadratic forms. These
results are obtained without considering the CPU time differences (even though
some gains are also noted). Furthermore, it yields no gain for NE to change the
single precision into double; only for ƒ5 one extra order of accuracy is obtained,
but the CPU time increases by a factor of 25. For all the other inclusion functions,
important gains are noted. Consequently, we consider all the inclusion functions
using the double precision floating point representation DP, and we compare their
efficiency for the ten polynomial functions presented in Table 1.
Table 2 shows that the CPU times and the obtained accuracy (εp) are similar for

all the considered inclusion functions except for the natural extension NEDPwhich

190 FRÉDÉRIC MESSINE AND AHMED TOUHAMI

Table 4. Number of iterations and number of clusters.

Pbs NEDP T1DP RAFDP RGQFDP AFDP GQFDP
#its #clst #its #clst #its #clst #its #clst #its #clst #its #clst

ƒ1 31501 16193 287 35 227 34 168 28 226 34 169 28
ƒ2 248 21 9148 21 314 25 269 36 252 24 251 21
ƒ3 26453 10597 335 48 280 42 206 38 268 26 206 33
ƒ4 117552 14231 6536 114 1849 39 1071 22 1838 29 1066 15
ƒ5 49432 20783 1832 130 919 81 698 64 907 70 697 60
ƒ6 47738 40580 10980 3096 5495 1057 4121 1309 5322 660 1409 298
ƒ7 257 37 — — 3278 827 626 166 3513 786 646 104
ƒ8 13125 7089 4431 91 3009 93 1553 31 2979 49 1547 23
ƒ9 10190 4770 2214 98 979 76 797 58 1402 141 744 62
ƒ10 26419 19732 1724 31 1180 35 632 12 1178 34 631 8

avg 32292 50400 4165 407 1753 231 1004 176 1789 185 737 65
(without ƒ7)

is clearly less efficient. This remark is not true when the functions ƒ2, ƒ6, and ƒ7
are considered, because those are examples constructed to show that sometimes the
inclusion function T1DP becomes inefficient (when the global optimum is at one
end of the initial domain). This can be explained by noting that these three problems
have a relatively high number of variables (4 or 5) and thus, the computation of
enclosures of the gradient becomes very expensive with respect to the CPU time.
However, note that RGQF is the most efficient method because it always produces
the best accuracy and the best average CPU time; the gain between RAFDP and
RGQFDP is about 25% on these ten examples. The differences noted between the
two methods RAFDP and RGQFDP are noticeable for the functions ƒ4, ƒ7, ƒ8, and
ƒ10. It seems to be due to the fact that the expressions of these four functions have
multiple occurrences of the same variables, and that these polynomial functions
have a high degree (see ƒ4 for example; in this case the quadratic form clearly
shows its efficiency).
Now, if we consider the number of iterations (#its) and the number of elements

remaining in the list (#clst) at the end of the algorithm then it is clearly visible
from Table 4 that RGQF is the most efficient method; it always gives the best
number of iterations (except for ƒ2 which is a particular case) and also the smallest
number of elements remaining in the list at the end of the program (except for ƒ2
and ƒ6). These gains are important even if a polynomial function is quite simple in
the sense that its quadratic form is not dense (a lot of elements of the matrix are
equal to 0). Comparing RAFDP and RGQFDP, we notice an impressive gain of
about 40%.
To summarize, these numerical results demonstrate that for these kinds of prob-

lems, the inclusion functions based on a natural extension of an expression of ƒ
must never be used when a great accuracy is required (except in a few special cases

A GENERAL RELIABLE QUADRATIC FORM... 191

such as ƒ2 and ƒ7). Furthermore, it can be noted that, even if the inclusion function
T1 produces some good results, those based on affine or general quadratic forms
are clearly the most efficient; this is emphasized by these numerical tests when a
problem reaches a critical size (4 or 5 variables).

In Table 4, it is clearly shown thatRGQFDP produces the best bounds compared
to all the other methods; for (#its) a ratio of 1.7 is noted compared to RAFDP,
even if the examples are simple. To conclude, we have numerically shown on some
examples the gains from the association of RGQF with an interval branch-and-
bound algorithm; it gives the best accuracy and the best average CPU time (see
Table 2) and also the best numbers of iterations and of elements remaining in the
list at the end of the program (see Table 4).

7. Conclusion

In this paper, a new method of computing bounds of a function over a box is
presented. It is based on a general quadratic form. Some properties of quadratic and
polynomial (ormore general) functions are reported. Theway tomake this technique
reliable is detailed along with the corresponding algorithm. In order to validate this
approach, it was used with the classical interval branch-and-bound algorithm. In ten
numerical tests, the general quadratic form technique has clearly shown its intrinsic
efficiency by decreasing the number of iterations and consequently the CPU times
of such a branch-and-bound algorithm. This efficiency gains seems to grow when
the number of variables exceeds 4 and when the degree of the polynomial function
is high.

References

1. Comba, J. and Stolfi, J.: Affine Arithmetic and Its Applications to Computer Graphics, in: Pro-
ceedings of VI SIBGRAPI (Brazilian Symposium on Computer Graphics and Image Processing),
1993, pp. 9–18.

2. de Figueiredo, L.: Surface Intersection Using Affine Arithmetic, in: Proceedings of Graphics
Interface’96, 1996, pp. 168–175.

3. de Figueiredo, L., Iwaarden, R. V., and Stolfi, J.: Fast Interval Branch and Bound Meth-
ods for Unconstrained Global Optimization, Technical Report 97–08, Institute of Computing,
UNICAMP, Campinas, SP, Brazil, 1997.

4. de Figueiredo, L. and Stolfi, J.: Affine Arithmetic: Concepts and Applications, Numerical Algo-
rithms 37 (2004), pp. 147–158.

5. de Figueiredo, L. and Stolfi, J.: Self-Validated Numerical Methods and Applications, Brazilian
Mathematics Colloquium monographs, IMPA/CNPq, Rio de Janeiro, Brazil, 1997.

6. Du, K. and Kearfott, R.: The Cluster Problem in Multivariate Global Optimization, Journal of
Global Optimization 10 (1996), pp. 27–32.

7. Hansen, E.: AGeneralized IntervalArithmetic, in: Nickel, K. (ed.), IntervalMathematics,Lecture
Notes in Computer Science 29, Springer Verlag, 1975, pp. 7–18.

8. Hargreaves, G.: Interval Analysis in MATLAB, Numerical Analysis Report No. 416, Manchester
Centre for Computational Mathematics, Manchester, 2002.

9. Messine, F.: Extension of Affine Arithmetic: Application to Unconstraineded Global Optimisa-
tion, Journal of Universal Computer Science 8 (2002), pp. 992–1015.

192 FRÉDÉRIC MESSINE AND AHMED TOUHAMI

10. Messine, F. and Lagouanelle, J.-L.: Enclosure Methods for Multivariate Differentiable Functions
and Application to Global Optimization, Journal of Universal Computer Science 4 (1998),
pp. 589–603.

11. Moore, R.: Interval Analysis, Prentice Hall, 1966.
12. Ratschek, H. and Rokne, J.: New Computer Methods for Global Optimisation, Ellis Horwood,

1988.

