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Abstract
Differentiated thyroid cancer (DTC) is a rare disease in the paediatric population (≤ 18 years old. at diagnosis). Increas-
ing incidence is reflected by increases in incidence for papillary thyroid carcinoma (PTC) subtypes. Compared to those 
of adults, despite aggressive presentation, paediatric DTC has an excellent prognosis. As for adult DTC, European and 
American guidelines recommend individualised management, based on the differences in clinical presentation and genetic 
findings. Therefore, we conducted a systematic review to identify the epidemiological landscape of all genetic alterations 
so far investigated in paediatric populations at diagnosis affected by thyroid tumours and/or DTC that have improved and/
or informed preventive and/or curative diagnostic and prognostic clinical conduct globally. Fusions involving the gene RET 
followed by NTRK, ALK and BRAF, were the most prevalent rearrangements found in paediatric PTC. BRAF V600E was 
found at lower prevalence in paediatric (especially ≤ 10 years old) than in adults PTC. We identified TERT and RAS muta-
tions at very low prevalence in most countries. DICER1 SNVs, while found at higher prevalence in few countries, they were 
found in both benign and DTC. Although the precise role of DICER1 is not fully understood, it has been hypothesised that 
additional genetic alterations, similar to that observed for RAS gene, might be required for the malignant transformation of 
these nodules. Regarding aggressiveness, fusion oncogenes may have a higher growth impact compared with BRAF V600E. 
We reported the shortcomings of the systematized research and outlined three key recommendations for global authors to 
improve and inform precision health approaches, glocally.
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1  Introduction

Differentiated thyroid cancer (DTC) is a rare disease in the 
paediatric population (≤ 18 years old. at diagnosis). Its inci-
dence rate increased 1.1 per year from 1973 to 2006 and 
markedly increased from 2006 to 2013, especially in females 
and patients aged > 10 years. The increase in incidence rates 

was reflected by increases in incidence for papillary thyroid 
carcinoma (PTC) subtypes, being the classic PTC the most 
prevalent (58,6%), followed by the follicular subtype of PTC 
(18.9%) [1].

Compared to those of adults, paediatric DTC usually 
presents with more aggressive local disease and higher fre-
quency of lymph nodes (50–75%) and distant metastasis 
(5–16%), being the lungs the most common site [2, 3]. It 
has been suggested that extra-thyroidal extension, younger 
age, and larger tumours (> 2 cm) are prognostic factors asso-
ciated with worse prognosis [4, 5].

Despite this aggressive presentation, paediatric DTC 
has an excellent prognosis. Therefore, early identification 
of children who are at high risk of persistent or metastatic 
disease, and those children that may not need radioac-
tive iodine (RAI) therapy, is a fundamental step in the 
therapeutic strategy. Remarkably, younger age at diagnosis 
(< 10 years of age) was found as an important risk factor for  
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disease recurrence (i.e., increased rate and faster time) [6, 
7]. Age (< 10 years at diagnosis), American Thyroid Asso-
ciation (ATA) high-risk level and poor response to therapy 
were found as significant negative prognostic factors for 
event-free survival [8].

As for adult DTC, integration of variables (i.e., prognos-
tic markers) may offer additional help to estimate the risk 
of recurrence or persistent disease and, therefore, individu-
alised management.

Recent European Thyroid Association (ETA) recom-
mendations [4] and the first ATA guideline [9] endorsed 
that special recommendations, based on the differences in 
clinical presentation and genetic findings, are necessary for 
DTC management in this age group. However, the current 
evidence is insufficient to conclude that molecular testing 
of thyroid nodule or paediatric thyroid carcinoma tissue will 
help diagnosis or alter clinical management. Therefore, pro-
spective studies are needed.

Although evidence suggests that BRAF V600E variant in 
a fine-needle biopsy may help PTC diagnosis and could be 
considered, BRAF V600E prevalence is considerably lower 
in children (mainly < 10 years of age) and was not found in 
some populations. In fact, the younger the age, the more 
important the role of fusions in the development of thyroid 
cancer in the paediatric age-tiers [10–19].

Due to the uncommonness of paediatric thyroid cancer 
and the observed difference in tumour biology and clinico-
pathological presentation, we believe that global evidence 
identification and synthesis would certainly help to outline 
the genetic differences among individuals from different 
populations, as well as validate the use of the variable (i.e., 
genetic findings) for prognostication and treatment decisions 
in paediatric age-tiers.

Therefore, we conducted a systematic review of available 
evidence published in peer-reviewed scientific journals to 
identify the epidemiological landscape of all genetic altera-
tions so far investigated in paediatric populations (i.e. individ-
uals ≤ 18 years of age) at diagnosis affected by thyroid tumours  
and/or DTC that have improved and/or informed preventive 
and/or curative diagnostic and prognostic clinical conduct 
(i.e. to guide the use of druggable targets, surgical therapeutic 
interventions and/or biochemical, imaging and further genetic 
alterations follow-up), globally. We have also investigated the 
epidemiological landscape of actionable targets from such 
genetic alterations identified, as well as key evidence gaps 
whose research and development must continue to produce 
new actionable information (as technology) and further enable 
adequate context-specific precision health approaches at the 
glocal level [20, 21] – i.e. developing strategies that are con-
textually relevant for local implementation but whose imple-
mentation could also be adapted at other global locations, 
given adequate health technology assessment [22].

2 � Methodology

This systematic review was designed following a prede-
fined protocol, according to the Preferred Reporting Items 
for Systematic Reviews and Meta-Analysis (PRISMA) 
guidelines [23], which is registered in the PROSPERO 
database under the identification number: PROSPERO 
2023 CRD42023446483 (PRISMA Checklist is available 
at the Supplementary File).

2.1 � Eligibility criteria

This systematic review included systematic, non-systematic 
and rapid reviews, as well as peer-reviewed original arti-
cles, which discuss, comment and critically analyse how 
epidemiological data on molecular genetic alterations pro-
filing of paediatric populations has been enabling precision 
health approaches, per country, to improve and/or inform 
diagnosis or prognosis of individuals affected by thyroid 
tumours and/or DTC. Therefore, we included (series of) 
case studies and cohort studies exemplifying mere molecu-
lar genetic alterations profiling in paediatric populations 
affected by thyroid tumours and/or DTC that did (or not) 
outline actionable targets and/or evidence gaps for improv-
ing and/or informing clinical for the purposes of precision 
health approaches. As such, specific familial predisposing 
genetic alterations, such as in the RET oncogene for Mul-
tiple Endocrine Neoplasia Type 2 (MEN2) was regarded as 
irrelevant and was discarded. Meanwhile, we incorporated 
qualitative evidence alongside a review of quantitative 
data when we found relevant evidence describing geno-
type–phenotype correlations that portrayed the diagnostic 
and/or prognostic roles of such molecular genetic altera-
tions profiles per country, region or sub-region (or state).

Exclusion criteria comprised publications regarding only 
adult populations (older than 18 years old) and familial dif-
ferentiated and medullary thyroid cancers or anaplastic and 
poorly differentiated tumour types. We will also did not 
include publications describing epigenetic events (such as 
microRNA, LncRNA and methylation) or conference pro-
ceedings (as they comprise only abstract with no full-text 
available for analysis). Full-text eligibility exclusion criteria 
comprised publications that described only adult popula-
tions (older than 18 years old) and/or those describing both 
paediatric and young adult populations (older than 18 or 
21 years of age), unless individual patient data for the pae-
diatric population could be separately extracted. Finally, 
we also did not include publications that did not describe 
the mutational profile and/or location (country and/or (sub)
region/state) and/or method for genetic alteration profiling 
and/or tumour type and status data.
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2.2 � Study outcomes

The main outcome of this study was the investigation of 
the epidemiological genetic alterations profile landscape of 
known and new diagnostic and prognostic targets amongst 
children and adolescents affected by thyroid tumours and/
or DTC per country (and sub-region or state, where appli-
cable – namely, Brazil, China and USA) and region (i.e., 
Asia, Europe, Middle-East, North America, South America 
and those induced by radiation due to nuclear environmental 
exposure – namely, Hiroshima/Nagasaki in 1945, Cherno-
byl in 1986 and Fukushima in 2011). More specifically, the  
primary outcomes combined differences in the prevalence 
of the following tumour variables: age at diagnosis (i.e., 
0 ≤ 10 years of age or children, and > 10 ≤ 18 years of age or 
adolescents), histological types (i.e., follicular thyroid ade-
noma [FTA] or carcinoma [FTC], papillary thyroid carcinoma  
[PTC], oncocytic thyroid adenoma [OTA] and carcinoma 
[OTC]), molecular biology and genomics methodological 
approaches for genetic alterations identification, number of 
patients, study design and aetiology (i.e., whether tumouri-
genesis and/or metastatic progression were sporadic, radia-
tion-induced by the abovementioned environmental nuclear 
events, or therapy).

The secondary outcomes were related to each of the 
genetic alterations’ diagnostic and prognostic role in terms of  
adequately informing differential clinical conduct amongst paedi-
atric age-tiers and histological types, as well as their clinicopatho-
logical characteristics, therapeutics and relationship with survival 
outcome per country, region or sub-region (or state), namely: 
previous and/or other coexisting diseases, therapeutic (i.e.,  
different types of surgery, radiotherapy, targeted-therapies 
and/or other) approaches, tumour size, lymph node metas-
tasis (TNM-staging), follow-up period, distant metastasis, 
Initial Dynamic Risk Stratification (IDRS, to evaluate treat-
ment response), final disease outcome (i.e., no evidence of 
disease (NED), progressing or death), actionable targets, evi-
dence gaps, and findings, including barriers and facilitators, 
on how (actionable) diagnostic and/or prognostic molecu-
lar biomarkers are being implemented for specific popula-
tions within given locations (i.e., one or more institution(s), 
city(ies), sub-region(s)/state(s), country(ies), region(s)). Data 
on study limitations and funding support were also collected 
for study bias and conflict of interest evaluations.

2.3 � Information sources

Relevant publications over the past thirty years (since 1995),  
describing and evaluating the diagnostic and/or prognostic 
role(s) of known and new (actionable) genetic alterations 
prevalence, and evidence gaps, in paediatric populations 
affected by thyroid tumours and/or DTC per country, were 
identified by searching the following electronic bibliographic 

databases: PubMed, EMBASE, The Cochrane Library, BVS,  
Google Scholar, and Web of Science. Searches were per-
formed in English on 17 July 2023, using a combination 
of relevant terms  such as ‘paediatric thyroid tumours’, 
‘paediatric differentiated thyroid cancer’, ‘molecu-
lar landscape’ or ‘genetic landscape’ or ‘mutational  
analysis’ or ‘genetic alterations identification’, and they were 
adapted according to the bibliographic databases. There 
were no time or language restrictions. We did not include 
grey literature publications due to time constraints, as we 
were only able to search on Brazilian grey literature data-
bases and it was not representative of all countries/regions 
whose peer-reviewed publications were included. However, 
we thoroughly examined bibliographies to manually include 
relevant studies meeting the eligibility criteria that were 
identified as primary studies on (non-) systematic literature 
reviews and original (primary) studies. We did not re-run 
searches on all databases just before the final analyses (only 
PubMed), because we finalised these on 28 August 2023. 
Therefore, there we no further studies to be retrieved for 
inclusion after such a short period (approximately 40 days).

2.4 � Screening, data collection and analysis

Four reviewers independently screened titles and abstracts 
of publications as duos (JMC and YPC; INN and LS). Disa-
greements regarding eligibility of (full-text) studies were 
resolved by discussion and consensus (INN and LS duo) and/
or by a fifth reviewer (MSAS for: JMC and YPC duo’s title/
abstract eligibility; both duos’ full-text eligibility). Rayyan 
was used for study selection and conflicts’ resolution.

Data was extracted by all five reviewers with all revising 
data extracted from documents, including information about 
location, study design, participants demographics and base-
line characteristics, as well as numbers of events or measures 
of effect (primary and secondary outcomes), as previously 
detailed. Missing data was not included as study investigators 
were not contacted for unreported data or additional details. 
All extracted data was recorded on excel spreadsheets by all 
five reviewers that also synthesised findings. Full-text eligibil-
ity and data extraction occurred simultaneously due to time 
constraints for submission of systematic review manuscript 
for publication. Any disagreements were resolved by all five 
reviewers’ consensus and/or JMC and/or MSAS.

2.5 � Quality assessment of included studies

Quality assessment of the included original (primary) studies 
was conducted by four reviewers (MSAS, INN, YPC and JMC) 
using specific Critical Appraisal Checklist JBI Tools, developed 
by the Joanna Briggs Institute, Faculty of Health and Medical 
Sciences at the University of Adelaide, according to each study 
design. Each tool consists of six (Text or Opinion [24]), eight 
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(Case Reports [25]), ten (Case Series [26]), eleven (Cohort 
Studies [25]) or thirteen (Randomised Controlled Trials [27]) 
different questions that assess the methodological quality of 
each study, determining the extent to which the possibility of 
bias has been addressed in the study design, conduction and 
analysis. Each question was assessed by the four reviewers as 
‘Yes’, ‘No’, or ‘Unclear’ and overall score comprised the per-
centual of ‘Yes’ answers.

The methodological quality of secondary studies (sys-
tematic reviews and meta-analysis) was assessed by MSAS 
using AMSTAR 2 [28] to assign ‘Yes’, ‘No’ or ‘Partial 
Yes’ on ten questions, and further six questions specific to 
meta-analysis. Similarly, the overall score comprised the 
percentual of ‘Yes’ answers. Each study was rated by the 
four reviewers as: ‘red’ or ‘low-level of confidence (overall 
score 0–25% ‘Yes’ answers); ‘yellow’ or ‘moderate-level of 
confidence’ (overall score 26–50% ‘Yes’ answers); ‘green’ 
or ‘high-level of confidence’ (overall score 51–75% ‘Yes’ 
answers); ‘blue’ or ‘excellent-level of confidence’ (overall 
score 76–100% ‘Yes’ answers). A sample of each type of 
study was assessed by at least two reviewers (MSAS and 
any other reviewer). The rest were assessed by one of the 
four reviewers. Discrepancies were resolved by discussion 
amongst all four reviewers. The four reviewers consensually 
decided to use JBI Text and Opinion Tool [24] to conduct 
critical assessment of Non-systematic Literature Reviews 
included, and further discount 25% in the overall score for 
neither conducting a systematic, rapid nor scoping review, 
nor a qualitative evidence synthesis, case series, cohort nor a  
randomised controlled study. However, when non-systematic  
literature reviews also presented case reports or series, 
the four reviewers decided to use JBI Case Reports [25] and 
Case Series [26] Tools for critical assessment, respectively.

2.6 � Data synthesis

Quantitative outcomes  regarding genetic alterations land-
scape was collated by region, country (sub-region or state for 
Brazil, China and USA) and age-tier, according to histologi-
cal type and specific genetic alteration, as well as method for 
identification and/or (clinical and/or analytical) validation (as 
summarised in Supplementary Table 1). We calculated prev-
alence of specific genetic alterations by adding sub-region/
state, then country and regional percentual of investigated 
positive and negative findings reported by each included 
study’s population sample. Since this is a meta-aggregative 
systematic review [29], and we did not necessarily find evi-
dence on all quantitative and qualitative secondary outcomes, 
as previously described, these  were textually discussed, when 
relevant, according to regional and country (and sub-region 
or state for Brazil, China and USA) epidemiological genetic 
alterations’ profiles.

3 � Findings

3.1 � Study selection and characteristics

The search strategies for all aforementioned electronic bib-
liographic database retrieved 3,511 results. After excluding 
959 duplicates, 2,552 studies were formally screened against 
eligibility criteria. Among those, we included 543 studies for 
full-text screening against eligibility criteria. From these, 
we included 160 studies, which includes 5 by manual selec-
tion through reference lists regarding primary studies’ data 
that fell under the eligibility criteria. We included 17 Case 
Reports [30–46], 67 Case Series [47–113], 56 Cohort Stud-
ies [11, 13, 14, 114–166], 1 Randomised Controlled Trial 
[167], 17 Non-Systematic Reviews [10, 12, 15–19, 168–177] 
and 2 Systematic Reviews and Meta-analysis [178, 179]. 
The selection flowchart of the research, outlining reasons 
for exclusion, is presented in Fig. 1.

3.2 � Genetic alterations landscape global findings 
for sporadic, radiation‑induced by nuclear 
environmental events and/or therapy‑exposed 
paediatric thyroid tumours and DTC

The first question of our systematic review regarded the epide-
miological landscape of genetic alterations in paediatric thy-
roid tumours and/or DTC that are sporadic, radiation-induced 
by nuclear environmental events and/or therapy-exposed. 
Therefore, we have summarised all epidemiological genetic 
alterations (mutations and fusions) identified and/or (clinically 
and/or analytically) validated per region and country (and sub-
region or state for Brazil, China and USA) in Supplementary 
Table 1. These studies’ findings have several implications. First, 
in those state/countries that have implemented comprehensive 
testing methods to identify genetic alterations, they were able 
to uncover the unique alterations of paediatric thyroid nodules 
and DTC, including less prevalent novel gene fusions and SNVs, 
such as DICER1 and other new players. Remarkably, in most 
studies, neoplasms (i.e., benign, and malignant neoplasms) har-
bouring DICER1 mutations SNVs were most of follicular sub-
type of PTCs, FTCs and FTA. None had extrathyroidal exten-
sion, lymph node or distant metastasis. Although the precise 
role of DICER1 is not fully understood, it has been hypothesised 
that additional genetic alterations, similar to that observed for 
RAS gene, might be required for the malignant transformation of 
these nodules. A common finding across the countries was that 
in paediatric DTC, fusion alterations, most commonly involv-
ing RET and NTRK, have the highest association with invasive 
disease, lymph node involvement and distant metastases (mainly 
to the lung) while BRAF V600E is uncommon in PTC patients 
with less than 10 years of age, which present a more aggressive 
phenotype than those children with > 10–18 years of age.
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Those studies that assessed mainly for genetic alterations iden-
tified in adults, performed in most countries, although showed  
a more limited genetic landscape, support a significantly lower 
rate of the BRAF V600E mutation in PTC in paediatric patients 
than in adults and that RAS and TERT mutations do not con-
tribute significantly to PTC tumourigenesis. Although it has 
generated a BRAF and RAS-score (BRS) for paediatric thyroid 
carcinoma [121], the authors also agree that it will be essential 
to generate the transcriptional signatures of the most prevalent 
fusions found such as RET, NTRK and BRAF (mainly in Brazil).

This global epidemiological landscape  can enable us to  
better understand the populations’ geographical and age 
variations for detection of actionable targets such as tyros-
ine-kinase inhibitors (TKIs such as NTRK, RET, ALK and 
BRAF) that could benefit from targeted therapy for those  
patients presenting progressive disease. It is important to be 
able to indicate selective TKIs for these patients, although this 
is a completely infrequent situation in paediatric thyroid can-
cer, and we could hypothesise on the usefulness of such an 
approach when these patients reach adult age and have RAI  
therapy refractory progressive thyroid cancer.

As such, we have also visually summarised the genetic 
alterations profiles’ landscape in the Fig. 2 world map.

3.3 � Actionable genetic alterations landscape 
for sporadic, radiation‑induced by nuclear 
environmental events and/or therapy‑exposed 
paediatric thyroid tumours and DTC

The second question of our systematic review regarded the 
epidemiological landscape of actionable genetic altera-
tions in paediatric thyroid tumours and/or DTC that are 
sporadic, radiation-induced by nuclear environmental 
events and/or radiation therapy-exposed. We present find-
ings per region and country (and sub-region or state for 
Brazil, China and USA). Our goal was to identify all such 
genetic alterations that have improved and/or informed 
preventive and/or curative diagnostic and prognostic clini-
cal conduct (i.e. to guide the use of druggable targets, 
surgical therapeutic interventions and/or biochemical, 
imaging and further genetic alterations follow-up), glob-
ally (Supplementary Findings).

Fig. 1   Systematic review flow 
chart of records identification 
and study screening
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3.4 � Evidence gaps in (actionable) genetic alterations 
for sporadic, radiation‑induced by nuclear 
environmental events and/or therapy‑exposed 
paediatric thyroid tumours and DTC

The third question of our systematic review regarded any key 
evidence gaps in the epidemiological landscape of (action-
able) genetic alterations in paediatric thyroid tumours and/or 
differentiated thyroid cancer. Here, we present findings per 
region and country (and sub-region or state for Brazil, China 
and USA). Our overall goal with these three questions was 
to identify unresolved issues in paediatric thyroid tumours 
and DTC management that could be tackled by the estab-
lishment of new (actionable) information (as technology) 
research, development and implementation that can enable 
adequate context-specific precision health approaches, glo-
cally [20, 21].

3.5 � Asia

Across all Chinese sub-regions, evidence gaps we identi-
fied referred to larger amount of research, development 
and implementation (for both clinical and analytical valid-
ity evaluation) work to define clinical utility, elucidate 
biological mechanisms, and explore the potential of TERT 
promoter mutations as therapeutic targets in thyroid cancer 

[127], as well as of BRAF V600E mutation's role in risk 
stratification and management of children and adolescent 
PTC, for the purposes of updating current ETA and ATA 
guidelines [17, 178, 179]. There is no such evidence for 
fusion oncogenes in PTCs such as RET/PTC, especially 
regarding therapy-induced tumourigenesis. Nevertheless, 
RET/PTC was reported to be present in benign adenomas 
and also in Hashimoto thyroiditis tissues [15]. Bridging 
the gap between evidence generation and its implemen-
tation remains key, since preliminary reports of targeted 
therapy in paediatric patients with DTC with progressive 
disease have shown encouraging results, as well as the 
possible association of hyperthyroidism and PTC in resist-
ance to thyroid hormone. Therefore, adequately-designed 
clinical trials must be conducted [19], also to explore the 
long-term effects of medication [44].

In terms of evidence gaps identified in India, we observed 
that whole-exome-sequencing or other more advanced 
molecular biology and genomics methodological approaches 
could be explored to unravel further genetic biomarkers for 
aggressiveness in paediatric PTC [119]. As for adults, BRAF 
V600E mutations has been associated with RAI-therapy 
refractoriness in childhood DTCs. However, data concern-
ing its association with other aggressive features in paedi-
atric cases are quite heterogeneous, and further studies are 
needed [179].

Fig. 2   The global epidemiological landscape of genetic alterations 
in sporadic, radiation-induced by environmental nuclear events and/
or therapy-exposed paediatric thyroid tumours and/or DTC is shown. 

SNVs, Single Nucleotide Variants. *SNVs found in benign and 
malignant thyroid neoplasia



41Reviews in Endocrine and Metabolic Disorders (2024) 25:35–51	

1 3

The evidence gaps we identified across the Republic of 
Korea referred to the aetiology of age-associated genetic 
alterations that remains unexplained, although chromosomal 
rearrangements have a strong association with exposure to 
ionizing radiation, as thyroid cells of young children may 
be more susceptible to its effects and/or lose key factors 
in the DNA repair machinery, leading to uncoupled dou-
ble-stranded breaks and translocation with partner genes. 
Children with oncogenic fusion PTCs presented with more 
advanced-stage disease (especially, lung metastasis and a 
higher risk for recurrence or persistence) than did those with 
BRAF V600E PTC [135, 136]. Furthermore, DICER1 SNVs 
have been identified in benign and malignant thyroid neo-
plasms. However, the pathogenesis associated with progres-
sion of a normal thyroid to benign neoplasms and then to 
malignant transformation, has not yet been fully established.     
Therefore, further studies are needed to better understand 
this distinct pathogenesis [67]. As for DICER1, STK11 has 
also been identified as a coexisting well-known driver muta-
tion hot-spot, whose role in tumorigenesis needs to be better 
investigated [117].

Regarding study limitations, in China, we observed that 
qualitative and quantitative analyses of genotype–phenotype  
association of these genetic alterations with the various clin-
icopathological characteristics described have not yet been 
done. Furthermore, a retrospective design to the included 
studies may signify insufficient number of cases and/or 
incomplete data for cases, as well as short follow-up period. 
This may be due to the rarity of thyroid cancer in the pae-
diatric population. Nevertheless, large-sample, multicentre 
prospective studies are also needed to investigate any poten-
tial differences between children and adolescents with PTC 
across China and or Asia, regionally [134, 159]. Whereas 
in India, Chakraborty et al. [119] outlined that longer dura-
tion prospective studies must be conducted to evaluate pro-
gression-free or overall survival in BRAF V600E mutations, 
as well as other genetic alterations often found in paedi-
atric DTCs, such as RET/PTC rearrangement in radiation-
induced DTCs and PAX8/PPARγ fusion, as previous studies 
have shown high rates of such translocations in India. In 
the Republic of Korea, we observed that the small num-
ber of cases and the possible selection bias of some stud-
ies [34, 117, 135] make definitive conclusions difficult to 
draw. Most prominently, the lack of individual data available 
on genetic alterations and clinicopathological correlations 
remained as a limitation across several regional studies, pre-
venting comparisons between different paediatric age-tiers 
as well as with other young adult and adult age groups. We 
would like to outline the gold-standard for individual patient 
data reporting as implemented by Lee et al. (2021).

Finally, we found little information regarding funding 
support to investigate potential conflicts of interests across 
all Chinese sub-regions. However, we observed that most 

studies that reported funding support were either based in 
Beijing [127, 128], Hiroshima, Nagasaki or Fukushima [15], 
mainly funded by the public rather than the private sector 
[159]. In India, Chakraborty et al. [119] received public 
sector funding. We identified that most studies received 
financial support by several Korean Ministries, therefore, 
the public sector [34, 67, 117, 136].

3.6 � Europe

The evidence gaps we identified across all European coun-
tries referred to the need for further studies, particularly in 
regions where paediatric populations are poorly studied or 
without described tumour molecular profile. Few studies 
(i.e., first studies) did not report the RET fusion partners 
and, therefore, to calculate the real prevalence of the indi-
vidual RET fusions was not achievable. Furthermore, folli-
cular thyroid tumours are still very under-studied [97, 141]. 
Investigating novel gene fusions and assessing alterations 
already described in small subsets may help the better under-
standing of tumour’s molecular landscape, enabling robust 
correlations and clinical applications [11, 32, 71, 137, 141]. 
Lastly, studies exploring the distribution of genetic altera-
tions across distinct foci of primary tumour and metastasis 
are necessary to uncover its application in target therapies 
for metastatic tumours [55].

Within the Czech Republic, evidence gaps revolved 
around the need to underscore: the mechanism of RET/
PTC1ex9 formation [32] and other fusion genes by RNA 
in paediatric populations to assess any potential correla-
tions between certain fusion genes and clinical-patholog-
ical features, and compared those with adult population, 
especially in PTC [11, 146]; the clinical impact and prog-
nostic importance of RAS mutations in FTA, as well as 
the role of pathogenic variants found in PTEN or PIK3CA 
genes, which have been found in paediatric PTCs [146]. In 
France, we identified the need for new studies investigat-
ing a potential post-Chernobyl molecular signature in thy-
roid tumours comparison purposes with sporadic tumours 
samples analysed [79]. Evidence gaps in Germany related 
to: the role of Gsα mutation in paediatric populations [45]; 
and carefully designed studies to identify potential cor-
relation between RET/PTC rearrangements and clinical 
behaviour or nodal metastasis [95]. In the Netherlands, 
studies outlined the need for more in depth investigation 
on kinase inhibitors and their so far limited efficacy lead-
ing to resistance and severe side effects [99]. In Poland, 
evidence gaps related to: further investigation on the influ-
ence of the novel mutation at codon 31 of KRAS oncogene 
on the development of PTC [59]; larger samples analyses 
as the TCGA study [84]. Evidence gaps that we identified 
in Portugal related to the putative role of EWSR1::FLI1 
gene rearrangement in the neoplastic development of PTC, 
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which outlined the small series of positive cases as a study 
limitation that should be tackled [77, 122]. In Sweden, 
we identified the need to identify additional gene fusions 
in FTC additionally to the well-described PAX8/PPARγ 
fusion gene and other less common fusion events such as 
THADA [141]. In the United Kingdom, we also identified  
the need for larger sample size studies to adequately iden-
tify each of the known RET translocations [102].

Regarding study limitations, in the Czech Republic, we 
observed the limited number of paediatric samples [146] 
and that no functional analysis of novel fusion genes have 
been performed [11]. In Germany, one study outlined sev-
eral confounding variables when analysing PTC histology, 
irrespective of Belarusian patients' age [148]. Italian authors 
outlined that: resolution power of early CGH investigations 
was extremely limited and should be tackled [144]; case 
series bias lies in the limited number of paediatric cases 
and the controversial ‘wait and see’ approach used in Ital-
ian Classification Thyroid system [92]; the nCounter analy-
sis displayed an important technical limitation for NTRK3 
fusion detection and that the lack of clinical follow-up data 
is a serious limitation to also investigate the real impact of 
different molecular and pathological PTC characteristics 
in the prognostic risk stratification of patients [137]. Dutch 
studies mainly discussed small sample sizes of studies com-
paring different histological subtypes and their association 
with the outcome of different molecular backgrounds strati-
fied by the histological subtype [99]. Whereas Polish studies 
outlined that biased and small [60] samples have prevented 
de facto genotype–phenotype association studies not only 
for BRAF and TERTp mutations [156] but also RAS, PAX8/
PPARγ, RET/PTC1, and RET/PTC3 rearrangements [84]. 
One Swedish study also outlined the small sample size [41].

Finally, regarding information on funding support to 
investigate potential conflicts of interests, we observed 
that all studies were funded by the public sector in the 
Czech Republic [11, 32, 146], Germany [148], Italy [69, 
92, 137], the Netherlands [99, 145], Poland [59, 60, 84, 
97, 156], Portugal [77], Sweden [41, 104, 141], and the 
UK  [102]. Whereas certain studies also received funding 
from the private sector in France [79], Italy [126], and 
Portugal [121].

3.7 � Middle East

The current knowledge about sporadic paediatric PTCs at 
the molecular level is limited due to the scarcity of relatively 
small cohorts focusing on these aspects. The status of fusion 
oncogenes and their correlation with disease-free survival 
(DFS) is not addressed in paediatric PTCs. Therefore, regard-
ing evidence gaps, we identified the need for larger and more 
comprehensive studies to better understand the genetic char-
acteristics and genotype–phenotype correlations of paediatric 

PTCs, shedding light on their genomic landscape [78]. Addi-
tionally, the prognostic significance of the BRAF V600E 
mutation remains unclear in paediatric patients with thyroid 
cancer [149]. This highlights the need for further research to 
determine the impact of this mutation on the prognosis and 
clinical outcomes of paediatric thyroid cancer cases.

In Saudi Arabia, we identified a need for prospective larger 
samples studies [17] deploying additional identification meth-
ods to fixed panels that exclude other important genes, such 
as PAX8/PPARγ, THADA fusion genes, and EIF1AX muta-
tions [116]. Moreover, different demographic and racial char-
acteristics, distinct of methods of diagnosis and molecular 
analysis, resulting in high heterogeneity of the sample [115] 
and cross-sectional and retrospective previous studies [178] 
may have compromised the ability to demonstrate causal-
ity. Studies evaluating only point mutations in ‘target genes/
exons’ that are not frequently mutated in paediatric thyroid 
cancer do not allow for clinical-pathological associations [48]. 
Although certain non-systematic literature reviews have been 
thoroughly developed, some are lacking a few references and 
did not outline clear pharmaceutical actionable genetic targets, 
even though they synthesised large amounts of genetic altera-
tions prevalence per country [10].

In Turkey, retrospective studies with relatively small 
sample sizes have prevented the correlation between 
BRAF V600E mutation and recurrence or response to 
treatment [130].

Finally, we found no information regarding funding sup-
port to investigate potential conflicts of interests across all 
Middle East countries analysed.

3.8 � North America

The evidence gaps that we identified in Canada revolved 
around the need for more research on children with 
CCDC6::RET-driven tumours being younger than those with 
BRAF V600E-driven tumours (mean age 10.1 vs. 14.5 years) 
to verify the hypothesis of whether tumours arising in young 
(pre-/peri-pubertal) children constitute a biologically and 
genomically unique category [96]. Regarding information on 
funding support to investigate potential conflicts of interests, 
we observed that most studies were financed by the public 
and third sector [40, 96] as well as the private sector [40].

Nearly 30 studies were published across 14 states in the 
USA, predominantly in Philadelphia. Evidence gaps that 
were acknowledged across all US states referred to the need 
for further studies using comprehensive molecular testing 
byNext Generation Sequencing (NGS) in all patients with 
unresectable or progressive and/or symptomatic distal dis-
ease that is unresponsive to standard therapy of surgery and 
radioactive iodine, especially including targetable oncogenic 
drivers including: NTRK1-3, RET and ALK gene fusions, 
BRAF mutations, and MET overexpression/fusion [88].
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In Maryland, we identified the need for prospective stud-
ies with larger samples from more than one institution to 
allow meaningful statistical analysis after focused NGS tar-
geting known genomic alterations in thyroid cancers broadly 
[90]. In the Tennessee, authors outlined the need to under-
score the precise role of DICER1 in thyroid oncogenesis, 
suggesting a potential additional hits hypothesis required 
for nodule transformation [61]. In Wisconsin, we identified 
the need for further research on the genetics of paediatric 
PTC as a way of better stratifying patients and identify-
ing subgroups that could safely be treated with subtotal 
thyroidectomy [129]. In New York, evidence gap evolved 
around the need for larger sample sizes to compile a variety 
of tumour types to identify oncogenic fusions, especially 
NTRK fusions [143], whereas, in Washington-DC, the target 
was RAS mutations involved in the extrathyroidal spread of 
PTC [124], while in Connecticut, authors discussed whether 
their small samples studies would influence the prevalence 
of NTRK1/NTRK3 fusions in PTCs [88].

In Pennsylvania, studies investigating BRAF positive 
tumours, with decreased expression of the NIS and nodal 
and/or distant metastases, also outlined the need for fur-
ther research into RAS and PAX8/PPARγ mutations’ poten-
tial association with less aggressive disease, as patients 
would be able to undergo less aggressive adjunctive 
treatments [53]. Also, we identified the need for further 
investigations deploying NGS as a cost-effective approach 
with high throughput and parallel sequencing to analyse 
larger numbers of genetic variations in small volume sam-
ples in studies aiming to underscore evidence that paedi-
atric thyroid cancer is likely biologically different than 
adult thyroid cancer.  Still in Pennsylvania, we identified 
the need for larger sample studies to further determine 
whether DICER1 mutations are somatic or germline [153], 
as well as for clearly underscoring the pathological path-
ways through which ETV6::NTRK3, TPR::NTRK1, RET/
PTC and PAX8/PPARγ gene fusions may increase the sus-
ceptibility to chromosomal fragility in paediatric radia-
tion therapy-induced PTC [147]. Finally, tumours with no 
identified genetic alteration in the miRInform thyroid test 
should use a more comprehensive panel [125].

In Texas, we identified evidence gaps relating to the 
need for prospective and larger studies evaluating the 
benefits of molecular testing in paediatric thyroid lesions 
bearing TERT promoter rearrangements to verify if they 
play a role in paediatric thyroid carcinomas. Furthermore, 
it may be important to verify whether age (> 11–18 years 
of age) may play a role in the frequency discrepancies 
of RAS mutations in paediatric thyroid cancers, or if this 
finding is simply incidental [118].

Regarding study limitations, we identified sampling 
bias in retrospective studies around Tennessee – especially 
for patients of racial or ethnic minority groups, as well as 

investigations at high-volume centres with established thy-
roid expertise, both of which may produce results that can-
not be generalisable to different settings and/or underserved 
communities. Furthermore, although comprehensive testing 
methods to detect unique genetic alterations in paediatric 
thyroid tumours have been implemented, certain targets may 
be refined to underscore key genomic and clinicopathologic 
findings to help with targeted therapy in the case of pro-
gression following treatment with radioactive iodine or in 
the neoadjuvant setting. It may also help prevent diagnostic 
surgeries in paediatric populations with more aggressive 
disease and expand the understanding of the genetic mecha-
nisms of thyroid tumours in children [61].

In Wisconsin, we identified potential bias in COLD-PCR 
methodology used in DNA samples extracted from paraffin-
embedded tissue from a retrospective review with a small 
sample size, as well as rarity of patient follow-up data, which 
makes association with recurrence unclear [129].

Finally, in Missouri, we outline that, beyond limita-
tions related to retrospective analyses, BRAF mutation 
analysis in PTC through PCR–RFLP, which can generate 
both false positive and false negative results, should be 
avoided. Also, investigators should also test for other com-
mon mutations, such as the RET/PTC rearrangement that 
often occurs in paediatric PTC and can enrich diagnosis 
and prognosis informing tumour management [50].

Regarding information on funding support to investi-
gate potential conflicts of interests, we observed that most 
US-based studies received support by both the public and 
private sectors [13, 18, 61, 75, 88, 90, 124, 125, 125, 129, 
142, 147, 147, 151, 153, 167].

3.9 � South America

Regarding evidence gaps, one of the main drawbacks of 
the Brazilian studies is that they are retrospective analysis, 
which lacks a proper follow-up for all the patients [112, 
180]. This may limit the accuracy and completeness of the 
findings. Moreover, the rarity of this disease in the paediat-
ric population limits the number of patients included in the 
studies, especially for cases under 10 years of age at diagno-
sis, making it challenging to gather a larger number of cases 
[58]. Colombian paediatric PTC patients have been tested 
only for point mutations (BRAF V600E, DICER1, NKX2-1, 
NTRK1, PTEN, RAS and TSHR), demonstrating a frequency 
of 6.3% BRAF V600E in the studied population and none for 
all the other tested mutations [56]. Evidence gaps related to 
the need for further studies on: how the patients evolve; if 
their response to RAI therapy was complete; exploring wider 
known genetic alterations; registering more clinical data to 
unveil possible familial clustering and risk factors [56].

Both in Brazil and Colombia, we identified the need for 
studies to investigate quite heterogeneous data concerning 
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BRAF mutations association with aggressive features in pae-
diatric cases. Also, both qualitative and quantitative analyses 
of the association of these events with various clinicopatho-
logical characteristics should be conducted [179].

Finally, regarding information on funding support to 
investigate potential conflicts of interests, we observed that 
most Brazilian studies have been financed by the public sec-
tor [38, 58, 83, 112].

3.10 � Nuclear environmental events: Chernobyl  
and Fukushima 

As for Europe and the USA, the evidence gaps we identified 
revolved around more and better prospective larger sample 
sizes studies. In Belarus, we identified the need for studies 
investigating structural differences between the various rear-
ranged forms of RET, specifically in solid variant of PTC in 
Chernobyl-exposed paediatric populations – a rare finding 
in either children or in the adult population – that is poorly 
characterised from both a biological behaviour and patient 
prognosis perspectives [75, 85, 86]. Differences of RAS muta-
tions prevalence that might be related to age, environmental 
or genetic factors, or techniques used should also be further 
investigated [94]. TK/EC expression indicating the presence 
of RET/PTC rearrangements should also be further charac-
terised [164]. Further analyses of TP53 mutations need to be 
performed paediatric PTC without radiation history [157], 
especially codons 167 and 183 to investigate whether they are 
radiation-specific targets [109]. A matched control (age and 
region) would be necessary to ascertain whether the exposure 
to radioactive isotopes has really caused an increase in the 
prevalence of RET rearrangements, particularly RET/PTC3, 
to verify whether this is linked primarily to the nature of the 
carcinogenic agent or to the child’s age [158].

In Ukraine, evidence gaps related to the need for further 
studies addressing all driver oncogenes and other cancer 
genes at the genomic and transcriptomic levels to deter-
mine whether the phenotype and prognosis of the BRAF 
V600E-positive radiogenic PTCs will be acquiring patient 
age-related changes similarly to those described in sporadic 
PTCs [107].

Japanese evidence gaps regarded the need for further stud-
ies also outlining the clinicopathological significance of BRAF 
or TERT promoter mutations and their prognostic impact via 
advanced methods such as whole-exome-sequencing. [76]. Fur-
thermore, given the low frequency of both child PTC and the 
ETV6::NTRK3 fusion, it remains unclear whether the impact 
of genetic alteration in PTCs varies with geographic diversity. 
As the increase of thyroid cancer after radiation exposure might 
require a relatively long period of time following the 2011 
Fukushima disaster, it is important to accumulate detailed data 
regarding both sporadic and possible radiation-related PTCs in 
Japan [39]. Finally, it is important to verify any differences in 

genetic alteration between paediatric and adult FTCs, which 
have been this far poorly investigated in Fukushima radiation 
exposed paediatric populations [43].

Regarding study limitations, we would like to outline 
that sample size has been an issue for all Chernobyl and 
Fukushima studies and a Ukraine discussion regarding the 
detection of RET/PTC rearrangements via automated FISH 
analysis approach, which provides reliable results in higher 
cell numbers. Nevertheless, results indicate a genetic hetero-
geneity since only subpopulations of tumour cells carried the 
RET/PTC rearrangement [132].

Finally, we found little information on funding support to 
investigate potential conflicts of interests for nuclear envi-
ronmental events studies. Nevertheless, we observed that all 
Brazilian studies received funding exclusively from the pub-
lic sector [154]. German studies received financial support 
from the public sector [33, 152]. Japanese studies received 
funding from third, private and public sectors [39, 70, 76]. 
One Ukrainian study received funding from the third and 
public sectors [107]. One US-based study received funding 
from both public and private sectors [72, 75].

4 � Final remarks

We have outlined three key recommendations for global 
authors as means of improving evidence generation and 
use in the implementation of genetic alterations identifi-
cation and follow-up strategies to improve and/or inform 
the management of sporadic, radiation-induced by nuclear 
environmental events and/or therapy-exposed children and 
adolescents (diagnosed until 18 years of age) with thyroid 
tumours and/or DTC.

From the full-text studies that did not meet eligibility crite-
ria, 133 studies from all investigated regions collected age data 
but did not report genotype–phenotype correlation and/or epi-
demiological data (Supplementary References A). Therefore, 
our first recommendation for authors is to stratify results by 
age groups (i.e. children, adolescents, young adults, adults and 
elderly populations) and/or report data for individual patients' 
age at diagnosis as supplementary/additional files.

From the full-text studies that did not meet eligibility 
criteria, 9 studies did not report individual country and/
or sub-region or state (Supplementary References B) epi-
demiological data regarding genotype–phenotype correla-
tions, following our eligibility criteria. For those studies 
analysing populations from more than one country and/or 
sub-region or state that did not report individual country 
and/or sub-region or state epidemiological data regarding 
genotype–phenotype data according to age-ranges and or 
individual patient data between zero and 18 years of age 
(inclusive) at diagnosis, we replicated the same data for all 
countries listed in the study. This is somewhat imprecise 
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but close enough at regional level, as those studies analys-
ing population samples from more than one country and/
or sub-region or sate belonged to the same region and/or 
country, respectively. Therefore, our second recommenda-
tion for authors is to report results per location as specific 
as possible (i.e. individual data for each city, sub-region or 
state, country,  especially when analysing population sam-
ples from a group of countries and/or sub-region or state).

More generally, a wide variety of studies from all investi-
gated countries did not adequately report positive and nega-
tive findings investigated, the methodologies deployed for 
such investigation, specific genetic alterations identified per 
histological type and/or aetiology. Therefore, our final rec-
ommendation for authors is to always report each genetic 
alteration investigated, whether you find them or not, by 
which specific methodological approach for such identifi-
cation and/or (clinical and/or analytical) validation, as well 
as from which type of histological lesion caused by specific 
aetiology. Further descriptions in terms of clinicopathologi-
cal characteristics, therapeutics and relationship with sur-
vival outcome per genetic alteration are also key for tackling 
implementation barriers and/or evaluating context-specific 
facilitators at other global locations.

Finally, as a short-term future perspective, such an 
approach will enable the development of novel genetic/
genomic tests from data that has been validated following 
each country’s specific genetic alterations landscape. This 
is of key importance for cost-effective implementation of 
precision medicine goals at the local level worldwide.
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