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1 Introduction

Thyroid diseases are a heterogeneous group of conditions 
which includes both benign and malignant diseases, with 
an increasing in the incidence of both of them in the recent 
years. Notably, differentiated thyroid cancer (DTC) is the 
most common endocrine malignant neoplasm worldwide, 
while Hashimoto’s thyroiditis is the most common autoim-
mune form of thyroid disease [1].

The diagnosis of thyroid pathologies is based primarily 
on the assessment of its function with laboratory blood test, 
in particular for thyroiditis or hyperthyroidism [2]. More-
over, the anatomical evaluation of the organ with the well-
established ultrasonography (US) is mandatory to assess the 
presence of nodules, possible expression of thyroid cancer, 
or other pathological conditions and therefore this imaging 
modality has experienced an increasing relevance in the last 
decades [3].

In this scenario, the role of nuclear medicine for the diag-
nosis and treatment of thyroid conditions is central. Thyroid 
scintigraphy with 99mTc-pertechnetate enables the func-
tional evaluation of the gland, allowing the differentiation 
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between thyroiditis and hyperthyroidism, but also detecting 
the presence of ectopic thyroid tissue [4]. Moreover, 131I is 
mandatory for the management of DTC, since its pivotal 
role for the therapy but also the stage or the restage of the 
disease [5–9]. Beside single photon imaging, positron emis-
sion tomography (PET) has continuously spread its indica-
tion for the evaluation of DTC and associated conditions, 
and in the recent years many different tracers have been pro-
posed for the assessment of such diseases [7–12].

Recently, an increase in the extraction of specific quan-
titative features from PET and scintigraphic images, called 
radiomics or texture analysis, is being experienced and 
researches in this field are focusing on its diagnostic and 
prognostic role in a wide range of pathological conditions, 
and the thyroid does not make any exception [13–14]. Simi-
larly, machine learning (ML) is a hot topic of recent clinical 
research and focuses on the development of algorithms that 
can use different combinations of features in order to predict 
a specific target [15–16].

The aim of this systematic review is therefore to evaluate 
the role of radiomics and ML for the assessment of thyroid 
diseases.

2 Materials and methods

2.1 Search strategy

A wide literature search of the PubMed/MEDLINE, Sco-
pus and Web of Science databases was made in order to 
find significant published articles concerning the role of 
radiomics and ML for the assessment of thyroid diseases. 

The algorithm used for the research was the following: 
(“thyroid”) AND (“radiomics” OR “texture” OR “textural” 
OR “machine learning”).

No beginning date limit was applied to the search, and 
it was updated until 01 February 2023. Only articles in the 
English language were considered and preclinical stud-
ies, conference proceedings, reviews or editorials were 
excluded. To expand our search, the references of the 
retrieved articles were also screened for additional papers.

2.2 Study selection

Two researchers (F.D. and R.G.) independently reviewed 
the titles and abstracts of the retrieved articles. The same 
two researchers then independently reviewed the full-text 
version of the remaining articles to determine their eligibil-
ity for the inclusion.

2.3 Quality assessment

The quality assessment of these studies, including the risk 
of bias and applicability concerns, was carried out using 
Quality Assessment of Diagnostic Accuracy Studies version 
2 (QUADAS-2) evaluation [17].

2.4 Data extraction

For each included study, data concerning the basic study 
(author names, year of publication, country of origin, design 
of the study, radiotracer used and number of patients), the 
type of scan used and its setting were collected. The main 
findings of the articles included in this review are reported 
in the Results section.

3 Results

3.1 Literature search

A total of 1643 articles were extrapolated with the computer 
literature search and, by reviewing the titles and abstracts, 
1627 of them were excluded because the reported data were 
not within the field of interest of this review. Sixteen articles 
were therefore selected and retrieved in full-text version 
[18–33] and one additional study was also found screen-
ing the references of these articles (Fig. 1) [34]; as a conse-
quence, the total number of studies evaluated in the review 
was 17.

In general, the quality assessment using QUADAS-2 
evaluation underlined the presence of unclear risk of bias 
and applicability concerns in some of the studies for what 
concerns patients selection, index test, reference standard 

Fig. 1 Flowchart of the research of eligible studies on the role of 
radiomics or ML for the assessment of pathological conditions of 
thyroid
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and flow and timing. Nevertheless, only a small amount of 
studies were characterized by the presence of high risks of 
bias or applicability (Fig. 2).

Among the total number of studies included in the sys-
tematic review, 14 were of retrospective nature [18–24, 
26–28, 30, 32–34], whereas one had a prospective design 
[25] and in two cases it was not specified the nature of the 
study [29, 31]. Ten studies focused on PET imaging [18–26, 
34], 8 with PET/computed tomography (PET/CT) hybrid 
tomographs [19–20, 22–26, 34] and 2 with both PET/CT 
and PET [18, 21]. Furthermore, 7 studies focused on sin-
gle photon imaging [27–33] and in particular 3 were per-
formed with single photon emission computed tomography 
(SPECT) [27, 29, 31] while 4 were performed with planar 
scintigraphic scans [28, 30, 32–33].

Speaking about radiopharmaceuticals, 9 of the studies 
that focused on PET imaging were performed with 18 F-flu-
orodeoxyglucose (18 F-FDG) [19–26, 34], while in 1 case 
both 68Ga-DOTATOC or 68Ga-DOTATATE were used [18]. 
Moreover, in the case of scintigraphic imaging, 131I was 
used in 2 studies [28–31] while in 4 other it was reported 
the use of 99mTc-pertechnetate [29–[30, 32]–33]; lastly, in 1 
case the radiotracer was not specified [27].

The main characteristics of the studies and their results 
are briefly presented in Tables 1 and 2.

3.2 PET/CT studies

As mentioned, several studies evaluated different thy-
roid conditions by applying radiomics and ML to positron 

imaging [18–26, 34], demonstrating the possible role of 
such techniques in these areas of research. A list and a leg-
end of the radomics features with best performances are pre-
sented in Table 3.

3.2.1 Assessment of thyroid incidentalomas

One of the most explored field of application of radiomics 
in thyroid PET/CT imaging is the assessment of 18 F-FDG 
avid thyroid incidentalomas (TI). In this setting, the first 
research on this topic was proposed by Sollini et al. [19], 
reporting that some specific radiomics feature (RF) related 
to “Compacity” were significantly different between TIR 
categories and that “Skewness” was different between 
benign and malignant nodules. Moreover 3 RF (“Skew-
ness”, “Kurtosis”, “CorrelationGLCM”) were selected, in 
addition to standardized uptake value (SUV)-related and 
volumetric parameters, as potential predictors with high 
sensitivity. In the same setting Aksu et al. [22] revealed that 
21 RF were significantly different between malignant and 

Table 1 Characteristics of the studies considered for the review
First author Ref. N. Year Country Study design Radiopharmaceuticals N. Pts. Sex M:F
PET studies
Kim SJ 34 2015 Korea Retrospective 18 F-FDG 200 43:157
Lapa C 18 2015 Germany Retrospective 68Ga-DOTATOC

68Ga-DOTATATE
12 9:3

Sollini M 19 2017 Italy Retrospective 18 F-FDG 55 20:35
Nakajo M 20 2018 Japan, Germany Retrospective 18 F-FDG 114 33:81
Werner RA 21 2018 Germany, USA, Japan, Hungary Retrospective 18 F-FDG 18 12:6
Aksu A 22 2020 Turkey Retrospective 18 F-FDG 60 ns
Ceriani L 23 2020 Switzerland, Italy Retrospective 18 F-FDG 104 37:67
Giovanella L 24 2021 Switzerland, Italy Retrospective 18 F-FDG 78 20:58
De Koster EJ 25 2022 The Netherlands, Italy Prospective 18 F-FDG 123 21:102
Dondi F 26 2022 Italy Retrospective 18 F-FDG 221 72:149
Other studies
Ma L 27 2019 China Retrospective ns 2888 ns
Kavitha M 28 2020 Japan, South Korea Retrospective 131I 230 ns
Liu Y 29 2020 China ns 99mTc-pertechnetate 136 ns
Currie G 30 2021 Australia, USA, Pakistan Retrospective 99mTc-pertechnetate 123 12:111
Guo Y 31 2021 China ns 131I 446 87:359
Qiao T 32 2021 China Retrospective 99mTc-pertechnetate 1430 ns
Yang P 33 2021 China Retrospective 99mTc-pertechnetate 3389 168:3221
 N.: number; Pts: patients; Ref: reference; M: male; F: female; ns: not specified

Fig. 2 QUADAS-2 quality assessment for risk of bias and applicability 
concerns for the studies considered in the review
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First 
author

Type of 
scan

Num-
ber of 
scanners

Setting Patients 
characteristics

Perfor-
mance 
validation 
methods

ML/statistical 
techniques

Features with best 
performances

Main findings

PET studies
Kim SJ PET/CT 1 Evaluation 

of cito-
logically 
indetermi-
nate thyroid 
nodules

151 without 
malignancy 
and 49 with 
malignancy

Training 
set

Kruskall-Wallis HF Intratumoral 
heterogeneity 
could characterize 
thyroid nodules 
with inconclusive 
FNAB.

Lapa C PET and 
PET/CT

3 Evaluation 
of iodine 
refrac-
tory DTC 
or MTC 
treated with 
PRRT

4 MTC and 8 
iodine refrac-
tory DTC

Training 
set

Survival models Contrast, Entropy, 
Grey Level Non 
Uniformity, High Grey 
Level Zone Emphasis, 
Intensity Variation, 
Short Run Empha-
sis, Short Run High 
Level Grey Emphasis, 
Short Zone High Grey 
Level Emphasis, Short 
Zone Low Grey Level 
Emphasis

Tumor hetero-
geneity could 
be a predictor 
of response to 
PRRT.

Sollini M PET/CT 2 Assessment 
of thyroid 
incidentalo-
mas at PET/
CT

32 without 
malignancy 
and 18 with 
malignancy

Training 
set

Fisher test, 
ANOVA

Skewness, Kurtosis, 
CorrelationGLCM

Texture analysis 
seems to be able 
to stratify thyroid 
incidentalomas 
with respect 
to the risk of 
malignancy.

Nakajo M PET/CT 1 Prediction 
of the risk 
of recur-
rence of 
DTC

88 18 F-FDG 
avid tumors 
and 26 
non-avid

Training 
set

Mann Whitney, 
Chi square

IV, SVZ, ZP When MTV is 
higher than 10, 
the combined use 
of SUV-related, 
volumetric and 
texture param-
eters increases the 
identification of 
patients with high 
risk of recurrence.

Werner 
RA

PET and 
PET/CT

3 Prognostic 
evaluation 
in patients 
with MTC 
treated with 
TKI

1 with 
hereditary 
MTC and 17 
without

Training 
set

Survival models Complexity, Contrast Baseline com-
plexity and TLG 
are independent 
prognosticators 
for OS.

Aksu A PET/CT 1 Assessment 
of thyroid 
incidentalo-
mas at PET/
CT

32 without 
malignancy 
and 28 with 
malignancy

Cross-fold 
validation

RF, KNN, naive 
bayes, DT and 
support vector 
machine

GLRLMRLNU Texture analysis 
may be more use-
ful than SUVmax 
in predicting the
malignancy 
of thyroid 
incidentalomas.

Ceriani L PET/CT 2 of the 
same 
model

Assessment 
of thyroid 
incidentalo-
mas at PET/
CT

77 without 
malignancy 
and 30 with 
malignancy

Cross-fold 
validation

Logistic 
regression

Shape_Sphericity The proposed 
multiparametric 
radiomics model 
showed good per-
formance in strat-
ifying the risk of 
malignancy of 
incidentalomas.

Table 2 Results and main findings of the studies considered for the review

1 3

178



Reviews in Endocrine and Metabolic Disorders (2024) 25:175–186

First 
author

Type of 
scan

Num-
ber of 
scanners

Setting Patients 
characteristics

Perfor-
mance 
validation 
methods

ML/statistical 
techniques

Features with best 
performances

Main findings

Giovanella 
L

PET/CT 2 Evaluation 
of cito-
logically 
indetermi-
nate thyroid 
nodules

55 without 
malignancy 
and 23 with 
malignancy

Cross-fold 
validation

LASSO logistic 
regression

Shape_Sphericity, 
GLCM_Autocorrelation

The proposed 
multiparametric 
model increased 
the accuracy of 
risk stratifica-
tion compared to 
Bethesda system 
and PET/CT 
alone.

De Koster 
EJ

PET/CT 20 Evaluation 
of cito-
logically 
indetermi-
nate thyroid 
nodules

99 without 
malignancy 
and 24 with 
malignancy

Cross-fold 
validation

Elastic net 
regression

/ Radiomic 
analysis did not 
contribute to the 
additional dif-
ferentiation of
thyroid nodules.

Dondi F PET/CT 2 Assessment 
of thyroid 
incidentalo-
mas at PET/
CT

150 without 
malignancy 
and 71 with 
malignancy

Cross-fold 
validation

Logistic 
regression

GLCM-related features Some radiomics 
features were 
able to predict 
with certain good 
accuracy the 
final diagnosis of 
incidentalomas. 
A good overlap 
in the extraction 
of these features 
between two 
different scanner 
was reported.

Other studies
Ma L SPECT 1 Classifica-

tion of 
thyroid 
diseases at 
scintigraphy

780 with 
Grave’s 
disease, 
438 with 
Hashimoto 
disease, 810 
with subacute 
thyroidits and 
860 normal

Inde-
pendent 
internal 
testing set

8 different 
ANNs

/ The proposed net-
work is efficient 
for the diagno-
sis of thyroid 
diseases with 
SPECT images.

Kavitha M Planar 
whole-body

1 Recognition 
of meta-
static lymph 
nodes in 
DTC

2481 remnant 
tissue regions 
and 500 
metastatic 
lymph nodes 
regions

Cross-fold 
validation

ANN / The proposed 
model offers 
excellent diag-
nostic perfor-
mances for the 
assessment of 
metastatic lymph 
nodes.

Liu Y SPECT 1 Classifica-
tion of 
thyroid 
diseases at 
scintigraphy

65 with 
hyperthyroid-
ism, 43 with 
hypothyroid-
ism and 28 
normal

Inde-
pendent 
internal 
testing set

4 different 
ANNs

/ The four deep 
learning models 
are efficient
for the classifica-
tion of thyroid 
diseases with 
SPECT images.

Table 2 (continued) 

1 3

179



Reviews in Endocrine and Metabolic Disorders (2024) 25:175–186

First 
author

Type of 
scan

Num-
ber of 
scanners

Setting Patients 
characteristics

Perfor-
mance 
validation 
methods

ML/statistical 
techniques

Features with best 
performances

Main findings

Currie G Planar ns Classifica-
tion of 
thyroid 
diseases at 
scintigraphy

9 with 
hypothyroid-
ism, 22 with 
Grave’s dis-
ease, 9 with 
multinodular 
goitres, 2 
with nodular 
thyroids, 3 
with goitres, 
11 with 
reduced 
or absent 
uptake, 
7 with 
autonomous 
glands with 
contralateral 
suppression, 
24 with cold 
nodules, 
8 with hot 
nodules and 
28 normal

Inde-
pendent 
internal 
testing set

ML and deep 
learning ANNs

/ The proposed ML 
algorithm can 
improve accuracy 
as second read-
ers system. DL 
algorithms can 
be developed to 
improve accuracy 
in the absence 
of biochemistry 
results.

Guo Y SPECT 1 Classify and 
diagnose 
the residual 
thyroid 
tissue after 
thyroidec-
tomy

346 with 
residual 
tissue and 
100 without 
residual 
tissue

Inde-
pendent 
internal 
testing set

ANN / The proposed 
method has good 
performances for 
the assessment of 
residual thyroid 
tissue.

Qiao T Planar 1 Classifica-
tion of 
thyroid 
diseases at 
scintigraphy

175 with 
no thyroid 
disease, 834 
with Grave’s 
disease and 
421 with 
subacute 
thyroiditis

Inde-
pendent 
internal 
testing set

3 different 
ANNs

/ Deep learning 
models perform 
well in the diag-
nosis of Grave’s 
disease and sub-
acute thyroiditis.

Yang P Planar 2 of the 
same 
model

Classifica-
tion of 
thyroid 
diseases at 
scintigraphy

1420 dif-
fusely 
increased 
uptake, 1177 
diffusely 
decreased 
uptake, 
135 focal 
increased 
uptake and 
657 heteroge-
neous uptake

Indepen-
dent inter-
nal and 
external 
testing set

4 different 
ANNs

/ The proposed AI 
model has good 
accuracy in the 
classification of 
thyroid disease .

N.: number; FNAB: fine needle aspiration biopsy; DTC: differentiated thyroid cancer; MTC: medullary thyroid cancer; PRRT: peptide receptor 
radionuclide therapy; MTV: metabolic tumor volume; OS: overall survival; SUV: standardized uptake value; AI: artificial intelligence; ML: 
machine learning; RF: random forest; KNN: k nearest neighbor; DT: decision tree; LASSO: least absolute shrinkage and selection operator; 
18 F-FDG: 18 F-fluorodeoxyglucose; ANN: artificial neural network; HF: heterogeneity factor; GLCM: grey level co-occurrence matrix; IV: 
intensity variability; SVZ: site-zone variability; ZP: zone%; GLRLMRLNU: gray-level run-length matrix run length non-uniformity

Table 2 (continued) 

1 3

180



Reviews in Endocrine and Metabolic Disorders (2024) 25:175–186

3.2.2 Evaluation of citologically indeterminate thyroid 
nodules

Fine-needle aspiration biopsy is an accurate and essential 
method for the assessment of thyroid nodules, however in 
about 30% of the cases its results remain inconclusive or 
indeterminate. In this setting, Kim et al. [34] were the first 
to propose a paper to evaluate the predictive role of distribu-
tive 18 F-FDG heterogeneity to characterize such indetermi-
nate nodules. Even if not characterized by a proper texture 
analysis, this work revealed that this parameter could be an 
affordable predictor. More recently, Giovanella et al. [24] 
revealed that “Shape_Sphericity” and “GLCM_Autocorre-
lation” were non redundant predictors for malignancy and 
a combination of the two features had an AUC of 0.733. 
Moreover, the authors performed different analysis consid-
ering only patients with non-Hürthle cell lesions and all the 
cohort of the study. In the first group, the two aforemen-
tioned RF were independently associated with higher risk of 
malignancy, with an accuracy for the identification of thy-
roid cancer of 75%, and an effective predictive model with 
such parameters was built. When considering all the cohort, 
the accuracy of the RF was 72% and the association with 
malignancy and the good performances of the model were 
confirmed. Lastly, De Koster et al. [25] performed a similar 
study including both Hürtle and non-Hürtle cell nodules and 

benign nodules and “GLRLMRLNU” was reported as the fea-
ture with the best discriminating power with high specific-
ity, positive predictive value (PPV) and negative predictive 
value (NPV). Moreover, the authors proposed a random 
forest model including this feature and SUVmax with good 
performances in the classification of TI (area under the 
curve [AUC] 0.849). More recently, Ceriani et al. [23] per-
formed a similar analysis, including however the evaluation 
of the influence of different scanner on the extraction of RF. 
In this setting, only 54/107 RF were statistically reproduc-
ible between the two PET/CT scanner included in the study 
and “Shape_Sphericity” was reported as an affordable clas-
sificator. Furthermore, a predictive model with total lesion 
glycolysis (TLG), SUVmax and “Shape_Sphericity” was 
built by the authors. Similarly, Dondi et al. [26] evaluated 
the influence of different scanner on the extraction of RF 
and their ability to predict the final diagnosis of TI. In this 
setting, they reported that 9/42 RF had apparent correla-
tion with the scanner used for their extraction, with cross-
correlation maps that were quite similar between the two 
scanners. After bivariate analysis performed for single scan-
ners and considering both of them together, none of the RF 
obtained an optimal AUC above 0.8 and, in general, higher 
AUCs value were visible on a particular scanner. Generally 
speaking, GLCM-related features were the ones with best 
perfomances.

Table 3 Legend of the radomics features with best performances
Feature’s full name Feature’s abbreviation 

used in the original work
Feature’s meaning

Heterogeneity factor HF Variation in glucose metabolism over the entire volume consiedered
Contrast / Measures the difference of the grey value when going to the next voxel
Entropy / A measure for the grade of derangement
Grey Level Non Uniformity / Measures the similarity of grey level values
High Grey Level Zone Emphasis / Measures the distribution of high grey level values
Intensity Variation / Describes the variation of the intensity of different substructures (zones)
Short Run Emphasis / Describes the distribution of runs
Short Run High Level Grey Emphasis / Measures the joint distribution of small runs and low grey level values
Short Zone High Grey Level Emphasis / Measures the joint distribution of short zones and high grey level values
Short Zone Low Grey Level Emphasis / Measures the joint distribution of small zones and low grey level values
Skewness / Represents the symmetry of distribution of grey levels
Kurtosis / Is a measure of peakedness in the grey level distribution
Correlation grey level co-occurrence 
– related

GLCM – related, 
CorrelationGLCM, 
GLCM_Autocorrelation

The GLCM is a matrix that expresses how combinations of discretised 
grey levels of neighbouring pixels are distributed along one of the 
image directions

Intensity variability IV Measures the similarity in pixel intensities throughout the image
Size-zone variability SVZ Measures the similarity in zone sizes
Zone% ZP Measures the homogeneity
Complexity / Refers to the visual information content of a texture; a texture is consid-

ered complex if the information content
is high

Contrast / Measures the intensity difference between neighboring regions
Gray-level run-length matrix run length 
non-uniformity

GLRLMRLNU Assesses the distribution of runs over the run lengths

Shape_Sphericity Depicts the geometric properties of the lesion in terms of sphericity
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3.3.1 Classification of thyroid pathologies

First Ma et al. [27] developed a deep convolutional neu-
ral network (DCNN) in order to perform thyroid diagnosis 
based on SPECT images. This method revealed high per-
formances in the differential diagnosis of Grave’s disease, 
Hashimoto’s thyroiditis and subacute thyroiditis; better per-
formances compared to other method were demonstrated, 
with higher precision and less classification errors. Similar 
studies were also proposed by Qiao et al. [32] and Liu et 
al. [29] by proposing different DCNN models, revealing 
high performances for all of them, with AUCs ranging from 
0.850 to 0.996. In this setting, an interesting work by Currie 
et al. [30] revealed that ML artificial neural network (ANN) 
were able to improve the accuracy of the evaluation of thy-
roid scintigraphy as second readers systems when biochem-
istry results were available and moreover, deep learning 
(DL) algorithms were developed to improve the accuracy in 
the absence of biochemistry results.

A dual center study with similar purpose was performed 
by Yang et al. [33] revealing that a specific DCNN model 
had the best performances, also confirmed at the external 
validation. In this setting, the pattern of “heterogeneous 
uptake” was the most likely to be misclassified and at the 
external validation this insight was experienced for the 
“focal increased” uptake pattern.

3.3.2 Miscellaneous

An interesting study was performed by Kavitha et al. [28] 
that applied (DL) on post-ablation 131I whole body scans 
in order to assess the presence of metastatic lymph node of 
DTC. The proposed method revealed the best performances 
in comparison with the manual detection for both the evalu-
ation of metastatic lymph nodes and the recognition of 
thyroid remnant tissue. Interestingly, the performances of 
this method were similar with or without the application of 
post-processing and had better performances for the recog-
nition of metastatic lymph nodes than physicians at SPECT 
images.

Lastly, Guo et al. [31] evaluated the role of a DCNN 
model for the classification and diagnosis of residual thyroid 
tissue at SPECT images, reporting higher performances in 
comparison to other computer aided diagnosis models with 
statistically significant differences in particular for sensitiv-
ity and accuracy.

revealed that radiomics did not contribute to the additional 
differentiation of such nodules, compared to SUV-related 
parameters.

3.2.3 Thyroid cancer

PET/CT is an imaging tool that can be used for the assess-
ment of the biological behavior of thyroid cancer. Particu-
larly, 18 F-FDG PET can properly restage aggressive forms 
of DTC and medullary thyroid cancer (MTC) [35–36]. In 
this scenario Lapa et al. [18] investigated the prognostic 
value of textural parameters for the assessment of iodine 
refractory DTC or MTC treated with peptide receptor radio-
nuclide therapy (PRRT). The authors reported a significant 
correlation for several RF with progression free survival 
(PFS) and in particular “Grey level non uniformity” was 
reported as the feature with best performance (AUC 0.930) 
even if other RF had higher AUCs values. Regarding overall 
survival (OS), non-significant prognostic RF were reported. 
Interestingly, in a per-lesion based analysis, only the param-
eter “Entropy” was able to predict the progression of the 
lesions (AUC 0.730).

Nakajo et al. [20] evaluated the role of radiomics, 
together with classical SUV-related and volumetric param-
eters of primary DTC, in the prediction of the risk of recur-
rence after total thyroidectomy. They reported that patients 
with high risk of recurrence had higher “IV” and “SVZ” 
and lower “ZP” values compared to non-high risk subjects 
and moreover this observation was confirmed in the group 
of patients with higher metabolic tumor volume (MTV). 
Furthermore, the same parameters had high AUCs values 
in the prediction of patients with high risk of recurrence, 
findings confirmed also in the group of patients with high 
MTV. Lastly, the authors developed a scoring system for the 
discrimination between high and non-high risk with a high 
accuracy.

The pretherapeutic role of radiomics in MTC subjects 
treated with tyrosine kinase inhibitor was evaluated by Wer-
ner et al. [21], reporting that a high value of “Complexity” 
was associated with a reduced OS and that a high value of 
“Contrast” was correlated with lower PFS; these parameters 
were also confirmed as affordable prognosticators at multi-
variate analysis.

3.3 Scintigraphic studies

As previously underlined, ML was also applied to scin-
tigraphic studies in order to assess thyroid pathologies 
[27–33].
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Even if our data suggest a role for radiomics and ML 
in thyroid diseases, these new diagnostic approaches need 
to be inserted and compared with the current clinical prac-
tice. In the case of TI, the high amount of thyroid nodules, 
the first steps of their evaluation comprehend the measure-
ment of thyroid-stimulating hormone (TSH) levels and US 
evaluation of the thyroid and the cervical lymph nodes. In 
this setting, it is known that US is the gold standard for the 
assessment of thyroid nodules and is therefore mandatory to 
evaluate the presence of malignant features that will enable 
the use of fine needle aspiration (FNA), with an accuracy 
near 95% in determine the presence of malignancy [42–43]. 
In particular, hypoechoic echogenicity, solid composition, 
irregular margins, microcalcifications, height greater than 
width, extrathyroidal extension, disrupted rim calcification, 
and cervical lymph nodes with suspicious features are ele-
ments suspicious for the presence of malignancy. It is worth 
to underline the fact that our investigation was focused on 
TI discovered at 18 F-FDG PET/CT and in this scenario it 
has been reported that tracer uptake within a US confirmed 
thyroid nodule conveys an increased risk of thyroid cancer 
[44]. In these cases, radiomics could help in the identifica-
tion of nodules with higher risk.

As mentioned, in the case of indeterminate thyroid nod-
ules (approximately 25% of thyroid FNA samples are clas-
sified as Bethesda category 3 or 4), molecular tests can be 
used to assess the possible presence of malignancy, even 
if their role in guiding therapeutic decision-making is cur-
rently lacking. Moreover, the use of such tests should not 
be intended to replace other sources of information or clini-
cal judgment [44]. Therefore, even though a benign pat-
tern on molecular testing significantly decreases the risk of 
malignancy, US surveillance is still required [43]. Again, 
radiomics and ML could help to underline some features 
that, together with other information, could be useful to bet-
ter define the risk of such nodules.

Speaking about patients affected by DTC, total-body 
scintigraphy with 131I, neck US and serum thyrogloblulin 
measurement are the cornerstones for their clinical follow-
up, with high diagnostic accuracy and sensitivity, even in 
the case of thyroid remnants assessment [44]. However, we 
should underline that some patients could be classified in 
the “indeterminate” response group during follow-up and 
are therefore at risk of relapse [45]. In this setting, radiomics 
could give some important information able to better clas-
sify these patients and setup a specific follow-up.

Lastly, in the case of hyperthyrodidism, a clinical assess-
ment of the patients with subsequent US evaluation, serum 
assessment of specific antibodies and hormones and scinti-
graphic evaluation are able to reach a specific diagnosis with 
proved elevated diagnostic accuracy [2]. The possible role 
of ML and radiomics in this field seem therefore marginal 

4 Discussion

Radiomics is defined as the application of different tools for 
the extraction of quantitative imaging features that reflect 
the heterogeneity in an image [14, 37], while ML is the 
scientific discipline that focuses on how computers learn 
from data and identify some features that are believed to be 
important for making a final diagnosis [37‒39]. Generally 
speaking, their role for the assessment of thyroid diseases 
has been proved in several studies [18–24, 26–34]. Start-
ing with PET/CT imaging, one of the most explored field of 
application of these technologies was the assessment of TI. 
In this setting, the studies included in the review [19, 22–23, 
26] revealed the selection of some RF as predictor of the 
final diagnosis of such TIs, with good performances. More-
over, different predictive models with different RF were 
built and in general high performances for such differential 
diagnosis were demonstrated. Some attempts to compare 
different scanner for the assessment of these features and its 
influence on the final diagnosis were also performed.

Cytologically indeterminate thyroid nodules were also 
evaluated with radiomics in some studies [24–25, 34], that 
revealed how some RF were good predictors for the charac-
terization of these nodules even when performing different 
analysis for Hürthle or non-Hürthle cell lesions. Interest-
ingly, a single study [25] revealed that radiomics did not 
have a significant role in this field.

In this setting, it is important to mention that in clinical 
practice there is the option to perform molecular tests, that 
are useful to define the nature of such nodules. Furthermore, 
these tests allow the modification of the therapeutic recom-
mendation based on an individualized approach; it has been 
reported that they could have the ability to rule out the pres-
ence of malignancy with great specificity and PPV, avoiding 
therefore the need to perform unnecessary surgery [39–41].

The role of radiomics analysis on PET/CT was also 
explored in the field of thyroid carcinomas [18, 20–21] 
revealing that, in case of iodine refractory DTC or MTC 
under PRRT therapy, some RF were significantly corre-
lated with the prognosis [18]. Furthermore, some RF were 
reported as predictive of high risk of recurrence in DTC 
after total thyroid [20] and some of them were significant 
prognosticators for OS and PFS in MTC [21].

The role of ML has been also evaluated in scintigraphic 
imaging [27–33]. In this setting, most of the studies focused 
on the automatic classification of thyroid disease at scintig-
raphy applying different DCNN models, reporting in general 
high performances even in the case of dual center analysis 
[27, 32–33]. Lastly, good performances of ML models were 
also obtained when assessing the presence of metastatic 
lymph nodes and the classification of residual thyroid tissue 
in DTC patients [28, 31].
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