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Abstract
Classically, Non-Alcoholic Fatty Liver Disease (NAFLD) has been thought to be driven by excessive weight gain and obesity.
The overall greater awareness of this disorder has led to its recognition in patients with normal body mass index (BMI). Ongoing
research has helped to better understand potential causes of Lean NAFLD, the risks for more advanced disease, and potential
therapies. Here we review the recent literature on prevalence, risk factors, severity of disease, and potential therapeutic
interventions.
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LPS Lipopolysaccharide
TASH toxicant-associated steatohepatitis
HCC hepatocellular carcinoma
HSD17B13 hydroxysteroid 17-beta

dehydrogenase 13
CETP Cholesteryl Ester Transfer Protein
SREBF Sterol regulatory element-binding

factor
GCKR Glucokinase Regulatory Protein
LFT liver function test
US ultrasound
DEXA Dual-energy X-ray absorptiometry
CAP Controlled Attenuation Parameter
TZD thiazolidinediones
(GLP-1) agonists glucagon like-peptide-1
DPP-4 Dipeptidyl peptidase 4
DNL De novo Lipogenesis

1 Introduction

Non-Alcoholic Fatty Liver Disease (NAFLD) is a major glob-
al health issue. It affects an estimated 24% of the global pop-
ulation, with rates increasing in parallel with the epidemic of
obesity, metabolic syndrome (MetS), and type 2 diabetes
(T2DM) [1]. Non-alcoholic steatohepatitis (NASH), a more
progressive form of NAFLD, is one of the leading causes of
liver transplantation [2, 3].

NAFLD and NASH were traditionally considered disor-
ders that affected individuals who were overweight or obese.
But the increasing recognition of the “metabolically unhealthy
lean” phenotype has led to the identification of NAFLD and
NASH in individuals whose BMI is non-obese by WHO cat-
egorization. This “lean” or “non-obese” NAFLD was first
recognized in Asian populations, but occurs in other ethnic
groups as well, and may reflect visceral obesity in the absence
of systemic obesity, as well as different definitions of obesity
in different ethnic groups. Because of NAFLD’s association
withWestern obesity definitions and the metabolic syndrome,
it may go under-recognized or completely undetected in lean
populations [4].

Recently, it has been proposed to change the name of
NAFLD to Metabolic Associated Fatty Liver Disease
(MAFLD) to better reflect the pathophysiology of the disease
[5]. The current terminology of “non-alcoholic” may suggest
to patients the disorder is less serious, and creates a false
dichotomy [6]. Additionally, there is possible stigma for pa-
tients with a disorder referencing “alcohol” [6]. MAFLD may
better reflect the pathophysiology of the disorder, and pro-
vides a broad definition for this heterogeneous disorder. For
the purpose of this paper, we will use NAFLD as it is currently
more recognizable term in the literature.

2 Defining obesity

BMI is a useful surrogate marker for adiposity and risk of
related complications. But the standard definitions of BMI
do not consider ethnic differences. It was thought that Lean
NAFLD could partly be explained by the need for lower BMI
cut-offs in certain populations. That is, patients with “lean”
NAFLD were in fact overweight or obese. But even with
lower BMI cut-offs, lean NAFLD still represents a significant
proportion of cases of NAFLD [7].

Most studies of NAFLD use the WHO criteria for obesity.
These criteria were first proposed in 1993, and define a BMI
of 25–29.9 kg/m2 as overweight, 30–34.9 kg/m2 as grade 1
obesity, 35–39.9 kg/m2 as grade 2 obesity, and ≥ 40 kg/m2 as
grade 3 obesity [8]. The WHO recognized that different pop-
ulations experience metabolic risk at lower BMIs, but they do
not recommend ethnicity-specific cut-offs. However, other
professional organizations do recommend ethnicity-specific
BMI ranges (summarized in Table 1) [9, 10].

Ethnic-specific cut-offs for NAFLD risk may help identify
patients otherwise categorized as low risk. A study of lean
individuals with NAFLD in Iran identified a BMI >
23.14 kg/m2 (male) or > 23.19 kg/m2 (female) and waist cir-
cumference > 82.5 cm (m), or > 73 cm (f) as identifying those
at increased risk for NAFLD [11]. Ultimately, BMI represents
a continuum of risk, and any cut-off is somewhat arbitrary.
Regardless, ethnic variations in appropriate weight play an
important role in understanding what is considered Lean
NAFLD.

3 Pathophysiology

A brief overview of risk factors contributing to the develop-
ment of NAFLD is essential to appreciate the unique issues
found in Lean NAFLD. Complex factors, including altered
energy balance, excess weight, hormonal changes, insulin re-
sistance, and genetics play a role in the development of
NAFLD [12]. High energy intake, especially in the forms of
excess fats and sugars has been linked to dysregulation of
appetite, increase in free fatty acids (FFA), gut dysbiosis, de
novo lipogenesis, and insulin resistance [13]. Excess weight
and adipose tissue lead to insulin resistance, with a concomi-
tant decrease in protective factors such as adiponectin and
increase in inflammatory markers such as tumor necrosis fac-
tor alpha (TNF-α), and increases in circulating FFA [14].
Genetic variants, such as patatin-like phospholipasedomain-
containing 3 (PNPLA3) and transmembrane 6-superfamily
member 2 (TM6SF2) also lead to increased accumulation of
fats in the liver [14]. Ectopic lipid species in the liver in the
forms of ceramides, diacylglyceral (DAG), and di-palmitoyl
phosphatidic acid (di-PPA) interfere with insulin signaling
and increase inflammation, with subsequent hyperinsulinemia
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and de novo lipogenesis [12]. These factors then drive recruit-
ment of inflammatory cells such as macrophages and Kupffer
cells, leading to progressive fibrosis, including cirrhosis [12].

4 Epidemiology

Lean NAFLD, classically described in Asian populations, has
also been described in other populations in both the Americas
and Europe with an incidence of 8–20% [15]. Most studies
use WHO definitions of obesity, but even studies using an
ethnicity-specific BMI range report a significant incidence of
NAFLD (Table 3) [7].

5 Screening and diagnosis

NAFLD is prevalent in those with a “normal” BMI, but there
is a lack of consensus on who should be screened. The
American Association for the Study of Liver Disease
(AASLD) recommends against routine screening for
NAFLD in any population, regardless of BMI, because of lack
of knowledge regarding long-term risks and benefits of
screening, cost-effectiveness, and under-utilization of treat-
ment [23]. However, the AASLD does endorse ‘vigilance’
in patients with T2DM. The European Association for the
Study of Liver (EASL), European Association for the Study
of Diabetes (EASD), and European Association for the Study
of Obesity (EASO) issued guidelines recommending screen-
ing patients with obesity or MetS [24]. The American
Diabetes Association (ADA) recommends work up for
NASH and fibrosis in patients with T2DM or prediabetes
and elevated ALT or fatty liver on ultrasound [25]. The
American Academy of Pediatrics recommends screening
obese youth at regular intervals [26–28]. Asian Pacific
Association for the Study of the Liver (APASL) recommends

screening for MAFLD in those with T2DM, metabolic syn-
drome, or who are overweight/obesity according to ethnic
specific cut-offs [29]. Our group recently published recom-
mendations to screen obese patients with another feature of
MetS, or patients with MetS, though the rate of MetS in Lean
NAFLD patients is much lower compared to overweight and
obese [30].

The indications for screening are even less clear for Lean
NAFLD. Lean NAFLD may be easily missed since patients
do not fit the classic phenotype of obesity [14]. Potential
screening tools include NAFLD liver fat score [31], the
Hepatic Steatosis Index, and the Lipid Accumulation
Product, all of which have been validated to identify the pres-
ence of NAFLD, but not severity of disease [32]. The fibrosis-
4 index (FIB-4) and NAFLD fibrosis score (NFS) have also
been well-validated, but are more useful in excluding fibrosis
rather than identifying it [14, 33, 34]. It should be noted a
recent paper by Eren, et al. revealed that NFS and FIB4 is less
accurate in discriminating severity of disease in Lean NAFLD
patients [35].

but to our knowledge only fatty liver index (FLI) has any
validations studies in Lean NAFLD. Additionally, these tools
identify Yu, et al. found that a FLI ≥ 15 was useful as a cut-off
for screening for Lean NAFLD, and a FLI ≤ 5 had a negative
predictive value of 95% [36].. Their study population was
relatively homogenous, in Taiwan, who had laboratory, clin-
ical, and ultrasonographic evidence of NAFLD. The FLI is
cost-effective, non-invasive, and does not require specialized
lab testing. The FLI score was initially developed in the gen-
eral NAFLD population, based on an Italian cohort, and is
commonly used in epidemiological studies. Those authors
recommended ruling out NAFLD if FLI <30, and if ≥60 to
consider it a positive screen [37]. This discrepancy is probably
partially due to the emphasis on BMI and waist circumfer-
ence, and different ethnicity of the two cohorts.

Differentiating simple steatosis from NASH is important
because the negative sequelae of NAFLD are most evident

Table 1 Selected definitions of obesity

Normal weight Overweight Obese Abnormal waist circumference

WHO [8] 18.5–24.9 kg/m2 25–29.9 kg/m2 >30 kg/m2

AACE [9] 18.5–24.9 kg/m2

(Asian: 18.5–22.9 kg/m2)
25–29.9 kg/m2

(Asian: 23–24.9 kg/m2)
>30 kg/m2

(Asian: >25 kg/m2)
≥102 cm (male)
≥88 cm (female)
(Asian: ≥85 cm (male)
≥74 to 80 cm (female))

Clinical Practice Guidelines
(Korea) [10]

18.5–22.9 kg/m2 23 to 24.9 kg/m2 ≥25 kg/m2 ≥90 cm (male)
≥85 cm (female)

IDF [9] ≥94 cm (male)
≥80 cm (female)
(Asian: ≥90 cm (male) ≥ 80 cm (female))

WHO, World Health Organization; AACE, American Association of Clinical Endocrinologists; IDF, International Diabetes Federation
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in those with fibrosis. Patients with NASH have a 25% risk of
developing cirrhosis after nine years, while 0–4% of patients
with simple steatosis go on to develop cirrhosis [38]. In a
cohort of Lean NAFLD patients, risk of NASH was found
to be higher in patients on thyroid hormone replacement,
higher fasting blood sugars, and higher INR [39].

Liver biopsy remains the gold standard for diagnosis of
NAFLD and NASH, but is cumbersome, invasive, and carries
small, but significant risks, including major bleeding and
death, so it is not a feasible option in all patients or settings.
Ultrasound can detect steatosis involving as little as 10% of
the liver but is more reliable when steatosis is >30%. Transient
elastography (Fibroscan®) is commonly used to estimate fi-
brosis and can be used for serial monitoring [40]. Liver MRI
can assess liver fat content, as well as fibrosis, but expense and
limited availability means this is less often used [14]. In most
cases, NAFLD is diagnosed incidentally on abdominal imag-
ing or after work up of elevated liver enzymes [14].

6 Secondary causes of fatty liver disease

NAFLD is ultimately a diagnosis of exclusion. It may be dif-
ficult to identify in patients who have MetS in addition to
other potential causes. The differential diagnosis of steatosis
includes excessive alcohol consumption, HCV, Wilson’s dis-
ease, abetalipoproteinemia, and medications [23], and the
work up has been covered elsewhere [5, 6]. In addition, in-
creased hemoglobin has been found to associate with
NAFLD, NASH, and fibrosis independent of MetS. This
may be due to increased blood viscosity reducing oxygen
delivery to liver, and increasing oxidative stress along with
being a proxy for iron overload [41]. This may suggest that
NAFLD pathology may not be simply a hepatic manifestation
of MetS.

Excluding alcohol as a cause can be difficult. Different
studies have used different thresholds as “excessive” or “sig-
nificant” alcohol intake, with some studies excluding patients
with any alcohol intake. Guidance from the American College
of Gastroenterology (ACG) recommends a threshold of “sig-
nificant” alcohol intake as >21 standard drinks/week for men
and 14 standard drinks/week for women, where 1 standard
drink contains 14 g of ethanol [23].

Patients should also be evaluated for co-morbid liver con-
ditions like alpha-1 antitrypsin deficiency, hemochromatosis,
autoimmune hepatitis, viral hepatitis, and drug-induced liver
disease [24].

7 Risk factors

Risk factors for the development of Lean NAFLD are similar
to those for nonlean NAFLD, and have significant overlap

with other conditions associated with the metabolic syndrome,
including age, gender, visceral adiposity, diet, genetics,
lipodystrophy and alterations in the microbiome [42].

7.1 Diet

7.1.1 Total calories

Excess total calories and carbohydrates affect NAFLD status
in those with obesity, but there is limited data in non-obese
individuals. A study in a single center in China compared lean
and obese individuals with NAFLDwith weight matched con-
trols, and found that all patients with NAFLD had a higher
caloric intake, and more calories from grain, potatoes, and
fruit than those without NAFLD [43]. Lean NAFLD patients
consumed more grain, potatoes, and fruit than non-NAFLD
controls, but less than obese NAFLD.

7.1.2 Fructose and sugar

Added sweeteners such as high fructose corn syrup (HFCS)
and sucrose appear to be major causes of NAFLD [44].
Fructose is metabolized differently than glucose. It is initially
metabolized by fructokinase before joining the glycolysis
pathway. In the liver, this phosphorylation pathway leads to
a transient ATP depletion, leading to oxidative stress and mi-
tochondrial dysfunction [44]. Fructose is also a stronger driver
of de novo lipogenesis than glucose [45]. Intake of fructose,
primarily in soft drinks containing HFCS, is strongly associ-
ated with both the development of NAFLD and with its pro-
gression to NASH [46, 47]. Mice lacking fructokinase are
significantly protected from developing NAFLD, suggesting
that the development of NAFLD from a high-fat, high-sugar
diet is due to the fructose [48]. There is also evidence that the
fatty liver induced by high glycemic diets or high salt diets is
due to the endogenous generation of fructose [49, 50].

Fructose plays a role in the development of Lean NAFLD
also. Rats placed on caloric restriction will develop pro-
nounced fatty liver and diabetes if placed on a high sugar diet,
even in the absence of weight gain [51]. NAFLD and insulin
resistance can also occur with protein malnutrition on high
glycemic diets, as seen in Kwashiorkor [52, 53]. A study in
Israel of 31 non-obese patients with NAFLD showed a strong
correlation between soft drink consumption and extent of fatty
liver infiltration on US [54]. Interestingly, 39% of patients
who stopped sweetened beverages had a normal liver US after
6 months, suggesting that decreasing added sugar could be a
high impact intervention [54]. A 2007 Israeli nutritional sur-
vey found a statistically significant increase in fructose intake,
specifically soft drinks [55]. However, US National Health
and Nutrition Examination Survey (NHANES) data from
2012 did not show a statistically significant difference in fruc-
tose consumption between individuals with Lean NAFLD and
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lean controls, although there was a significant difference in
saccharin intake, possibly reflecting increased diet soda intake
[17].

Fructose appears to induce fatty liver by its unique ability
to lower intracellular ATP levels associated with purine deg-
radation and uric acid generation. The uric acid produced in-
duces mitochondrial oxidative stress that triggers both lipo-
genesis and impaired fatty acid oxidation [44]. Hyperuricemia
itself is associated with NAFLD, even without obesity. We
reported that the presence of ultrasound-documented NAFLD
in non-obese (BMI < 20) dialysis patients correlated with the
presence of hyperuricemia compared to other lean dialysis
patients without NAFLD [56].

Additionally, fructose can alter the gut microbiome, lead-
ing to increased gut permeability with endotoxemia that ac-
celerates hepatic fat accumulation [57]. Cho YE, et al. pub-
lished data suggesting that fructose ingestion precipitates in-
flammation and a “leaky gut” in a mouse model [58]. These
mice also had alterations in gut microbiome consistent with
previous reports in NASH patients [58].

7.2 Microbiome

There is increasing evidence for the role of the microbiome in
mediating NAFLD. Besides the relationship between the
microbiome and fructose, there is evidence for multiple mech-
anisms for the microbiome to influence NAFLD risk.
Alterations in the gut microbiome can lead to increased energy
harvest, increased intestinal permeability leading to increased
lipopolysaccharides (LPS) or microbe products, decreased
choline, increased endogenous alcohol, and dysregulation of
bile acids, all contributing to liver inflammation and steatosis
[14, 59] .

At least two studies have attempted to characterize differ-
ences in the microbiome between Non-Lean NAFLD, Lean
NAFLD, and healthy controls. Yun et al. showed that patients
with NAFLD had less diverse stool microbiome compared to
healthy controls in a Korean population [60]. Interestingly,
this difference was driven primarily by the Lean NAFLD
group. Both NAFLD groups had a decrease in Firmicutes
and Ruminococcaceae species, but a decrease in
Leuconostocaceae was seen only in obese NAFLD. Lean
NAFLD also had decreased diversity in blood microbiota pro-
files, but obese NAFLD did not. Increased Bacteroidetes/
Firmicutes ratio in NAFLD patients has been reported previ-
ously [14, 59], and has also been observed in mice [61]. Chen,
et al. similarly reported a distinct microbiome profile in a
Caucasian population with Lean NAFLD. Lean NAFLD pa-
tients had increased Ruminococcaceae compared to obese
NAFLD , and i n c r e a s e d Dorea and de c r e a s ed
Marvinbryantia and the Christensellenaceae compared to
healthy controls [61].

Alterations in the gut microbiome may predispose individ-
uals to develop NAFLD at a lower BMI, and unlike genetic
predispositions, it may be a modifiable risk factor. However,
there are very few studies in humans, and even fewer on mod-
ulation of the microbiome as a therapy for NAFLD [62]. Since
alterations in the microbiome correlate with presence and se-
verity of liver disease, and can be measured noninvasively in
the blood, they could potentially be used as a biomarker to
identify and follow NAFLD [63].

7.3 Marijuana

Interestingly, marijuana use was associated with a 15% lower
risk of NAFLD in a cross-sectional study [64]. Cannabis users
were more likely to be overweight, but less likely to be obese,
and less likely to have MetS. A separate study using
NHANES data, which includes people with ultrasound-
confirmed NAFLD, also showed a reduced risk of NAFLD
in active marijuana users, in a dose-dependent manner [65].

This is especially intriguing because while marijuana use is
associated with alcohol use, lower socioeconomic status, and
increased calorie intake (including more soda); there is also
reduced risk of obesity, diabetes, andMetS [65]. Additionally,
in a metanalysis of biopsy studies, cannabis does not appear to
worsen fibrosis in patients who already have NAFLD or
chronic liver disease due to other etiologies [66], although
there are few studies in this area. Potential mechanisms in-
clude an anti-inflammatory effect of cannabanoids [65] and
modulation of lipid metabolism via hepatic endocannabinoids
[67].

7.4 Environmental

Toxic exposures have been associated with liver injury
and NASH, and may be the main etiology in some cases
of Lean NASH. Investigators in Taiwan found that heavy
metal exposure was significantly associated with fatty liv-
er disease in men (OR (95% CI) 1.834 (1.161 to 2.899),
but not women [68]. When stratified by BMI, high levels
of heavy metals increased the severity of NAFLD, with
lean men (BMI <24 kg/m2) most affected. In a study of
non-obese workers exposed to high levels of vinyl chlo-
ride, every patient in the exposed group had abnormalities
on liver biopsy, 84% had NAFLD, and 80% had NASH
[69]. These patients also had insulin resistance. Vinyl
chloride is metabolized similarly to alcohol, possibly ac-
counting for this pattern of liver injury. Cave, et al. pro-
posed classifying these patients as “toxicant-associated
steatohepatitis” (TASH) [69]. Evidence of NAFLD in lean
individuals has also been seen in studies of petrochemical
workers [70].
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7.5 Polycystic ovarian syndrome

Recent evidence indicates that lean girls and women with
polycystic ovarian syndrome (PCOS) have higher rates of
NAFLD than women without PCOS [71]. PCOS is often as-
sociated with hyperandrogenism and insulin resistance [72] .
There is some evidence that the degree of hyperandrogenism
is associated with risk of NAFLD in lean women with PCOS
[71, 73, 74].

8 Genetics

Several genes have been implicated in the development of
NAFLD and may also predispose to Lean NASH [75].
Further, ethnic associations with certain genes may be a
source for the variation in prevalence and severity of disease
across populations. Some of these variants play a role in
NAFLD in general, and some appear to be either drivers or
protective against Lean NAFLD specifically (Table 2).

8.1 Patatin-like phospholipase domain-containing
protein 3 (PNPLA3)

PNPLA3 is an enzyme with lipase activity towards
triglycerides and retinyl esters, and acyltransferase activity
on phospholipids. The rs738409 I148M variant C- > G allele
has been associated with worsening severity of steatosis, fi-
brosis, cirrhosis, and hepatocellular carcinoma (HCC) in a
variety of liver diseases, including NAFLD [81, 82]. Despite
this, carriers of PNPLA3 may actually have a greater thera-
peutic response to exercise [83].

In an Asian NAFLD population, the I148M variant
occurs more frequently in nonobese than obese, suggest-
ing that this gene plays an important role in the develop-
ment of NAFLD in nonobese patients. A study in
Japanese adults with NAFLD found a significantly higher
prevalence of the G allele in normal weight (18.5 kg/m2 –
22.9 kg/m2) (OR 3.52; 95%-CI: 1.42–8.71; P = 0.0063)
and overweight patients (23 kg/m2–24.9 kg/m2) (OR
2.60; 95%-CI: 1.14–5.91; P = 0.0225), but not in obese
patients (BMI ≥ 25 kg/m2) [84]. Another study out of
Japan also found a higher incidence of the GG allele
(47.8% vs 36.5% P = 0.02) in non-obese NAFLD (BMI
< 25 kg/m2) vs obese (BMI ≥ 25 kg/m2). In controls with-
out NAFLD, there was no significant difference in gene
expression and overall lower expression (nonobese 19.9%
and obese 18.7%, P = 0.67) [85]. An Italian study did not
find a difference in presence of PNPLA3 variant between
lean (BMI 18.5 kg/m2–24.9 kg/m2), overweight (BMI
25.0 kg/m2–29.9 kg/m2), and obese NAFLD (≥30 kg/m2

BMI), but the variant was the only factor in lean patients
associated with NASH or Fibrosis Score 2 or greater [79].

Overall, these studies lend support to PNPLA3 I148M
being a potential driver of NAFLD in lean/nonobese
patients.

Ethnic differences in PNPLA3 expressionmay also explain
higher rates of NAFLD in some populations. In a NHANES
Study, rates of NAFLD in lean patients (BMI <25 kg/m2) was
7.39%, though Hispanic Ethnicity was a risk factor for lean
NAFLD compared to lean controls (OR 1.74 (1.20–2.51) p =
0.0037) [17]. In the Dallas Heart Study, a multi-ethnic cohort
study, the allele frequency of PNPLA3-148 M was 0.49 in
Hispanic populations, 0.23 in European Americans, and 0.17
in African Americans [77]. Interestingly, the prevalence of the
GG phenotype has been reported as 13–19% in Asian studies,
compared to 4% in Non-Hispanic Whites, 2% in African
Americans, and 25% in Hispanics [86].

PNPLA3 I148M variant appears to be strongly associated
with presence and severity of NAFLD, appears to dispropor-
tionately occur in certain ethnic groups, and may explain
higher rates of NALFD in Asian and Hispanic populations,
especially in lean patients.

8.2 Transmembrane 6 superfamily member 2
(TM6SF2)

TM6SF2 is a gene involved in regulating hepatic VLDL
secretion. Variants with diminished expression are asso-
ciated with excess hepatic fat accumulation [87]. A mis-
sense variant rs58542926[T], encoding E167K, has been
linked to liver fat accumulation and increased risk of
NASH [18]. An Australian study comparing NAFLD
patients with BMI <25 kg/m2 compared to BMI
≥25 kg/m2 had a higher rate of the T allele expression
in lean patients [61]. An Italian cohort also showed a
higher expression of the variant in Lean NAFLD (4%)
compared to overweight/obese NAFLD (0.3%) patients
(p = 0.001) [79]. In contrast, a retrospective Austrian
study comparing lean, overweight, and obese patients
did not find a higher expression of T allele, though
there was a tendency for higher percentage of T allele
homozygotes in lean (21.9%) compared to obese
(16.5%) [39].

An exome-wide association study based on the Dallas
Heart Study found a higher frequency of Glu167Lys
TM6SF2 variant in Non-Hispanic White individuals com-
pared to Hispanic and African American (7.2% vs 4.7% and
3.4%) [87]. The prevalence is much lower compared to the
PNPLA3 variant in this same study, but may help to account
for higher rates of NAFLD in Caucasians compared to African
Americans. In addition, a Chinese study of 992 patients
showed the variant was occurred in only 0.4% of patients
and was not significantly associated with liver disease, sug-
gesting little to no role for this gene in this population [88].
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8.3 -HSD17B13

HSD17B13 encodes hydroxysteroid 17-beta dehydrogenase
13, which is expressed in human liver and has enzymatic
activity against several lipid species [78]. It was identified in
a GWAS study linking genetic data to EHR data. The splice
variant rs72613567:TA appears to be protective against all
categories of liver disease in a dose-dependent manner. In a
replication cohort of patients undergoing bariatric surgery,
homozygotes for the splice variant had significantly reduced
risk of biopsy-proven NASH and fibrosis [78]. This variant
also appeared to mitigate the risk of liver protein injury in
individuals who were also carriers of the PNPLA3 I148M
variant [89].

8.4 Cholesteryl Ester transfer protein (CETP)

CETP is a critical factor in reverse cholesterol transport (from
the peripheral tissues back to the liver) and HDL metabolism.
Two polymorphisms (rs12447924 and rs12597002) have
been associated with increased risk of NAFLD in lean indi-
viduals [90]. In a general population cohort of Caucasian
Australian teenagers, these were associated with increased
probability of NAFLD. For lean females, the risk of NAFLD
was 30% for homozygotes, 10–15% for heterozygotes, and 3–
5% for wild type [91]. Interestingly, this association was lost
in obese patients when modified by excess visceral fat. It was
also not seen in male participants.

8.5 Sterol regulatory element-binding factor (SREBF)

The SREBF gene codes for SREBP-2, which is a transcription
factor that regulates genes involved in cellular cholesterol bio-
synthesis and homeostasis. Upregulation of SREBP-2 is cor-
related with worsening severity of NAFLD [90]. The
rs133291 polymorphism of SREBP-2 was identified in a co-
hort of lean individuals with NAFLD and associated with an
increased risk of Lean NAFLD as well as increased severity of
disease [92].

8.6 Glucokinase regulatory protein (GCKR)

The GCKR variant rs1260326 (TT allele) has been associated
with increased risk of NAFLD in Caucasian and Hispanic
individuals due to reduced inhibitory effect on glucokinase
in the liver, leading to increased de novo lipogenesis [93]. It
is also associated with increased severity of fibrosis [94].
However, the association between this polymorphism and
NAFLD has not been consistent between studies. In a
Chinese population, the polymorphisms rs780094 and
rs1260326 were not associated with NAFLD [95]. There
was also no association between NAFLD and rs780094 in
an Iranian population [96]. In an Austrian study of

Caucasian patients, the rs6834314 polymorphism was not as-
sociated with NAFLD (OR 1.935 p = 0.098) [80]. In contrast,
there was a positive correlation between the rs780094 TT
allele and NAFLD status in Taiwanese children [97]. Hence,
the role of GCKR polymorphisms in the development of
NAFLD in lean populations is not clear (Table 3).

9 Metabolic risk in comparison
to overweight/obese NASH

Similar to NAFLD in obese populations, Lean NAFLD has
been associated with a number of co-morbid conditions in-
cluding PCOS, T2DM, and MetS [98]. People with Lean
NAFLD are also at risk of developing the sequelae of
NAFLD: NASH, cirrhosis, and HCC. Compared to over-
weight or obese patients, Lean patients with NAFLD tend to
have less severe features of MetS, [17, 39] though in Asian
populations the presence ofMetS in lean patients more strong-
ly correlates with NAFLD than in overweight or obese pa-
tients [80]. A prospective cohort study of 406 lean adults in
Hong Kong (BMI < 23 kg/m2) found that new onset of
NAFLD (7.9%) was associated with increases in waist cir-
cumference and triglycerides over a period of 3–5 years
[20]. A Chinese cohort of Lean NAFLD compared to
overweight/obese NAFLD found a higher visceral adiposity
index (a measurement associated with cardiometabolic risk
and insulin sensitivity) in lean NAFLD than overweight/
obese controls [21]. This suggests that people who develop
NAFLD at lower BMI are less able to adapt to the metabolic
challenges of modest weight gain, when compared to people
who develop NAFLD at higher BMIs (Table 4).

In general, Lean NAFLD patients have less severe features
of MetS than patients with Non-Lean NAFLD. There is also a
greater prevalence of NAFLD in overweight and obese indi-
viduals compared to lean. In an Italian study, although rates of
MetS increased with weight (18% normal weight compared to
67% in obese), rates of NASH were similar across weight
groups (normal weight, 65%; overweight, 73%; and obese,
84%; p = 0.184) [101]. This was despite MetS being an inde-
pendent risk factor for NASH (OR, 3.2; 95% CI, 1.2–8.9;
P = .026) and severe fibrosis (OR, 3.5; 95% CI, 1.1–11.2;
P = .032). Lean patients from Austria also had similar rates
of ballooning, lobular inflammation, and fibrosis as obese
NAFLD [39]. Interestingly, there was a higher rate of cirrhosis
in lean (8.1%) compared to obese patients (2.0% p = 0.027).
On the contrary, another Italian study found lower rates of
NASH (55% vs 72%) and fibrosis in the lean group [102].
Finally, a study from India found lower rates of NAFLD
Activity Score, ballooning, and fibrosis in Lean NAFLD com-
pared to obese patients [100]. One limitation with these stud-
ies is that they are typically tertiary care centers that might
suffer from referral bias.
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Overall potential mechanisms for development and pro-
gression of Lean NAFLD is proposed here (Fig. 1).

10 Treatment for NAFLD and NASH

10.1 Lifestyle

Lifestyle modifications are the cornerstone of treatment of
NAFLD. Currently it is the only evidence-based treatment
for Lean NAFLD [17]. As little as 3% weight loss can lead
to improvement in biomarkers, and 7–10% weight loss can
lead to regression of NAFLD [103]. There is even evidence
that improvements in liver fat can be seen even if there is no
change in overall weight [104, 105].

Weight loss is a strong predictor of regression of NAFLD.
Kim et al., followed nonobese and obese patients with
NAFLD, and found that nonobese subjects had regression of
NAFLD with smaller reduction in body weight [106]. Also,
exercise improves insulin resistance even in lean individuals
[107]. A study of insulin sensitivity, fatness, and fitness in
lean and obese individuals who were healthy showed that
physical activity improved liver insulin sensitivity, and had

more of an impact on liver insulin sensitivity than adiposity
[108].

Devries, et al. did not find any significant effects of endur-
ance exercise on liver steatosis in lean or obese subjects [109].
However, the participants did not have evidence of steatosis,
LFT abnormalities, or a diagnosis of NAFLD at the time of the
study. In contrast, Keating, et al. found that even low intensity
exercise elicited improvement of hepatic steatosis and visceral
adipose tissue as measured by MRI in obese subjects. This
benefit was unrelated to weight loss, although the study was
underpowered to determine an optimal dose or threshold ef-
fect of exercise [103]. Aerobic exercise elicited 2.4–2.6% re-
duction in liver fat in 8 weeks, which could be sufficient to
cause remission of NAFLD in mild disease. Zelber-Sagi, et al.
showed a beneficial effect of resistance exercise. [110]. Their
cohort was sedentary, overweight or obese patients with
NAFLD. After 3 months of resistance training program, there
was significantly decreased liver fat by US, and decreased
adiposity and increased lean mass by DEXA.

Beside adiposity, sarcopenia may contribute to the devel-
opment of NAFLD. In a subgroup analysis of the Rotterdam
study, skeletal muscle mass was consistently associated with
NAFLD in normal- weight women [33]. However, fat mass

Table 3 Prevalence of Lean and Non-Lean NAFLD in selected studies

Study Country Definition of lean Prevalence of NAFLD in population

Naderian, 2017
[11]

Tehran, Iran BMI <25 kg/m2 17.5%; diagnosed by US

Das,2010 [16] West Bengal,
India

BMI 18.5–24.9 kg/m2 Lean NAFLD: 3.2%
Total NAFLD: 8.7%
Diagnosed by US, CT, or biopsy

Younossi, 2012
[17]

United States Lean BMI <25 kg/m2

Non-Lean BM ≥ 25 kg/m2
Rate of NAFLD in lean vs non-lean (7.39% ± 0.65%

vs. 27.75% ± 1.00%, respectively; p < 0.0001).
Hispanic ethnicity (p = 0.0037), diabetes (p < 0.0001)

and hypertension (p = 0.0033) were independent risk
factors for Lean NAFLD

Selvakumar,
2018 [15]

United States Weight < 85% by CDC criteria. Excluded patient without
evidence of MetS

8% (5–11.5% depending on study year)
Study population - adolescents age 12–18
Patients identified by LFTs as high risk of NAFLD

Sinn, 2019 [18] Seoul, South
Korea

Lean BMI <23 kg/m2

Overweight/obese BMI ≥ 23 kg/m2
Lean NAFLD - 10.3%
Non-Lean NAFLD - 46.1%

Kwon, 2012 [19] Seoul, South
Korea

Lean BMI <25 kg/m2

Obese BMI ≥ 25 kg/m2
Lean NAFLD - 12.6%
Non-Lean NAFLD - 50.1%

Wei, 2015 [20] Hong Kong Lean BMI <25 kg/m2 Lean NAFLD - 19.3%
Non-Lean NAFLD - 60.5%

Feng, 2014 [21] Harbin, China Lean BMI < 24 kg/m2

overweight-obese BMI ≥ 24 kg/m2
Lean NAFLD - 18.33%
Non-Lean NAFLD - 72.90%

Niriella, 2018 [7] Sri Lanka Lean BMI < 23 kg/m2

Non-Lean BMI ≥ 23 kg/m2
Lean NAFLD - 4% in 2007 and 13.2% in 2014.
Non-Lean NAFLD - 27.3% in 2007.
Diagnosed by US

Cho HC, 2016
[22]

Seoul, South
Korea

Obese BMI of ≥25 kg/m2 Lean NAFLD - 12.4%

Akyuz, 2014[13] Turkey Lean BMI <25 kg/m2 Lean NAFLD – 7.6%

NAFLD, non-alcoholic fatty liver disease; BMI, body mass index
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was a better predictor for NAFLD probability in both sexes. A
Korean cohort study found that sarcopenia was an indepen-
dent predictor of NAFLD, and also associated with insulin
resistence [34]. An analysis based on the Korea National
Health and Nutrition Examination Surveys also found that
individuals with sarcopenia had increased risk of NAFLD,
independent of obesity, and also were more likely to have
advanced fibrosis [111]. Interestingly, this study also found
individuals who exercised regularly had a lower risk of
NAFLD. These studies suggest a mechanism of resistance
training replacing fat mass with lean mass (regardless of net
weight loss) as an easily accessible, inexpensive, and targeted
approach for individuals with NAFLD.

Dietary modification is another way of achieving weight
reduction and decreasing hepatic fat. A Mediterranean diet
may produce beneficial alterations in the gut microbiome that
reinforces the gut barrier [59]. Reducing added sugars has
been associated with resolution of NAFLD [54]. Montesi,
et al. randomized patients with NAFLD to an intensive, indi-
vidualized weight loss program which allowed participants to
choose a less involved physical activity (PA) (1 h individual
sessions every 2 weeks to encourage exercise) versus a more
involvedcognitive behavioral therapy (CBT) program which
provided weekly 2 h group counseling on nutrition and

behavioral strategies based upon LEARN model [112, 113].
Both groups reduced BMI though greater in CBT (−2.04 ±
1.42 kg/m2 vs −1.09 ± 1.68 kg/m2, P = 0.019), yet both saw
similar improvements in lipids, LFTs, and MetS [112]. This
suggests that various approaches to lifestyle modifications can
be beneficial and support shared decision making based upon
patient preference. Recently, a small study which included
Lean NAFLD participants, showed that an 8 week dietary
intervention (with emphasis on low or middle glycemic index
carbohydrates) resulted in weight loss of 5.4%, significant
improvements in ALT levels, and liver steatosis on
Fibroscan® [114].

10.2 Pharmaceuticals

Medications are generally reserved for patients with biopsy-
proven NASH and fibrosis [23]. Currently, there are no FDA
approved medical treatments for NAFLD. As of 2018, there
were at least 190 compounds under investigation, and over
300 clinical trials [115]. A major barrier in drug development
for NAFLD in general has been the relatively long lag time
between development of steatosis and clinically important
outcomes like cirrhosis, liver failure, and HCC. The lack of

Table 4 Metabolic abnormalities in lean NAFLD vs others

Country Compared to Lean Control Compared to nonLean with AFLD.

Naderian,
2017 [9]

Tehran,
Iran

Higher TG, SBP, BMI >23.2 kg/m2. MS increased risk of
NAFLD

NA

Selvakumar,
2018 [15]

United
States

Lean NAFLD had higher Triglycerides, lower HDL, but
similar BMI. Insulin resistance and white compared to
black ethnicity increased risk of NAFLD

. NA

Cantero,
2018 [99]

Granada,
Spain

Compared to lean without NAFLD, more likely male, greater
waist circumference, liver enzymes, and IR. Compared
with over-weight control, had greater IR, liver enzymes.

Compared with obese without NAFLD, Lean NAFLD had
worse IR and lower adiponectin levels.

Kwon, 2012
[19]

Seoul,
South
Korea

Higher BMI and components of MetS (high BP, high FBG,
low HDL-C, and high TG), fat percentage, current smoker
and less likely to exercise in NAFLD compared to Lean
controls.

Prevalence ratios for non-obese NAFLD patients was higher
for components of MetS (high BP, low HDL, high TG,
presence of IR) than obese NAFLD counterparts.

Wei, 2015
[20]

Hong
Kong

Obesity, high hemoglobin A1c, insulin resistance,
hyperferritinemia, and the PNPLA3 G allele were
independent factors associated with NAFLD in non-obese
subjects

PNPLA3 rs738409 was more common in non-obese than
obese NAFLD patients (78.4% vs. 59.8%; P = 0.001).

Feng, 2014
[21]

Harbin,
China

Lean NAFLD had greater risk for central obesity,
dyslipidemia, BP, DM, MetS compared to Lean control

Non-lean NAFLD had greater body fat percentage, visceral
adipose index, and BP, along with IR, though similar
lipids.

Niriella,
2018 [7]

Sri Lanka Lean NAFLD more common in males with lower prevalence
for HTN and central obesity at baseline. Baseline DM and
weight gain during follow up greatest risk for new onset
NAFLD.

Lean NAFLD had lower central obesity, HTN, and
components of MetS compared to non-Lean counterparts.
PNPLA3 mutation was stronger indicator of NAFLD in
Lean than non-Lean NAFLD.

Kumar, 2013
[100]

India Lean NAFLD BMI, incidence of dyslipidemia and MetS
higher than normal control.

Lean NAFLD had less IR than non-lean, less likely to have
MetS or diabetes, less inflammation or fibrosis, but similar
proportion of patients with NASH and advanced fibrosis.

BP, blood pressure; HDL, high density lipoprotein; LDL, low density lipoprotein; TG, triglycerides; SBP, systolic blood pressure; IR, insulin resistance;
MetS, metabolic syndrome; BMI, body mass index; DM, diabetes mellitus; OR, odds ratio
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a good animal model and noninvasive markers of fibrosis
have also been barriers.

Several existing medications and supplements have been
evaluated for efficacy in treating NAFLD or NASH [23].
Acco rd i ng t o AASLD gu id e l i n e s on NAFLD,
thiazolidinediones (TZD) and vitamin E have evidence of
benefit in NASH [23]. Vitamin E has been shown to improve
liver histology, but concerns remain about possible increased
risk of cancer with vitamin E supplementation. The PIVENS
trial compared 800 IU natural vitamin E or 30mg pioglitazone
daily to placebo [116]. Although both pioglitazone and vita-
min E elicited significant improvement in histology and
steatohepatitis, they did not appear to improve fibrosis. Also,
all the patients in this study were overweight or obese limiting
its application to lean individuals. Various studies have shown
benefit of doses 300 IU daily up to 1000 IU have shown
benefit, though controversy exists about potential increased
risk of overall mortality ≥400 IU, though more recent studies
metanalysis suggests doses up to 500 IU daily are safe
[117–120]. Other risks such modest risk of hemorrhagic
stroke and prostate cancer have been seen with various doses
of Vitamin E even as low as 400 IU every other day [121,
122]. Therefore, risk and benefits need to be addressed with
patients. Obeticholic acid, a farnesoid X receptor (FXR) ago-
nist, regulates bile acids, and activation appears to improve
hepatic fatty acid oxidation, reduce de novo lipogenesis and
reduce inflammation and fibrosis. The REGENERATE trial, a
phase-3 clinical trial of obeticholic acid recently published an
interim analysis showing positive findings, but was not strat-
ified by weight [123].

There is mixed evidence on the benefit of metformin,
omega-3 fatty acids, glucagon like-peptide-1 (GLP-1) ago-
nists, and Dipeptidyl peptidase 4 (DPP-4) inhibitors in reduc-
ing hepatic fat. Liraglutide is a GLP-1 agonist approved for
diabetes mellitus which has several benefits besides glycemic
control, including weight loss and cardioprotection. Given
that cardiovascular disease is the major cause of morbidity
in NAFLD patients, use of these cardioprotective medications
could provide multiple benefits in patients with NAFLD and
diabetes.. While these medications have not been studied in
patients with Lean NAFD, Liraglutide has been shown to
reverse histological evidence of inflammation in a lean guinea
pig model, although did not reduce steatosis [124]. A placebo-
controlled study of liraglutide in histologically-confirmed
NAFLD showed significant resolution of fibrosis and less
progression of fibrosis even when controlling for weight loss
[125]. This study excluded those with BMI <25 kg/m2, so
whether these benefits would be seen in individuals with
Lean NAFLD is unclear.

11 Outcomes

Patients with NAFLD are at risk for NASH, cirrhosis, HCC,
and liver failure requiring liver transplant. Given that patients
with Lean NAFLD frequently have less severe metabolic ab-
normalities than obese NAFLD, the question is whether they
would develop the same negative outcomes. An abstract by
Dela Cruz, et al. was one of the first to indicate that Lean
NAFLD may not be a more benign condition [126]. In 1090
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patients with biopsy-proven NAFLD, survival was signifi-
cantly shorter in the Lean NAFLD (HR 11.8, CR 2.8–50.1,
p = 0.001), despite fewer co-morbidities and less fibrosis.

12 Future directions

Does Lean NAFLD represent a continuum with Obese
NAFLD or does it represent a unique pathology? This is an
important question for both prevention and treatment, since
different etiologies may not respond the same way to the same
intervention. Previous clinical trials on NAFLD have often
excluded lean individuals, or not stratified groups by BMI.
Subgroup analysis by BMI may help in both targeting treat-
ments and elucidating etiology. Ethnicity-specific BMI guide-
lines are also important for correctly categorizing patients as
lean vs. obese.

Further studies on lifestyle modifications are needed in
this population. Potential areas of research include the
effect of macronutrient content, development of culturally
sensitive diet recommendations where traditional diets are
high in simple carbohydrates (i.e. rice), and effects of
different types of exercise on liver steatosis, liver en-
zymes, and fibrosis. In the era of personalized medicine,
genetic risk markers may help identify both patients at
risk, and those who would benefit from certain treatments
over others. For example, patients with polymorphisms in
PNPLA3 appear to respond better to exercise as well as
lower carbohydrate diets.

13 Conclusions

NAFLD is likely a disorder which requires multiple “hits”
for development and progression of the disease. It is clas-
sically associated with obesity, but Lean NAFLD repre-
sents a unique subset of patients that due to the interaction
of genetics, lifestyle, diet, age, the microbiome, underly-
ing medical conditions, environmental exposures, medica-
tions, and other factors are at risk of developing steatosis,
inflammation, and NAFLD at a lower BMI. Despite the
generally milder clinical phenotype, patients with Lean
NAFLD are still at risk for cirrhosis, hepatocellular carci-
noma, and liver failure.

Although the metabolic syndrome is associated with both
Lean and Overweight/Obese NAFLD, Lean NAFLD appears
to have a greater association with genetic risk factors suggest-
ing less metabolic adaptability at a given weight. In addition,
increased visceral fat with or without sarcopenia further con-
tributes to less metabolic adaptability and greater risk of
NAFLD at lower weights. Given that the global burden of
NAFLD is huge, upwards of 50% in certain populations, it

is important to continue research into screening, prognosis,
and treatment of Lean NAFLD.
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