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Abstract
While obesity is defined as an excessive fat accumulation conferring a risk to metabolic health, increased adipose mass by 
itself does not fully explain obesity’s propensity to promote metabolic alterations. Adipose tissue regulates multiple pro-
cesses critical for energy homeostasis and its dysfunction favors the development and perpetuation of metabolic diseases. 
Obesity drives inflammatory leucocyte infiltration in adipose tissue and fibrotic transformation of the fat depots. Both fea-
tures associate with metabolic alterations such as impaired glucose control and resistance to fat mass loss. In this context, 
adipose progenitors, an heterogenous resident population of mesenchymal stromal cells, display functions important to shape 
healthy or unhealthy adipose tissue expansion. We, here, outline the current understanding of adipose progenitor biology in 
the context of obesity-induced adipose tissue remodeling.
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1 Introduction

Adipose tissue (AT) regulates numerous physiological pro-
cesses and its dysfunction favors development and perpetu-
ation of metabolic diseases. As a consequence, AT has been 
extensively studied since acting on this tissue may provide 
novel therapeutic opportunities. Two morphologically and 
functionally different types of AT can be distinguished: 
brown/beige adipose tissue and white adipose tissue (WAT). 
The brown adipose tissue (BAT) is found subcutaneously 
in specific locations mostly in newborns and in smaller 
amounts in adults. Moreover, BAT primarily functions as 
a thermogenic organ owing to the presence of multilocu-
lar adipocytes enriched with mitochondria and uncoupling 
protein 1 (UCP1) [1–3]. The overall morphology of beige 

adipocytes is similar to the brown adipocytes but beige 
cells infiltrate diffuse areas within the WAT depot. Beige 
adipogenesis, considered as a healthy remodeling process in 
the AT, significantly increases in response to thermogenic 
stimuli such as decreased temperature [4–6], β3-adrenergic 
receptor activation [7–9] or response to some metabolites 
[10, 11]. With obesity development, both brown and beige 
fat depots are reduced [12–14].

By contrast to brown/beige adipocytes, the white adipo-
cytes display low mitochondrial abundance, are unilocular 
and function in storing calories from triglycerides rather 
than dissipating energy in the form of heat. In rodents or 
in humans, WAT displays functional differences according 
to their subcutaneous or visceral location. With obesity, 
both depots can expand and a high deposition of visceral 
WAT is generally associated with increased risk of devel-
oping cardiometabolic diseases. On the contrary predomi-
nant subcutaneous WAT storage may reduce the risk for 
comorbidities in some individuals [15–17]. Sex hormones 
and genetic determinants both influence fat distribution 
[18, 19]. Despite major progresses in physio-pathological 
understanding in this field, how depot-specific expansion 
of fat mass is controlled still remains elusive. In addition to 
adipose tissue growth, obesity is a chronic condition associ-
ated with AT histological alterations, depicting a maladap-
tive expansion of AT. This pathological remodeling includes 
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adipocyte hypertrophy, inflammatory leucocyte infiltration 
and perturbed immunity, and eventually fibrosis deposition. 
These features generally associate with altered AT functions 
suggested to link obesity to obesity-related metabolic dys-
regulation [20]. By contrast, healthy adipose tissue growth, 
uncoupled to these pathological features, can dampen the 
consequences of obesity on whole-body metabolism [21, 
22]. In this context, we here review the current understand-
ing of the progenitor contributions in shaping healthy or 
unhealthy AT expansion during obesity.

2  Obesity induces fibrosis in white adipose 
tissue

WAT has the unique capacity to massively expand or shrink 
in response to nutritional or even temperature challenges. 
This remarkable plasticity relies on a dynamic and ver-
satile metabolism which is responsive to energy demand. 
Overfeeding without adapted increased energy expenditure 
results in fat accretion, a physiological response necessary 
to prevent the toxic lipid deposition in other organs, such as 
in the skeletal muscle, liver or the heart. This remarkable 
ability is closely associated with preserved systemic metabo-
lism. As a consequence, the lack of AT exerts important 
deleterious effects as exemplified in lipodystrophic condi-
tion. Lipodystrophy is indeed an extreme form of adipose 
tissue depletion that associates with ectopic lipid deposition 
leading to fatty liver and lipid accumulation in the muscle 
which result in severe insulin resistance. Interestingly, this 
phenomenon can be reversed with AT implantation in ani-
mal models (see below and [23, 24]).

In chronic obesity, whereas the AT expands, it is gener-
ally coupled to pathological remodeling of AT with local 
inflammation and subsequently fibrosis deposition in the 
latter stages of the disease. These processes result in AT 
dysfunctions. The local inflammation relies on the infiltra-
tion of leucocytes (CD45 expressing cells,  CD45+) in which 
macrophages represent a large population. Local hypoxia 
due to suboptimal angiogenesis was proposed as an originat-
ing event [25–29]. AT macrophages accumulation coincides 
with the observation of adipocytes surrounding by mac-
rophages (named crown like structure, CLS) on histologi-
cal Sects. [30]. Adipocytes engaged in CLS display loss of 
perilipin expression (lipid droplet protein) and ultrastructural 
features of stressed cells suggestive of dying adipocytes [31, 
32]. In mice, macrophages critically control AT inflamma-
tion and favor the onset of insulin resistance, however the 
kinetic of events in human and their relationships with meta-
bolic deterioration still need understanding [33–36]. Inflam-
matory pathway activated by the local production of many 
cytokines including TNFα, IL1β or IL6, can interact with 
insulin signaling pathway in adipocytes to precipitate insulin 

resistance [37]. Beside leucocyte infiltration, adipose tissue 
remodeling is also characterized with senescence contribut-
ing to the altered adipose tissue secretory profile and to the 
local inflammation status [38, 39].

However, while chronic inflammation and the obesity 
associated metabolic alterations are closely related, studies 
have suggested a paradoxical beneficial effect of inflamma-
tion on adipose tissue in the context of obesity. The use of 
transgenic mouse models harboring anti-inflammatory con-
struction showed that constitutive inhibition of inflamma-
tion was also damaging for adipose tissue expansion [40]. 
Similarly, the lack of Il6 in myeloid lineage has detrimental 
consequences for metabolic fitness [41]. Thus, the remained 
ability to produce balanced inflammation appears necessary 
for AT homeostasis.

By contrast, the persistence of inflammatory stress in tis-
sues is often associated with altered remodeling in a number 
of pathological states that can progress to fibrosis, as also 
observed in AT [42, 43].

Fibrosis is a dysfunctional process characterized by 
excessive extracellular matrix (ECM) component deposi-
tion. The ECM is composed of two main classes of macro-
molecules: the extremely hydrophilic proteoglycans and the 
fibrous proteins including collagens, elastins, fibronectins 
and laminins [44]. Collagen is the most abundant fibrous 
protein of the ECM, and in the physiological context, the 
ECM provides tensile strength, regulates cell adhesion, 
supports chemotaxis and migration, and guides tissue 
development [44, 45]. In pathological context, continuous 
ECM synthesis with enhanced ECM crosslinking by lysyl 
oxidase (LOX) enzymes promote the formation of collagen 
bundles that stiffen the tissue [46]. In human AT, fibrosis 
forms collagen bundles traversing the parenchyma and also 
surrounding the adipocytes [47]. Several evidences sup-
port that AT fibrosis is an aggravating factor for metabolic 
condition [20, 48]. Various studies indeed link AT fibrosis 
to the loss of glycemic control, insulin resistance and liver 
disease in mouse models but also in human [49–51]. More-
over, increased AT fibrosis accumulation in subcutaneous 
depot is associated with a decreased fat mass loss induced by 
bariatric surgery in subjects with severe obesity [48]. Thus, 
targeting AT fibrosis with the aim of maintaining or rescuing 
AT plasticity could be of interest in the treatment of obesity 
associated metabolic alterations. In this setting, pathways 
are being identified to efficiently brake AT fibrosis progres-
sion (see sections below) [43, 52]. However, the cellular and 
molecular mechanisms of AT fibrosis resolution remained 
to be elucidated. While fibrosis resolution can be observed 
in various models following the cessation of the profibrotic 
stimuli [53, 54], AT fibrosis could be an irreversible condi-
tion, especially in advanced stages and chronic conditions. 
In mouse and human, even when the obesogenic trigger (i.e. 
dietary intervention or bariatric surgery) is abrogated and, 
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despite the metabolic improvement induced by weight loss, 
there is no evidence of fibrosis resolution as collagen accu-
mulation is maintained in the long term [55, 56].

3  Molecular alterations linking fibrosis 
to adipose tissue dysfunction

The fibrotic transformation of AT is generally associated 
with loss of function and, some of the adipocyte failures 
were attributed to the perturbation of ECM stiffness. Actu-
ally, the potential involvement of mechano-sensing path-
ways, was first suggested following the evaluation of tissue 
rigidity with a non-invasive prototypic tool [57]. The anal-
ysis of human obese abdominal subcutaneous AT (scAT) 
revealed increased stiffness in scAT with high fibrosis con-
tent [57]. Furthermore, modeling the physical constrains 
applied to adipocytes in ex vivo systems showed that the 
mechanical compression can lead to increased production 
and secretion of inflammatory molecules as well as dysreg-
ulated lipolysis, adipokine secretion and perturbed insulin 
responsiveness in adipocytes [58, 59]. The mechanosensitive 
Integrin β1, FAK and Caveolin activation were proposed to 
regulate those effects in adipocytes [58].

In addition, some evidences suggest that fibrosis depo-
sition also compromises the adapted expansion capacity 
of AT. The use of static compression to mirror the fibro-
sis effects alters adipocyte differentiation as well as lipid 
accumulation [60, 61]. By contrast, the reduced adipose 
tensile strength in Collagen VI-knockout mice is associated 
with abnormally large but healthy adipocytes [62]. Thus, 
AT fibrosis appears to impede fat expandability in limiting 
both adipogenesis and adipocyte hypertrophy, suggesting 
that fatty acids can more easily spill over into ectopic sites. 
In line with this assumption, increased subcutaneous AT 
fibrosis was shown to be associated to visceral fat accretion 
in a cohort of Chinese American men and women [63] or to 
fatty liver in women [49, 64].

Sustained fibrosis and modified ECM composition may 
probably promote pathways that amplify alterations of tis-
sue structure and functions. For instance, the soluble cleav-
age product of collagen VI chain, referred as endotrophin, 
seems to play an important role in obesity induced systemic 
insulin resistance by stimulating inflammation and fibrosis 
in AT [52, 65]. Similar pathological effects were suggested 
for osteopontin [66]. This matricellular protein is known 
to mediate diverse biological functions through interactions 
with integrins [66]. In obesity, AT macrophages express 
high levels of osteopontin [67] and osteopontin neutraliza-
tion partially decreases obesity-associated inflammation in 
AT and, reverses signal transduction related to insulin resist-
ance [8, 68]. Furthermore, increased circulating osteopon-
tin, related to visceral fat production, was shown to mediate 

cardiac aging in mice [69]. Likewise, Tenascin C (TNC), 
an ECM glycoprotein, was also recently highlighted for its 
role in amplifying fibrosis pathway [70]. TNC can interact 
with several extracellular matrix molecules and cell recep-
tors, including Toll-like receptor 4 (TLR4). The expression 
levels of TNC are increased in the visceral AT from obese 
subjects with normal glycemia or type 2 diabetes with non-
alcoholic steatohepatitis [57]. Similarly, expression levels of 
TNC in epididymal AT was increased in obese mice [71], 
and fibrosis is attenuated in TNC deficient mice [70]. Thus, 
TNC is suggested to be a relevant mediator of AT fibrosis 
via a TLR4-dependent activation of fibroblasts.

4  Cellular origin of adipose tissue fibrosis

In fibrotic organs, the excessive deposition of extracel-
lular matrix (ECM) starts with the local accumulation 
of cells producing high level of ECM components. In 
AT, the fibrosis producing cells originate from resident 
cells exhibiting features of mesenchymal progenitor 
cells. In the stroma-vascular fraction, these progenitors 
are non-hematopoietic cells and display multipotential-
ity allowing them to become adipocytes, chondrocytes 
or even osteoblasts among other cell lineages [72, 73]. 
In AT, they delineate a cell population with a strong adi-
pogenic potential with surface epitope including CD44, 
CD34, CD29, PDGFRα and PDGFRβ expression. In 
C3H mice prone to AT fibrosis development [43, 74], 
PDGFRα+  CD45−  CD31− progenitors were isolated as a 
main contributors to ECM production [74]. In response 
to fibrogenic stimuli, these cells can differentiate into 
myofibroblast and start to express αSMA forming cel-
lular stress fibers, high amount of ECM proteins together 
with autocrine growth factor maintaining cell prolifera-
tion and survival [74]. In fibrotic AT, PDGFRα+ cells 
express the highest levels of the fibrosis markers, such as 
collagens, as compared to other predominant cells in AT 
(i.e. adipocytes, endothelial cells, macrophages) [74]. The 
PDGFRα+ progenitors are not homogeneous populations 
and, although they need better investigation in AT, line-
age tracing experiments suggested that only a subset of 
the PDGFRα+ cell population originates the pro-fibrotic 
cells. These progenitors were identified as ADAM12 or 
GLI1 expressing cells in injured heart, kidney, lung, and 
liver [75, 76]. In the AT, our team identified the pro-
fibrotic cells thanks to the expression level of the tet-
raspanin CD9 among PDGFRα+ progenitor populations. 
PDGFRα+  CD9high cells were driven toward a myofi-
broblastic phenotype, whereas PDGFRα+  CD9low cells 
were committed to adipogenesis [74]. In the fibrotic AT, 
PDGFRα+  CD9high progenitor population expands while 
their PDGFRα+  CD9low counterparts were rapidly lost. 
In human AT,  CD9high and  CD9low PDGFRα+ progenitors 
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were equally observed. However, PDGFRα +  CD9high 
cell frequency positively correlated with the degree of 
fibrosis, and with the deterioration of the glycemic con-
trol in patients with obesity. Indeed, significant posi-
tive associations were observed between the amount of 
PDGFRα+  CD9high cells in AT and glycated hemoglobin, 
fasting glycemia and insulinemia and HOMA-IR, a sur-
rogate of insulin resistance. Thus, an imbalance favor-
ing WAT  CD9high over  CD9low PDGFRα+ progenitors 
appears to promote AT fibrotic transformation associ-
ated with altered glucose control [74]. More recently, 
unbiased analysis using single cell RNA sequencing of 
progenitors from visceral fat depot narrowed the defini-
tion of the profibrotic and proinflammatory progenitors 
(FIP) as  CD9high  LY6C+ progenitors in mice [77]. In addi-
tion to their ability for fibrosis production, the FIP exert 
strong inhibitory effects on adipogenesis. Such regula-
tory activity was also described for the progenitor subsets 
defined by CD142 expression in subcutaneous WAT with 
adipogenesis-regulatory properties [78]. Furthermore, FIP 
display important proinflammatory activity as illustrated 
by their contribution to chemokines and cytokines pro-
duction in obese AT [74, 77, 79, 80]. Thus, in obesity, the 
cell progenitors harbor functions that can be highly det-
rimental for AT homeostasis. Importantly, the interplay 

between adipogenic and fibrogenic pathways regulate 
progenitor fates during obesity (Fig. 1). Profibrotic sign-
aling, indeed, also acts as anti-adipogenic pathway as 
shown with PDGFRα signaling that drives AT fibrosis 
by limiting progenitor cell adipogenic capacity [74, 81, 
82]. Accordingly, PPARγ activity is pivotal in progenitor 
fate and the bidirectional manipulation of PPARγ expres-
sion induced reciprocal changes in driving adipogenic or 
myofibroblastic fate decision [83].

The interplay between the pro-adipogenic transcription 
factor ZFP423 (C2H2 zinc finger protein 423) and the TLR4 
signaling in the progenitors also controls macrophage accumu-
lation in the AT in response to high fat feeding. Mechanisti-
cally, ZFP423 suppresses the DNA-binding capacity of the p65 
subunit of NF-κB activated through TLR4 signaling [80]. The 
immunoregulatory potential of the progenitors not only affects 
AT macrophage accumulation, but also other immune cells. 
For example, as a main producer of IL33 in AT [84], the  IL33+ 
PDGFRα+ progenitor subset can control both the accumula-
tion of the regulatory T cell and ILC2 in the AT [84, 85]. With 
obesity, IL33 is significantly downregulated while the adminis-
tration of IL33 was associated with a healthy remodeling with 
increased AT expression of UCP1 [86]. Thus, the progenitors 
most probably exert critical regulatory functions that can either 
participate in healthy or unhealthy AT remodeling.

Fig. 1  The interplay between Adipogenic and fibrogenic pathways to shape progenitor fate in adipose tissue. Various signals and transcription 
factors found to promote beige or white adipogenesis can also limit fibrogenic pathways, and conversely
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5  Adipogenesis in white adipose tissue 
and metabolic health

When tipped into storage mode, fat pad growth is driven 
by both adipocyte hypertrophy (enlarged adipocytes) 
and hyperplasia (increased cell number). Evidences sup-
port that the maintenance of metabolic health involves 
the increased number of white adipocytes rather than 
enlargement of adipocytes knowing that bigger cells are 
more dysfunctional [83, 87]. Oversized adipocytes indeed 
experience hypoxia and higher mechanical stress that pro-
mote a reoriented secretome associated with increased 
inflammation which promotes insulin resistance. These 
enlarged adipocytes indeed display induced secretion 
of tumor necrosis factor α (TNFα), interleukin (IL)-6, 
IL-8, monocyte chemoattractant protein-1 (MCP-1) and 
acute-phase serum amyloid A proteins amongst others 
[88], thus sustaining low grade inflammation in AT. In 
addition, lower adiponectin secretion and elevated basal 
lipolysis by adipocytes [89, 90], also favor inflammation 
[91]. Overall, unaltered adipogenic capacity per se may 
accompany healthy AT. As such, better understanding of 
in vivo adipogenesis in human may lead to strategies to 
uncouple obesity from metabolic diseases.

The generation of new adipocytes requires the proliferation 
and differentiation of progenitors that reside within the AT 
stromal cell reservoir. Most of the current knowledge about 
adipocyte differentiation derived from in vitro study exam-
ining heterogenous cell populations including 3T3-L1 cell 
line, mouse embryonic fibroblast (MEF) and plastic adherent 
stroma vascular cell fraction of AT. Although very informa-
tive, it remained to elucidate how the associated molecular 
pathways are relevant to in vivo progenitor biology.

The use of markers allowing the specific tracking of 
these progenitors within the AT combined to single cell 
RNA sequencing highlight a high diversity of progenitors. 
Initially, the tracing of PPARγ (peroxisome proliferator-
activated receptor gamma)-expressing cells revealed an 
adipocyte lineage tightly associated with the adipose vas-
culature [92]. Concomitantly, with multiparameter flow 
cytometry the use of various antibodies targeting cell sur-
face epitopes, previously reported as mesenchymal stem 
cells antigens Sca1, CD34, CD29 and PDGFRα delineate a 
cell population with a strong adipogenic potential [93, 94]. 
CD24 expressing precursors exhibit stem cell-like proper-
ties, which play a role in the maintenance or the growth of 
local adipocyte precursors [19, 93]. Indeed, sorted  CD24+ 
cells, but not the  CD24− cells, transplanted in the residual 
fat depot of lipodystrophic mice, provided a favorable adi-
pogenic microenvironment enabling the generation of a 
functional WAT depot. Interestingly, this transplantation 
led to major metabolic improvement with the rescue of a 

diabetic phenotype that develops in lipodystrophic ani-
mals [93]. In many models of obesity, the activation of the 
precursors is dependent on the phosphoinositide 3-kinase 
(PI3K)-AKT2 pathway [19]. Moreover, the coexpression 
of the pro-adipogenic transcription factors PPARγ and 
ZFP423 defined a sub-set of progenitors with a strong 
commitment in the adipocyte lineage [95, 96].

Other studies also identified a preadipocyte factor 1, Pref-
1,-expressing progenitors as cells with high proliferative 
capacity, being early adipose cell precursors prior to cells 
with the expression of ZFP423 or PPARγ. Upon high-fat 
feeding stimulation,  Pref1+ cells are engaged in adipogen-
esis. However, upon adipogenesis, Pref1 (also called Dlk1/
FA1) expression is downregulated as it prevents adipocyte 
differentiation to maintain progenitor stemness [97].

Interestingly, Merrick et al. examined the progenitor cell 
hierarchy in subcutaneous inguinal WAT [98]. The analy-
sis of cellular trajectory in the adipogenic fate pointed out 
dipeptidyl peptidase–4 (DPP4 +) cells as multipotent pro-
genitors giving rise to both CD54 + and CD142 + cells, 
which further differentiate into differentiated adipocytes. In 
this work, the adipogenesis-regulatory properties of  CD142+ 
subset is however not recapitulated. In obesity, the depletion 
of  DPP4+ progenitors leads to reduced precursor differen-
tiation that may contribute to pathological remodeling and 
metabolic disease progression [98]. Overall, single cell RNA 
sequencing studies evidenced that progenitor subsets, that 
may delineate functional differences, are rearranged with AT 
remodeling [99, 100]. Further investigations are still needed 
to appreciate subcutaneous versus visceral depot peculiari-
ties. In addition, it remains to clarify whether progenitor 
clusters represent distinct states of adipogenic differentiation 
or whether they are independent cell subsets in AT.

6  Interplay between beige adipogenic 
and fibrogenic pathways

Upon thermogenic or some metabolic stimuli, beige adi-
pocytes can arise in specific regions inside the WAT depot. 
Depending on the stimulus, beige adipocytes can emerge from 
preexisting white adipocytes or from AT progenitors [4, 6, 
7, 101, 102]. From a metabolic point of view, in obesogenic 
environment, activating beige adipocytes display therapeu-
tic potential due to their ability to improve glucose and lipid 
homeostasis [2]. Those beneficial effects were initially attrib- 
uted to energy burning capacity achieved through non-shivering  
thermogenesis, during which these cells dissipate chemical 
energy as heat notably by increasing UCP1 activity. However, 
recent evidences highlight that pro-beigeing pathways potently 
repress AT fibrosis (Fig. 1), independently of UCP1 uncou-
pling function [103]. As such, the PRDM16 transcriptional 
complex not only activates brown/beige fat development [104], 
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but also potently represses AT fibrosis through its direct inter-
action with GTF2IRD1 [103]. In addition, PRDM16 depend-
ent metabolic signals arising from adipocytes regulates the 
progenitor fate blocking fibrosis together with enhancing beige 
adipogenesis [11]. In this reciprocal relationship between 
fibrogenesis and beige adipogenesis, the highly conserved 
canonical TGF-β/BMP (bone morphogenetic proteins) signal-
ing cascade is of particular interest, since members have been 
shown to produce beige adipogenesis from AT progenitors. 
The BMP7-ROCK signaling axis regulates the formation of 
beige adipocytes via controlling the G-actin-regulated tran-
scriptional coactivator myocardin related transcription factor 
A (MRTFA) [105]. WAT from mice deficient for MRTFA con-
tains more multilocular adipocytes and expresses enhanced 
levels of UCP1 [105]. Conversely, MRTFA was highlighted 
as an inducer of progenitor fibrotic fate [106]. Similarly, in 
AT, BMP4 signaling is known to induce commitment of pluri-
potent stem cells to the adipocyte lineage by producing cells 
that possess the characteristics of preadipocytes. As such, 
the overexpression of a BMP4 transgene promotes a healthy 
WAT remodeling with reduced AT mass and white adipocyte 
size along with an increased number of beige, thermogenic 
adipocytes (i.e. adipocytes enriched with mitochondria and 
uncoupling protein 1) [107, 108]. Most interestingly, adding 
BMP in a profibrotic environmental promotes the resolution 
of fibrosis driving myofibroblast dedifferentiation to regener-
ate the adipocyte pool [109]. The transcriptional landscape of 
TGF-β/BMP family can be regulated by the progenitor in a 
cell autonomous dependent manner [110], as shown in mice 
harboring autophagy deficient progenitors. In these mice, the 
emergence of beige adipocyte features in the white fat depot 
was coincident with lower fibrosis expression (110).

In human, the ability to develop beige adipocytes is 
observed in limited situations such as burn trauma victims 
and pheochromocytoma patients [111, 112]. However, 
in vitro experimentation revealed that progenitors isolated 
from human AT can undergo beige adipogenesis [113]. 
Interestingly, progenitors defined with high or low expres-
sion of CD34 appeared to have similar adipogenic properties 
but are characterized by unique molecular profiles with dif-
ferent potential for adaptive thermogenesis [114]. However, 
the development of a pro-inflammatory microenvironment 
in the obese WAT seems to restrict the beige adipogenic 
potential of the progenitors [113].

7  Conclusions

AT progenitors are a highly heterogenous population of stro-
mal cells. Subsets are defined through not only their degree 
of commitment toward white or beige adipogenesis but 
also through their immunoregulatory or fibrogenic poten-
tial. The AT exhibits a complex lobular architecture that is 

suggested to provide a local environment influencing the 
progenitor phenotype and functionality [115]. Therefore, 
the functional heterogeneity of the progenitor can also be 
explained by a spatial and temporal heterogeneity in addition 
to specific depot microenvironments [116]. Given the pivotal 
role of progenitors in maintaining AT homeostasis, a better 
understanding of their biology is certainly of interest in a 
therapeutic perspective. Future studies will aim to identify 
molecular and surface markers allowing the discrimination 
of the various progenitor sub-populations to understand how 
they crosstalk with adipocytes and other stromal cells in the 
adipose tissue.
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