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Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most important causes of chronic liver disease in the world, 
it has been found that cardiovascular and renal risks and diseases are also highly prevalent in adults with NAFLD. 
Diagnosis and treatment of NAFLD face many challenges, although the medical science has been very developed. 
Eff iciency, accuracy and individualization are the main goals to be solved. Evaluation of the severity of NAFLD 
involves a variety of clinical parameters, how to optimize non-invasive evaluation methods is a necessary issue that 
needs to be discussed in this field. Artificial intelligence (AI) has become increasingly widespread in healthcare 
applications, and it has been also brought many new insights into better analyzing chronic liver disease, including 
NAFLD. This paper reviewed AI related researches in NAFLD field published recently, summarized diagnostic 
models based on electronic health record and lab test, ultrasound and radio imaging, and liver histopathological 
data, described the application of therapeutic models in personalized lifestyle guidance and the development of 
drugs for NAFLD. In addition, we also analyzed present AI models in distinguishing healthy VS NAFLD/NASH, 
and fibrosis VS non-fibrosis in the evaluation of NAFLD progression. We hope to provide alternative directions 
for the future research.

Keywords  Non-alcoholic fatty liver disease (NAFLD) · Non-alcoholic steatohepatitis (NASH) · Metabolic associated fatty 
liver disease (MAFLD) · Artificial intelligence (AI) · Machine learning (ML)

Abbreviations
AI	� artificial intelligence
ML	� machine learning
DL	� deep learning
NAFLD	� non-alcoholic fatty liver disease
MAFLD	� metabolic associated fatty liver disease
NAFL	� nonalcoholic fatty liver

NASH	� nonalcoholic steatohepatitis
ALT	� alanine aminotransferase
AST	� aspartate aminotransferase
GGT​	� gamma-glutamyl transpeptidase
TG	� triglycerides
WBC	� white blood cell count
PLT	� platelet
HCC	� hepatocellular carcinoma
BP	� blood pressure
SS	� simple steatosis
BN	� bayesian network
HNB	� hidden naïve Bayes
CNN	� convolutional neural networks
kNN	� k-nearest neighbors
GLCM	� gray level cooccurrence matrix
SVM	� support vector machine
FDM	� fuzzy data-mining
CPG	� clinical practice guidelines
AdaBoost	� adaptive boosting
RF	� random forest
GB	� gradient boosting
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EHR	� electronic health records
NLP	� natural language processing
ALARM	� automatic liver attenuation ROI-based 

measurement
AUROC	� area under the receiver-operator 

characteristics
FXR	� Farnesoid X Receptor
hFXR	� human FXR
ASCVD	� arteriosclerotic cardiovascular disease
SPPARMs	� selective PPAR-γ modulators
SGLT-2is	� sodium-glucose cotransporter 2 inhibitors
DPP-4is	� dipeptidyl peptidase-4 inhibitors
HSI	� hepatic steatosis index
BMI	� body mass index
FLI	� fatty liver index
WC	� waist circumference
FPG	� fasting plasma glucose
F(0-4)	� Fibrosis stage (0-4)
NAS	� non-alcoholic fatty liver disease activity 

score
HDL-C	� high-density lipoprotein cholesterol
LDL-C	� low-density lipoprotein cholesterol
MCDD	� methionine choline deficient diet
HbA1c	� glycated hemoglobin
HCD	� high cholesterol and cholate diet
HFD	� high-fat diet
aP	� alkaline phosphatase
HOMA-IR	� homeostasis model assessment-estimated 

insulin resistance
LR	� logistic regression
DT	� decision trees
AODE	� aggregating one-dependence estimators
CDSS	� clinical decision support system
ICD	� international classification of diseases
EMR	� electronic medical record
QUS	� quantitative ultrasound
SWE	� shear wave elastography
RFE	� recursive feature elimination
HT	� hypertension
ANN	� artificial neural networks
CAD	� computer-aided diagnosis
ROI	� region of interest
CT	� computed tomography
DCNN	� deep convolutional neural network
DM	� diabetes mellitus
SBVS	� Structure-based Virtual Screening
MetS	� Metabolic Syndrome
CVD	� cardiovascular disease
GLP-1RA	� glucagon-like peptide-1 receptor agonist
MI	� myocardial infarction
XAI	� Explainable Artificial Intelligence

1  Introduction

Non-alcoholic Fatty Liver Disease (NAFLD) has become 
one of the most important causes of chronic liver diseases 
in the world. Because the pathogenesis of NAFLD is 
closely related to obesity, hypertension, hyperlipidemia, 
hyperglycemia and the other metabolic factors, it has  
been proposed that NAFLD may be regarded as a hepatic 
manifestation of Metabolic Syndrome (MetS), and should 
be renamed G as Metabolic Associated Fatty Liver Disease 
(MAFLD) [1, 2]. It was reported that from 1999 to 2016, 
cardiovascular and renal risks and diseases have become 
highly prevalent in adults with MAFLD [3]. Patients 
with NASH or advanced fibrosis are at an increased risk 
of developing arteriosclerotic cardiovascular disease 
(ASCVD) compared with non-NAFLD controls or sub-
jects with NAFL, independent of conventional metabolic 
risk factors for cardiovascular disease (CVD). Histologi-
cal information on NAFLD may be helpful to promote 
our understanding of extrahepatic complications, such as 
ASCVD, resulting from NAFLD progression [4, 5].The 
correlation between NAFLD and MetS showed that both 
NAFLD and NASH increased the incidence of cardiovas-
cular events. Therefore, NASH should be considered in 
cardiovascular risk assessment.

The course of NAFLD includes Simple Steatosis (SS), 
Nonalcoholic Steatohepatitis (NASH), fatty liver cirrhosis 
and Hepatocellular Carcinoma (HCC) that may develop 
further [6]. Up to now, liver biopsy is still the “gold stand-
ard” for the diagnosis of NAFLD, but biopsy is invasive 
and may result in serious complications, such as pain, 
infection, and bleeding, and it cannot be carried out in all 
suspected patients. An ultrasound examination is nonin-
vasive, convenient, and widely used in clinical screening 
of NAFLD, but the diagnosis results are affected by too 
many factors, especially the subjectivity of the examiner.

Genetic factors, dyslipidaemia and alteration of glu-
cose metabolism have been proven to be associated with 
NAFLD [7, 8].Some studies identify sets of lipids as 
predictive biomarkers of NAFLD progression by useing 
machine learning(ML) [9]. A variety of comprehensive 
evaluation indexes have been used in the assessment of 
NAFLD. For example, Hepatic Steatosis Index (HSI) [10] 
is calculated according to alanine aminotransferase (ALT) 
, aspartate aminotransferase (AST) , Body Mass Index 
(BMI), gender and diabetes history. Fatty Liver Index 
(FLI) [11] based on triglyceride (TG) , BMI, gamma-
glutamyl transpeptidase (GGT) and Waist Circumference 
(WC). Chinese ZJU index [12] calculated by BMI, Fasting 
Plasma Glucose (FPG), TG, ALT and AST, etc. Broadly 
speaking, these indexes are models belong to the early 
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elementary artificial intelligence. Recently, some stud-
ies have included biological markers such as adiponectin 
and Caspase-cleaved cytokeratin 18 fragment (M30) into 
evaluation models to predict NAFLD activity score (NAS). 
The model was not only able to monitor disease progres-
sion and weight change but also can distinguish NASH 
from NAFLD with an area under the receiver-operator 
characteristics (AUROC) of 0.70-0.73 [13].However, dif-
ferent algorithms and data sources from particular popula-
tions certainly affected the applicability and reliability of 
the model. Any simple formula or limited index is limited 
in evaluating the disease comprehensively, the predicting 
parameters and optimal algorithms to predict NAFLD are 
still heterogenous and varied across different studies [14]. 
The development of “big data” network and the applica-
tion of AI algorithms provide new methods and possibili-
ties for the better understanding of NAFLD. The advantage 
of AI over traditional statistical modelling is that it can 
recognize unique patterns and incorporate multiple factors 
to create predictive models, risk stratification [15] and out-
comes, it is particularly suited for use in chronic diseases 
given the heterogeneity, complex nature, and overlapping 
confounding factors.

2 � Overview of AI and ML in NAFLD research

AI is poised to influence nearly every aspect of the human 
conditions, and they are the collection of data-analytical 
techniques, aiming at building predictive models from multi-
dimensional data sets. AI is a general term in which com-
puter programs could think and behave like humans. After 
the introduction of ML, AI is the most searched term. Some 
describe ML as the primary AI application, while others 
describe it as a subset of AI. ML generates a mathematical 
algorithm from the training data set and uses it to predict 
results or make decisions. Later, with the development of 
neural networks, machines could classify and organize the 
input data like the human brain. The term "deep learning 
(DL)" is proposed based on multi-layer neural networks that 
can be applied to large datasets, which is suitable for the 
detection, classification and segmentation of biomedical 
images. DL is a subset of ML and ML is a subset of AI, the 
order of evolution of AI-ML-DL is showen in Fig. 1 [16, 17].

According to the model of the training methods, ML can 
be divided into supervised learning, unsupervised learn-
ing, semi-supervised learning, and reinforcement learn-
ing (Fig. 2). Supervised learning is suitable for data with 
labels and it deals with annotated data with input–output 
pairs and common techniques including linear regression, 
logistic regression(LR), decision trees(DT), k-nearest 
neighbors(kNN), support vector machine (SVM), ran-
dom forest (RF), Naive Bayes classification, and gradient 

boosting(GB) [18, 19]. Unsupervised learning works with 
data without a label and needs to classify the data accord-
ing to its own structural characteristics. Semi-supervised 
learning is an amalgamation of supervised and unsuper-
vised ML that can analyse a large amount of unclassified 
data whilst augmenting its pattern recognitionabilities 
with a small amount of preclassified data. Moreover, it 
can increase the speedand accuracy of information extrac-
tion fromlarge data sets [12]. What makes reinforcement 
learning different from other algorithms is that there is no 
supervisor and only one reward signal, it can learn interac-
tive situations with the purpose of maximizing the reward 
signal. At present, supervised learning [20–29] and semi-
supervised learning [30] are the most widely applied in 
medicine, this is also determined by the source and char-
acteristics of medical data .

According to the purpose of modeling, the models can 
be divided into diagnostic models, therapeutic models and 
prognostic models. The diagnostic models, also can be 
called as assessment models. These assessment models 
mainly complete the diagnosis tasks on the basis of large 
data set, and compare with the evidence-based medicine 
data, continuously optimize their functions according to the 
degree of task completion, so as to achieve more accurate 
diagnosis effects, and they have important values for non-
invasive assessment of NAFLD. It has been also increas-
ingly applied in the detection and prediction of NAFLD and 
fibrosis outcomes in recent years.

However, the choice of algorithms may affect the final 
judgment. A study evaluated different algorithms including 
LR, ridge regression, AdaBoost and DT models in detect-
ing NAFLD from the general population based on 23 rou-
tine clinical and laboratory parameters. The result showed 
that Ridge score was the best performing algorithm with 
AUROC of 0.87 (95% CI 0.83-0.90) and 0.88 (0.84-0.91) 
in the training and validation groups respectively [31]. 
With the use of large-scale AI training cohorts for model 
development, the prediction on validation cohorts is prob-
ably more accurate compared with traditional biostatistical 
methods [22].

artificial intelligence (AI)

machine learning (ML)

deep learning (DL)

Fig. 1   Evolution of artificial intelligence (AI)-machine learning (ML)-
deep learning (DL)
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The therapeutic model focuses on new drug development, 
personalized lifestyle guidance and follow-up of therapeu-
tic effects. It helps to develop personalized diets, to accel-
erate new drug researches and to improve the therapeutic 
schedules. At present, clinical medicine, basic biomedical 
research, and new health-related data sources (such as wear-
able devices with biosensors) generate a large amount of 
biomedical and health-related data, these data go beyond 
the limits of human analysis and need machines to help. 
Therefore, AI is providing NAFLD patients with a paradigm 
shift to precision medical practice.

In addition, the development of omics techniques in 
recent years may be used to further investigate the patho-
physiological mechanisms of NAFLD. genomics, epigenom-
ics, transcriptomics, metabolomics/lipidomics and glycom-
ics in relation to the pathophysiology provided invaluable 
potential for the diagnosis and treatment of NAFLD. AI is 
a data-driven and hypothesis-free approach, which better 
incorporates clinical factors to detect hidden patterns for 
disease detection/prediction. The accurate analysis of large 
data sets from omics is an important advantage of artificial 
intelligence in NAFLD field.

3 � AI application in NAFLD diagnosis

According to the data sources analyzed by AI, studies 
applied to NAFLD diagnosis can be classified as follows: 
electronic health record (EHR) data and lab test based, 

ultrasound imaging data based, radio imaging data based 
and liver histopathological data based.

3.1 � Diagnostic models based on electronic health 
record data and lab test

A common goal of AI algorithm is to develop a predic-
tive model based on statistical associations among features 
from a given data set. With the development of medical 
diagnosis technology, the EHR system with intelligent diag-
nostic function has become one of the important scientific 
issues of science for medical information. The EHR sys-
tem contains structured data (such as diagnostic codes) and 
unstructured data (clinical documents including lab test), by 
analyzing these data with AI algorithms, the patients with 
NAFLD/NASH can be screened and the risks of disease 
progression also can be derived. Presently, AI algorithms 
used in EHR analysis include Natural Language Processing 
(NLP)-based approaches [60], text search-based approaches 
and International Classification of Diseases (ICD)-based 
approaches [63].

NAFLD progresses insidiously, and the presence of fibro-
sis is hard to spot, high-throughput identification of NAFLD 
with “electronic” follow-up through the EHR, could aid in 
understanding the risk factors for progression to cirrhosis. 
Van Vleck et al. [32] assessed above approaches to identify 
NAFLD within the EHR data compared to manual valida-
tion by clinicians in a large, multiethnic cohort. Results sug-
gested that NLP approaches had the best overall performance 

linear regression
LR
DT
kNN
SVM
RF
GB
naive Bayes classification

machine learning
(ML)

training
methods purpose

therapeutic
models

diagnostic
models

reinforcement
learning

semi-supervised
learning

unsupervised
learning

supervised
learning

personalized
lifestyle
guidance

therapeutic
drugs
development

• NLP
• LR
• DT
• RF
• XG-Boost
• RR
• kNN
• RFE

electronic health
record data and
lab test

ultrasound
imaging data

radio imaging
data

liver
histopathological
data

• CNN
• RF
• SVM
• ANN

• DCNN • SVM
• RF
• RFE
• KNN
• LR

• SVM
• BLR
• FDM
• ANN

• GB• SVM

Fig. 2   Classification and common algorithms of ML
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compared to ICD and text search-based approaches, 
although there were numerous patients identified by ICD 
that were missed by NLP.

While with medical practice becomes more specialized 
and patient care is provided by more physicians, the oppor-
tunities for information loss at patient handoffs increase, and 
the analysis of progression to NASH was complicated by 
the fact that due to the complexity of diagnosing NASH, a 
firm diagnosis is often not made, the application of NLP still 
needs to be further improved. Koleck et al. [33] reviewed the 
literatures on the use of NLP to process or analyze symptom 
information documented in EHR free-text narratives. They 
found that NLP tools, classification methods, and manually 
curated rule-based processing are being used to extract infor-
mation from EHR free-text narratives written by a variety 
of healthcare providers on a wide range of symptoms across 
diverse clinical specialties. Clear statement of the symptoms 
being evaluated as part of the study, a detailed description 
of the clinical population from which symptom information 
was extracted and analyzed, open sharing of user-developed 
symptom-related NLP algorithms or pipelines and vocabu-
laries, and the establishment of formal reporting standards 
for investigations using NLP methodologies would be of 
help.

3.2 � Assessment models based on ultrasound 
imaging data

Ultrasonography is a well-established and cost-effective 
imaging technique for the diagnosis of hepatic steatosis, 
especially for screening a large population at the risk of 
NAFLD, while it has shortcomings, including lower accu-
racy in mild steatosis confirmation, operator-dependent, and 
rather qualitative. Quantitative Ultrasound (QUS) imaging 
methods, including elastography, echogenicity analysis, and 
speckle statistical modeling can be obtained from single 
ultrasound radio-frequency data acquisition. Because these 
ultrasound imaging methods provide complementary quan-
titative tissue information, the characteristics of the liver can 
be obtained from their combination. The ML model is the 
main method to realize this function, up to now, ML models 
derived from ultrasound examination have been used in car-
diovascular, nervous system diseases, and chronic hepatitis 
B [34], but there are very few reports on the application of 
ultrasound-based ML models in diagnosis of NAFLD. Tang 
et al. [35] established a ML model based on QUS parameters 
by using histopathology scoring as the reference standard to 
improve the classification of steatohepatitis with shear wave 
elastography (SWE) in rats. Their results proven that QUS 
parameters improved the classification accuracy of steato-
hepatitis, liver steatosis, inflammation, and fibrosis com-
pared with the shear wave elastography alone. This attempt 

provided a basis for relevant researches in human beings. 
Wu et al. developed a RF model to predict ultrasonographic 
fatty liver disease by using age, gender, systolic and diastolic 
blood pressure, abdominal girth, glucose, TG, HDL, AST, 
and ALT, which outperformed the Naïve Bayes, artificial 
neural networks (ANN), and LR model with an AUROC 
of 0.93 [36].It is worth noting that the ultrasound data have 
racial differences, although many ultrasound images have 
been accumulated and are now available and ready for the 
preparation of a database for the development of computer-
aided ultrasound diagnosis with DL technology [37]. The 
establishment of the model should also consider individual 
factors, such as races and geographic regions.

3.3 � Assessment model based on radio imaging data

The use of ML has been increasing rapidly in the medi-
cal  imaging  field, including Computer-Aided Diagnosis 
(CAD), radiomics, and medical image analysis. The com-
bination of imaging and artificial intelligence improves the 
accuracy of liver fibrosis staging. The deep learning radiol-
ogy of shear wave elastography significantly improved the 
diagnostic performance of evaluating liver fibrosis [38]. In 
addition, as a tool of radiology, derivative parameters of 
image-based texture analysis combined with ML of non-
contrast-enhanced T1-weighted magnetic resonance images 
can be as accurate as magnetic resonance elastography in the 
quantification of liver fibrosis (82%) [39].Manual tracking of 
the Region of Interest (ROI) of the liver is a standard method 
to measure liver attenuation on Computed Tomography (CT) 
to diagnose NAFLD. However, manual tracking is resource 
intensive. To address these limitations and expand the effec-
tiveness of quantitative CT measurement of hepatic steato-
sis, Huo et al. [40] proposed an Automatic Liver Attenuation 
ROI-based Measurement (ALARM) method for automated 
liver attenuation estimation. It consists of two major stages: 
(a) deep convolutional neural network (DCNN)-based liver 
segmentation and (b) automated ROI extraction. The com-
bination of DCNN and morphological operation can achieve 
"excellent" consistency with manual estimation of fatty liver 
detection. The whole pipeline is implemented as a docker 
container, which enables users to complete liver attenua-
tion assessments within 5 minutes of each CT scan. Graffy 
et al. [41] developed a deep learning-based automated liver 
fat quantification tool with non-enhanced CT for determin-
ing the prevalence of steatosis in a large screening cohort. 
By using three-dimensional convolutional neural networks, 
including a sub cohort with follow-up scans, the automated 
volume-based liver attenuation, including conversion to CT 
fat fraction was analyzed and compared with manual measure-
ment in a large subset of scans. The results showed that this 
fully automated CT-based liver fat quantification tool could 
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be used for population-based assessment of liver steatosis 
and NAFLD, and the objective data matched well with the 
manual measurement results. By utilizing NLP, many stud-
ies developed algorithms which were capable of "reading" 
full-text radiology reports to accurately identify the presence 
of fatty liver disease [42]. Abdominal ultrasound, computer-
ized tomography, and magnetic resonance imaging reports 
retrieved from random samples were analyzed by physicians 
and expert radiologists, the radiographic fatty liver disease 
could be determined by manual review. These algorithms 
could be used to rapidly screen patient records to establish a 
large cohort to facilitate epidemiological and clinical studies.

It can be seen from the above that, supervised learning 
played an important role in collecting and analyzing radio 
imaging data, therefore, radiologists have to face with the 
difficult tasks of annotating these large data sets. In addition, 
data sources and governance policies need to be developed 
to address the concerns of institutional review boards, as 
well as broader ethical issues around the use of large patient 
data sets.

3.4 � Assessment models based on liver 
histopathological data

AI software may identify histological features of NAFLD 
with high levels of interobserver and intraobserver agree-
ment (0.95 to 0.99) [43]. An automatic assessment of histo-
logical characteristics of NAFLD may reduce human vari-
ability and provide continuous, rather than semi-quantitative 
assessment of liver damages. However, the limited avail-
ability of experienced liver pathologists, the variability in 
pathologists’ agreement on detecting and quantifying vari-
ous histological features of liver diseases, and the limited 
use of semi-quantitative manual grading scores hindered the 
application of AI in histopathological evaluation.

Macro-steatosis is the cardinal lesion of NAFLD, and it is 
commonly used as a major endpoint in therapeutic clinical 
trials in human NAFLD [32, 34].The pathological assess-
ment of NAFLD consists of four key features: steatosis, 
lobular inflammation, fibrosis, and hepatocyte ballooning. 
Several studies aimed to automatically quantify the NAFLD 
score by ML algorithms [45]. Some aim to predict the sever-
ity of liver fibrosis [46]. In view of this, many attempts have 
been made in the automatic histopathological classification 
of fatty liver in rodents and humans. Deepak Sethunath et al. 
[33] created classifiers to detect macro- and micro-steatosis 
by using experts’ annotations, supervised ML and image 
processing techniques. For macro-steatosis prediction, the 
model’s precision, sensitivity, and AUROC were 94.2%, 
95%, 99.1% respectively. By using similar approaches, Scott 
Vanderbeck et al. [20, 47] developed an automated classifier, 
including naïve Bayes, LR, DT, and neural networks, which 

can detect and quantify steatosis of the liver in humans. The 
classification algorithm performs with 89 % overall accu-
racy. It identified macro-steatosis, bile ducts, portal veins 
and sinusoids with high precision and recall (≥82%). The 
above tentative work demonstrated that the automatic quan-
tification of cardinal NAFLD histologic lesions is feasible 
and offers promise for further development of automatic 
quantification as a potential aid to pathologists to evaluate 
NAFLD biopsies in clinical practices and clinical trials.

3.5 � Assessment models on eveluation of NAFLD, 
NASH and fibrosis

From what has been discussed above, the diagnosis of 
NAFLD focused on distinguishing healthy VS NAFLD/
NASH [20, 22–26, 31, 35, 38, 48–51], NAFL VS NASH [32, 
52, 53] and fibrosis VS non-fibrosis [21, 27, 54]. We sum-
marized literatures according to “what is being predicted” 
and listed them in detail. (See Table 1)

In fact, it is not easy to accurately distinguish between 
NAFLD and healthy by using regular imaging and laboratory 
examination, the presence of NAFLD may change dynami-
cally in one case. Those suspected patients with NAFLD on 
imaging are often not acknowledged in subsequent clinical 
documentation. Many of such patients are later found to have 
more advanced liver diseases. SVM, LR and DT algorithms 
are mainly used in ML research for NAFLD diagnosis, most of 
them were retrospective studies, and no biopsy was included. 
The parameters involved were mainly derived from EMR data, 
morphology features and lab tests. The specificity ranges from 
60% to 92%,Ridge score was reported to be more advantageous.

NASH indicates the progression and deterioration of 
NAFLD, which can only be confirmed by biopsy, so it is of 
great value to explore the role of non-invasive model of ML 
in the assessment of NASH. This kind of research included 
mice and human studies, almost always use biopsy as the 
standard, the main purpose is to investigate the predictive 
accuracy of NASH, NAFL or health status and quantitatively 
interpret biopsy specimens of patients with NAFLD. The 
highest specificity was 99% [51]. It should be mentioned 
that NLP-based approaches facilitated analyses of knowl-
edge flow among physicians and enabled the identification 
of breakdowns where the key information was lost that could 
have slowed and prevented the progression of early NAFLD 
to NASH or cirrhosis. Koleck et al. [33] synthesized lit-
eratures on the use of NLP in order to process or analyze 
symptom information documented in EHR free-text narra-
tives. They suggested that future NLP studies should focus 
on the investigation of symptoms, and symptom documen-
tation in EHR free-text narratives should strive to examine 
the patients’ characteristics and make symptom-related NLP 
algorithms or pipelines and vocabularies openly available.
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There are not many studies on fibrosis. Assessment mod-
els on evaluation of NAFLD, NASH and fibrosis were listed 
in the Table 1. Model studies related to NAFLD and liver 
injury, Diabetes Mellitus (DM), CVD and hepatocellular 
carcinoma (HCC) are also listed, maybe future research 
should focus more on these aspects.

4 � AI application in NAFLD treatment

4.1 � Therapeutic models for personalized lifestyle 
guidance

It has been suggested that NAFLD should be listed as one of 
the complications of DM since NAFLD has been renamed 
as MAFLD, and more attention has been paid to the thera-
pies related to diet and glycemic control in the patients with 
MAFLD. However, the composition of healthy diet and per-
sonalized glycemic control have not been clearly established 
yet.

A new approach called "nutritional geometry" consid-
ers the importance of integrating nutrition, animals, and 
the environment. The goal of this approach is to combine 
nutrients and foods in a model to understand how food 
ingredients interact to regulate dietary characteristics that 
affect health and diseases. The AI algorithms may create 
a personalized diet for patients, which can provide person-
alized nutrition consultation to prevent and treat NAFLD 
[55]. Zeevi et al. [56] measured the postprandial glucose 
responses to 46.898 foods in 800 individuals and found a 
great variability in responses to the same foods. Based on 
these data, they designed a ML algorithm-GB regression, 
a data-driven unbiased approach, which integrates blood 
parameters, dietary habits, anthropometrics, physical activ-
ity, and gut microbiota to predict personalized postprandial 
glycemic response in real-life meals. Then, they validated 
these predictions in an independent 100-person cohort. The 
results showed that the blinded randomized controlled diet 
intervention based on this algorithm resulted in a significant 
decrease in postprandial response and continuous alterations 
in intestinal flora configuration, which meant that personal-
ized diet could successfully improve postprandial hypergly-
cemia and its metabolic consequences.

There are also ideas that collect dietary and microbiome 
data from many individuals [57], derive AI models of how 
diet affects the composition of the microbiome, and then 
validate the models with controlled dietary interventions.

The contribution of the above-mentioned AI algorithms 
in personalized diet guidance is helpful to control the devel-
opment of NAFLD. A few studies are using smart phones to 
collect clinical images to assist in the diagnosis of hepatic 
steatosis [58]. In the future, patients may wear devices 
to record what they eat, and then the information will be 

processed through DL and integrated by AI, combined with 
a variety of data (physical activity, stress level, sleep, micro-
biome, physiological constants, medications and genome) to 
provide individualized dietary recommendation and nutri-
tional counseling to prevent and treat NAFLD.

4.2 � AI models related to the development 
of therapeutic drugs for NAFLD

One way to reduce costs is to use genetic data to inform 
drug design. Genetic information helps researchers to dem-
onstrate that drug targets are relevant to the disease from 
the start, and drugs with this evidence are twice as likely to 
be approved as those without [59]. By using AI techniques, 
we can further optimize drug discovery. If we start with a 
‘deep’ molecular profile that includes data about the micro-
biome and genome, as well as information about metabo-
lites and proteins (the metabolome and proteome), coupled 
with physiological measurements, we may be able, in some 
cases, to skip animal testing and move straight to human 
trials [57]. Various ML systems and AI platforms had been 
used to search for immuno-oncology drugs and metabolic-
disease therapies. It is predicted that AI and ML will create 
an era of faster, cheaper, and more effective drug discovery.

While, there is no effective drug to control the progres-
sion of MAFLD in the clinic up to now. Farnesoid X Recep-
tor (FXR) agonists can reverse deregulated bile acid metabo-
lism, and thus, they are potential therapeutics to prevent and 
treat NAFLD [44]. Unfortunately, Structure-based Virtual 
Screening (SBVS) that can speed up drug discovery has 
rarely been reported with success for FXR, which was likely 
hindered by the failure in addressing protein flexibility. Xia 
et al. [61] devised human FXR (hFXR)-specific ensemble 
learning models based on pose filters from 24 agonist-bound 
hFXR crystal structures and coupled them to traditional 
SBVS approaches of the FRED docking plus Chemgauss 4 
scoring function, as a result, they provided a promising lead 
compound for further development.

Newer antidiabetic drugs, such as selective PPAR-γ 
modulators (SPPARMs), glucagon-like peptide-1 receptor 
agonist (GLP-1RA) and sodium-glucose cotransporter 2 
inhibitors (SGLT-2is) were recommended in T2DM, might 
contribute substantially to NAFLD/NASH amelioration, 
possibly reducing not only liver-specific but also cardiovas-
cular morbidity. Tomohide Yamada et al. compared the risk 
of myocardial infarction (MI) among SGLT-2is, GLP-1RAs 
and dipeptidyl peptidase-4 inhibitors (DPP-4is) and devel-
oped a machine learning model for predicting MI in patients 
without prior heart disease. After developing a machine 
learning model to predict MI, proportional hazards analysis 
of MI incidence was conducted using the risk obtained with 
this model and the drug classes as explanatory variables. 
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Receiver operating characteristics analysis showed higher 
precision of machine learning over logistic regression analy-
sis. Finally, the machine learning analysis suggested the risk 
of MI was 37% lower in type 2 diabetes patients without 
prior MI using GLP-1RAs versus DPP-4is, while the risk 
was 19% lower for SGLT-2is versus DPP-4is. While there 
have been no studies using machine learning methods to 
evaluate the efficacy of these drugs in NAFLD to date [62].

5 � Summary

Diagnosis and treatment of NAFLD face many challenges 
although the medical science has been very developed. Limi-
tations of AI technology include the lack of high-quality 
data sets for ML development. Most of the evidence used to 
develop ML algorithm comes from preclinical research. Effi-
ciency, accuracy, and individualization are the main goals 
to be solved.

In addtion, the ambiguity of AI made it problematic for 
machine learning systems to be adopted in a sensitive yet 
critical domains, such as healthcare. As a result, scientific 
interest in the field of Explainable Artificial Intelligence 
(XAI), a field that is concerned with the development of new 
methods that explain and interpret machine learning mod-
els, has been tremendously reignited over recent years [64]. 
However, AI provides a new way for disease understanding 
by extracting the characters of complex data and combining 
them with the mode of “automatic learning”, which will 
contribute to an increase in diagnostic quality, facilitate the 
development of remote medicine, and reduce the costs in the 
national health care. From this point of view, it may have a 
large enough potential to induce a paradigm shift in the han-
dling of NAFLD. Certainly, ML itself is far from fulfilling 
its potential in NAFLD researches, and we have a long way 
to go to uncover the networked intricacies and complexities 
of living systems. Accumulation of subjective and objective 
data and long-term follow-up verification are still the most 
basic, individual factors, which should be considered in the 
application of AI model, XAI for NAFLD studies is also 
need to be explored.
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