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Abstract
About ninety percent of all diabetic conditions account for T2D caused due to abnormal insulin secretion/ action or increased
hepatic glucose production. Factors that contribute towards the aetiology of T2D could be well explained through biochemical,
molecular, and cellular aspects. In this review, we attempt to explain the recent evolving molecular and cellular advancement
associated with T2D pathophysiology. Current progress fabricated in T2D research concerning intracellular signaling cascade,
inflammasome, autophagy, genetic and epigenetics changes is discretely explained in simple terms. Present available anti-
diabetic therapeutic strategies commercialized and their limitations which are needed to be acknowledged are addressed in the
current review. In particular, the pre-eminence of nanotechnology-based approaches to nullify the inadequacy of conventional
anti-diabetic therapeutics and heterogeneous nanoparticulated systems exploited in diabetic researches are also discretely men-
tioned and are also listed in a tabular format in the review. Additionally, as a future prospect of nanotechnology, the review
presents several strategic hypotheses to ameliorate the austerity of T2D by an engineered smart targeted nano-delivery system. In
detail, an effort has been made to hypothesize novel nanotechnological based therapeutic strategies, which exploits previously
described inflammasome, autophagic target points. Utilizing graphical description it is explained how a smart targeted nano-
delivery system could promote β-cell growth and development by inducing the Wnt signaling pathway (inhibiting Gsk3β),
inhibiting inflammasome (inhibiting NLRP3), and activating autophagic target points (protecting Atg3/Atg7 complex from
oxidative stress) thereby might ameliorate the severity of T2D. Additionally, several targeting molecules associated with au-
tophagic and epigenetic factors are also highlighted, which can be exploited in future diabetic research.
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1 Introduction

DM is a serious health disorder affecting millions of individ-
uals worldwide and a further 629 million likely to be added to
the tally by 2045 [1]. The disorder will be the 7th in the cause
of global mortalities. DM can be categorized as T1D mainly
caused due to deficit in the excretion of insulin and T2Dwhich
is a result of abnormal insulin secretion/ action or improved
hepatic glucose production [2, 3]. There are copious facets
that chip in towards aetiology of T2D and are well explained
in biochemical, molecular, and cellular aspects. Chaudhury
et al. have put forth that, T2D is modulated by eight main
defects called ominous octet [4]. These eight core defects are
dysfunction of the neurotransmitter, low uptake of glucose,
amplified GNG in hepatocytes, decreased incretin effect, de-
creased insulin production, increased lipolysis, increased se-
cretion of glucagon, and increased glucose reabsorption [5].

The disease is preliminarily detected through changes in
hyperglycemia, macrovascular complications (cardiovascular
disorders, stroke, and peripheral vascular complications), and
consequential microvascular complications (retinopathy, neu-
ropathy, and nephropathy) [6]. Current therapeutics are limit-
ed to drugs that can normalize defects starting with elevated
insulin secretion by sulfonylureas and meglitinide. Use of
Biguanide and thiazolidinedione to enhance insulin sensitivity
through activation of AMPK and PPAR-γ receptor respec-
tively are an effectual line of action but have some limitations.
Amplified activation of the incretin pathway by DPP-4 inhib-
itors, SGLT inhibitors, and GLP-1 RAs are reported to be
effective with limited or no side-effects [7]. Activation of in-
sulin receptors by insulin bolus insulins, basal insulins, and
premixed insulins though not cheap are efficient and available
for the common man.

These limitations and side-effects can be neutralized if the
cellular and molecular etiology of the T2D is properly
comprehended. Moreover, a better understanding of the mo-
lecular pathogenesis of T2D can be achieved by dismantling
the intricate pathophysiology of T2D in terms of emerging
cellular and molecular cascades like inflammasome, autopha-
gy, genetic and epigenetic modifications [8–15]. An in-depth
investigation in T2D associated with these molecular and cel-
lular cascades may lead to the development of novel diabetic
markers and target points for future therapeutic interventions
[16, 17]. Further, transforming these target points into viable
therapeutic option requires a customizable, biocompatible de-
livery vehicle where nanotechnology appears to be the most
formidable strategy [18, 19]. The developments made in the
current decade and the expeditious evolution of nanotechnol-
ogy, bridges currently developing applied branches of science
and treatment of T2D. Formulating such cutting-edge nano-
based products like nanocarriers, nanosensors and nanotools
of heterogeneous utilities have radically transformed the
height and depth of scientific innovation. Their inimitable

and astonishing characteristics like nano-size, lighter weight,
higher strength, and surface area, superior control of light
spectrum convey their wide application in multidisciplinary
areas [8]. Additionally, biocompatible properties like non-im-
munogenicity, non-toxicity, sustainability to physiological pH
and temperature, control release, target-specific delivery, and
action also make them a unique and potential candidate in
biomedical application [20, 21]. Considering the benefits
and competent medication of nanoparticles towards the
mediators/ modulators of T2D, the current review highlights
and presents the ventures of the nano-targeting system on
finding the euphoria within molecular pandemonium repre-
sented in the form of the inflammasome, autophagic, genetic
and epigenetic. Different types of nano-delivery systems cur-
rently exploited in diabetic research are introduced and some
of these researches are listed in a tabular format within the
review. Further, the paper describes the conventional com-
mercially available antidiabetic drugs and emerging cellular
pathways such as inflammasome, autophagy, genetic, and epi-
genetic changes at the molecular level and their association
with T2D. Moreover, in the review, an effort has been made
through hypothesizing novel nanotechnological based smart
nuclear targeted nano-delivery systems as therapeutic strate-
gies . The strategy exploi ts previously described
inflammasome where inhibition of NLRP3 inflammasome
by antisense oligonucleotide is described [9, 22–24].
Likewise, the nuclear targeted nano-delivery system is de-
signed to induce autophagy by delivering antioxidant mole-
cules for neutralizing ROS which might affect the Atg3/Atg7
complex [11, 12, 25, 26]. A strategy is also provided to pro-
mote β-cell growth and development by targeted nano deliv-
ery system which could induce the Wnt signaling pathway by
inhibiting Gsk3β. Lastly, the paper provides several autopha-
gic and epigenetic factors that can be further exploited for
future diabetic researches. These hypothetical nanotechnolog-
ical based therapeutic strategies may be helpful for the ad-
vancement in engineering future therapeutic approaches in
T2D.

2 Factor inducing β-cell failure or loss
in type-2 diabetes

2.1 Molecular aetiology

Pancreaticβ-cell failure as a corollary of tangential IR, declin-
ing β-cell response, and compromised synchrony of hepatic
GNG are the broad characteristics of T2D [31]. Adapter pro-
teins transduce the signal from insulin receptors towards
downstream cascade furnishing IR in T2D [32]. Under normal
conditions, the binding of insulin to extracellular α-subunit of
the heterotetrameric glycoprotein of insulin receptor and trans-
location of GLUT4 to the plasma membrane for glucose
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influx and triggering of glycogenesis is described in Fig. 1
[27, 28, 33]. Nuclear localization of β-catenin through the
Wnt signaling pathway is another important factor as it inter-
acts with TTCF/LEF TF regulating Pitx2 gene transcription
which otherwise may result In mediation and degradation of
β-catenin [29, 34, 35] (Fig. 1). Molecular alteration in any of
the above mentioned intermediate signaling molecules or TFs
may lead to failure and loss of β-cell.

2.2 Genetic aetiology

Predisposition at specific genes by default orchestrates
an unambiguous consequence leading to malfunctioning
of β-cell response or death. Some of the recent inves-
tigations suggest that TF like Pdx1 and FOXA2 genes
are the chief regulator of β-cell maturation [36–38].
MODY, pancreas agenesis or diabetes susceptibility
arises as a post mutation consequence in humans at
cis-regulatory consensus binding sites of these genes
[36]. Pdx1 along with PTF1A is fundamental for the

growth and maturity of the pancreas [39]. Other factors
like TFs like FOXA1/2, SOX9, HNF 1β, Ngn3, Hes1,
Pax4/6, and GATA4/6 are also known to orchestrate an
intense role in pancreatic development [40–45].

2.3 Environmental variables

Environmental factors specifically nutrients and the sup-
ply of oxygen plays an imperative role in pancreatic
development. A decrease in β-cell mass and increase
secretion of fetal corticosterone on the ingestion of
low energy diet was evidenced in past investigations,
where deprived development of β-cell mass was concur-
rent with a diminishing number of NGN3-and Pdx1-ex-
pressing cells [46]. At low pO2, the cell undergoes ele-
vated angiogenesis and erythropoiesis with a simulta-
neous shift towards glycolysis. It is observed that under
obese conditions chronic hypoxic state is amalgamated
with suppressed NO bioavailability, progressing to T2D
[47]. Data also suggests that alteration in any

Fig. 1 Molecular aetiology of insulin resistance. Binding of insulin to its
receptor results in their autophosphorylation of IRS-1/2 (insulin receptor
substrates), which activates phosphoinositide 3-kinase (PI3K). This re-
sults in activation of P3 dependent kinase-1 (PDK-1) and AKT/Protein
Kinase B which guides the translocation of GLUT4 transporter from
glucose transport vesicles (GSV) to cell membrane. The activation of
C-Jun N-Terminal Kinase (JNK) and Insulin Kappa B Kinase (IkK) by
cytokines, TNFα, Endoplasmic reticulum stress (ER Stress) etc. also
leads to negative regulation of insulin signalling pathway. Different
Toll like receptors (TLR2, TLR4) are also indulged in insulin resistance
by activating MYD88 (myeloid differentiation primary response gene)
and TRIF (TIR domain containing adaptor inducing interferon-b ). ER
stress activates AFT6 (activating transcription factor 6), IRE-1 (inositol

requiring endonuclease-1) and PERK (pancreatic endoplasmic reticulum
kinase-1) which leads to apoptosis. On other side, binding of Wnt ligand
to its receptor called Frizzleds (Fz), triggers a signaling cascade that
results in the stabilization and nuclear localization of β-catenin whose
interactions with T cell-specific factor/lymphoid enhancer-binding factor
(TCF/LEF) transcription factors control transcription of target genes like
Pitx2. However, in the absence of Wnt signaling, cytoplasmic β-catenin
in Wnt-responsive cells is processed to proteasomal degredation by a
heteromeric protein complex containing Axin, glycogen synthase kinase
3 (GSK-3), and other proteins which together is known as β-catenin
degradation complex. Wnt signalling regulates cell proliferation in pan-
creatic tissues. Inspired from [27–30]
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physiological concentrations of HIF1α may lead to in-
appropriate β-cell function and affect the release of in-
sulin [30] (Fig. 1).

2.4 Biochemical erratic

Evaluation of GNG indicated that any form of compro-
mised management in GNG may cause the failure of β-
cell and ultimately malfunctioning of insulin action [48].
Besides pancreatic α-cells, multiple tissues and cell
types such as adipose tissue, skeletal muscle, and brain
are also involved in indirect gluconeogenic suppression.
Transcriptional regulators like FOXO1- 3, 3a, 4, and 6,
along with CREB, CREBH, PGC-1α, glucocorticoid re-
ceptor, sterol response element-binding protein
(SREBP), STAT3, and DAX1 have also revealed to
contribute towards the regulation of GNG [48] (Fig.
2). Additionally, prolonged exposure of glucose and free
fatty acids are observed to cause β-cell dysfunction
leading to cell apoptosis in T2D.

3 Pharmacological treatments available
for reversal of type-2 diabetes

Pharmacological treatments for T2D could be segregated into
the following types sulfonylureas andmeglitinides, biguanide,
thiazolidinediones, α-glucosidase inhibitors, DPP-4 inhibi-
tors, sodium-glucose transporter, inhibitors, GLP-1 recep-
tor agnosists, and prandial, basal, and premixed insulin
[7] (Fig. 3).

(i) Sulfonylurea is a stimulator for pancreatic beta cells to
secrete insulin by activation of SURs present at the β-cell
membrane. The propinquity of SUs varies with different
SURs present in potassium ATP dependent channels.
Meglitinides is a drug with a similar mechanism which
includes repaglinide and natelinide.

(ii) Metformin a drug type of biguanide that inhibits hyper-
glycemia by reducing IR, triglycerides formation,
hyperinsulinemia, and HbA1c. Further, boosts high-
density lipoprotein level by simultaneously lowering

Fig. 2 Role of genetic predisposition and environmental factors in
declining β-cell response to insulin resistance. Different transcription
factors (TF) and TFs like viz. Pancreatic Duodenal Homeobox 1
(Pdx1), Forkhead Box A2 (FOXA2), Pancreas Transcription Factor 1A
(PTF1A), FOXA1/2, Sex Determining Region Y-box 9 (SOX9),
Hepatocyte Nuclear Factor (HNF) 1β, GATA-binding protein
(GATA4/6), Neuronal Differentiation 1 (NeuroD1), Nk class of
Homeodomain-encoding genes 2.2 (Nkx2.2), Nkx6.1, V-Maf musculo-
aponeurotic fibrosarcoma oncogene family protein B (MafB) and Gli-
Similar 3 (Glis3) are critical regulator of β-cell development, maturation
and function in pancreas. Among nutrients, ingestion of low protein and
low energy diet lead to reduction in number of Neurogenin-3 (NGN3)-

and Pdx1-expressing cells, decrease in β-cell mass and increase secretion
of fetal corticosterone. Hypoxia plays role in stabilization/destabilization
of Hypoxia-inducible factor-1α (HIF-1α) by inhibiting Prolyl
Hydroxylase Domain enzymes (PHD) & Factor-inhibiting hypoxia-
Inducible Factor (FIH) which otherwise used to hydroxylate HIF-1α for
their proteasomal degradation after its ubiquitination. Inactivation of
PHD and FIH under hypoxia facilitates hetrodimerization of HIF-1α
and HIF-1β which further with phosphorylated cAMP response
element-binding protein- (CREB-) binding protein (CBP) and p300 binds
to hypoxia-response element (HRE) in nucleus to up-/downregulate sev-
eral genes including glucose transporters (GLUTs), adipokines, and cy-
tokines for hypoxia adaptation. Inspired from [11, 48, 49]
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low-density lipoproteins. Besides all these actions, it in-
hibits glycogenolysis, stimulating insulin-receptor sub-
strate-2, and enhancing glucose transport through
GLUT-1 translocation.

(iii) TZD mainly reverses insulin sensitivity by mimicking
ligand of PPARγ expressed on adipocyte, liver, heart,
colon, activated macrophages, skeletal muscle, etc. The
receptor regulates the metabolism of carbohydrate, lipid,
cell proliferation, and glucose homeostasis through ele-
vating fatty-acid uptake in blood maintains β-cell func-
tion and survival as well as increased insulin sensitivity
[54]. Currently, two TZDs are marketed by the name of
rosiglitazone and pioglitazone.

(iv) PP4 is a cell surface protein expressed in many special-
ized cell types, functions as degradation of proteins,
cell-cell interaction, inflammation, vascular function,
immunity, and transduction pathways activation [50].
According to several recent studies, the reduced DPP4
expression and increased concentration of GLP-1 in cir-
culation results in improved production of insulin, de-
creased GNG, less glucagon secretion, reduced HbA1c
level, and improved glucose uptake. Therefore different
forms of DPP4 inhibitors are marketed as drugs such as
sitagliptin, saxagliptin, and linagliptin.

(v) SGLT inhibitors are another novel therapy for T2D.
These transporters regulate glucose homeostasis of
SGLT1, T2, T4, and T5. SGLT mediates intestinal glu-
cose absorption and re-absorption of kidney glucose.

They are expressed in the small intestine, testes, brain,
kidney, trachea, prostate, pancreatic α-cells, and heart.
The inhibitors of SGLT2 namely dapagliflozin,
canagliflozin, and empagliflozin are approved interna-
tionally for T2D patients. These novel antidiabetic drugs
promote the lowering of blood glucose and HbA1c level
by enhancing renal excretion.

(vi) α-Glucosidase inhibitors like acarbose, voglibose,
emiglitate, and miglitol act by competitive and revers-
ibility inhibiting the enzyme and prevent the formation
of monomeric α-glucose molecules. They are known to
r e d u c e p o s t p r a n d i a l h y p e r g l y c em i a a n d
hyperinsulinaemia, insulin sensitivity, and liberation
β-cell stress.

(vii) GLP-1 is an important antagonist that helps in restoring
blood glucose regulation to normal levels by regulation
of insulin and secretion of glucagon in Type-2 diabetic
patients [55]. GLP-1 receptors have generated interest
as they enhance incretin action and are segregated as
short-acting (exenatide, lixisenatide) and long-acting
(albiglutide, dulaglutide, exenatide, liraglutide, and
semaglutide) GLP-1antagonists affecting both fasting
and postprandial glucose [51].

(viii) Insulin replacement therapy is a reliable therapeutic
option for type-2 diabetic patients with insulin defi-
ciency [56]. The therapy comprises basal or long-
acting insulin such as aspart, glulisine, etc. or prandial
or rapid-acting/ intermediate-acting commercialized

Fig. 3 Mechanisms involved in
the development and
pharmacological treatments of
Type-2 Diabetes (T2D).
Pharmacological treatments for
T2D could be segregated into the
following types such as
sulfonylureas and meglitinides,
metformine and
thiazoldinediones, α-glucosidase
inhibitors, DPP-4 inhibitors, so-
dium glucose transporter (SGLT)
inhibitors, GLP-1 receptor
agnosists. These drugs have spe-
cific site of action in pathway of
insulin resistance mechanism un-
der T2D. Inspired from [7, 50–53]
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insulin available as isophane insulin, biphasic insulin
aspart, and insulin lispro [7]. Insulin replacement ther-
apy encompassing the above-mentioned insulin or in-
sulin analogs acts by activating insulin receptors to
modulate the metabolism of carbohydrates, fats, and
proteins.

Though these medications have proved effective against
T2D by targeting mostly post-symptomatic and certain mo-
lecular aspects specifically β-cell proliferation as well as ap-
optosis arrest, they have several side-effects. Some of the
commonly associated ailments include low BP, skin rashes,
weight gain, kidney complications, swelling of ankles, dizzi-
ness, diarrhea, anemia, etc. and henceforth needs serious con-
sideration for T2D treatment. Additionally, investigation in
the present era mostly focused combination therapy or differ-
ent formulation therapy of these above-mentioned therapeu-
tics or potent non- thiazolidinedione, selective PPAR-γ mod-
ulators like INT131 which are still in pipeline [57].

4 Targeted pathways in the development
of future drugs against T2D

Cutting-edge advancements in diabetic researches encompass
mostly omics studies, high throughput bioinformatic tools,
and computational simulation-based biological systems.
These dry lab generated sophisticated information to indulge
one to venture into the world of miniature dynamic machinery
where they unceasingly sustain life as we know it. Such dy-
namic machinery currently explore to understand T2D can be
explained in accordance with inflammasome, autophagy, and
epigenetics.

1 Inflammasome

Inflammasome can be described as intracellular sensors
consisting of NLRP1, 3, 4, 6, 7, 12, AIM2, and NAIP.
Association of inflammation in T2D is initiated after recogni-
tion of exogenous and endogenous factors like DAMPs by
intracellular sensors. In metabolic disorder, ligand like ASC,
accommodat ing a CARD upon in te rac t ion wi th
inflammasome (NLRP1 and 3) through their respective com-
mon pyrin domain, is activated and recruited [58]. NAIP/
NLRP4 then interacts with CARD domain of caspase-1 to
regulate the enzyme and releases the activated forms of cyto-
kines IL-1β and IL-18 after cleavage of pro-IL-1β and pro-IL-
18 [22]. Other research has conceptualized that ER stress-
mediated activation of IL-1β production by NLRP3 [9, 23].
These pro-inflammatory cytokines in a pleiotropic manner
elicits a cellular immune response against DAMPs and also
mediates β-cell death [9, 22, 23]. Activation of caspase-1
promotes maturation of GSDMD along with pro-IL-1β and

pro-IL-18, where GSDMD causes pyroptosis via pore forma-
tion on the membrane through its N-terminal fragment. Li
et al. [59] demonstrated the neuroinflammation as well as
pyroptotic and apoptotic cell death of hippocampal neuronal
cells mediated by NLRP3 inflammasome induction that fur-
ther contributes to depression in diabetic patients. However,
the involvement of GSDMD induced pyroptosis in the case of
β-cell death is needed to be investigated.

There is a number of investigations suggesting the linkage
of pro-inflammatory cytokines with T2D. It is evidenced that
cytokines like aA-FABP, lipocalin-2, PEDF, resistin, fetuin
A, IL-6, IL-8, MCP-1, TNF-α and IFNγ contributes to either
IR or β-cell death [60]. The blocking of downstream insulin
signalling pathway due to reduced phosphorylation of IRS1
represents the mechanism underlying IL-1β mediated induc-
tion of IR [61]. Solini and Novak [24] have reviewed the
connection of P2X7R in insulin secretion from β-cell and
diabetes induced micro- and macrovascular complications.
Their review states that subjects with metabolic syndrome,
P2X7R expression, and inflammasome activation are higher
in adipose tissue often leading to chronic inflammation in
WAT. In certain cases of T2D, adipose tissue is assailed by
macrophages and other leukocytes, secretes, serine protease
like GrB causing local and low-grade chronic inflammation.
Therefore, it is understood that increased systemic GrB level
could be allied with T2D diagnosis and seconded with elevat-
ed expression of IL-6, TNF-α, WISP1 in dysfunctional AT-
linked systemic inflammation [62].

Experimental observation concludes that patients with T2D
display subclinical inflammation, characterized by increased
circulating levels of hs-CRP, TLRs, and other mentioned sys-
temic inflammatory mediators [63]. Further reports also state
that signal transduction cascade specifically MAP kinase and
NFκB activity plays a discrete function in the secretion of the
above-mentioned cytokines. Therefore it could possible to
target inflammation to ameliorate T2D and the related
micro- and macrovascular complications [64]. The recent data
presented by Rai et al. [10] manifested the anti-inflammatory
effect of metformin and resveratrol in the type-2 diabetic cells.

2. Autophagy

The molecular degradation systemwithin the cell known as
autophagy, not only degrades specific proteins but also breaks
down lipids, DNA, and RNA by delivering them to lysosome
[65]. Like inflammation, association of autophagy with T2D
through ER stress is vastly investigated [66]. Autophagy is a
prominent player, amending degradation-regeneration in-
side cellular system by providing continuous flow of
raw materials for anabolic process. The ambiguous
function of autophagy in cellular homeostasis, or au-
tophagic clearance of toxic cellular components through
aggresomes is spectacular in itself.
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In detailed, autophagosome construction marks the begin-
ning of autophagy originating from ER membranes through
four main steps namely initiation, nucleation, elongation, mat-
uration and fusion which are synchronized by autophagy-
related genes (Atgs) [25]. Instigation of autophagy begins with
activation of Ulk1 complex which mediates phosphorylation
of Atg13, Atg101 and FIP200 with consequential building up
of pre-autophagosome [67, 68]. Ulk1 activates Beclin1 com-
plex through phosphorelation resulting in vesicle nucleation
[69]. Simultaneously elongation process initiates with enroll-
ment of other essential machinery of the membrane such as
p62 or SQSTM1 an ubiquitin cargo-binding protein and
Autophagy-related NBR1 protein that acts as partial selective
receptor for different substrate in cell. Two other important
proteins namely, MAP1 and LC3-I are obligatory for elonga-
tion and maturation of autophagosome and Atg12-Atg5-
Atg16L1 complex helps to target particular substrates and
proteins to the developing autophagosome [70]. LC3-I the
cleaved product of pro-LC3 is a cysteine-protease (Atg4), di-
rected to autophagosome membrane, is later activated by E1-
like enzyme Atg7 bound to E2-like enzyme Atg3 and gets
conjugated to phosphatidylethanolamine forming LC3-II
[71]. The mature autophagosome then amalgamates with ly-
sosome by SNARE pro te ins and Rab7 forming
autolyasosome that gets degraded in the acidic environment.

Autophagy is controlled through several regulated and in-
hibitory complexes like AMPK that regulate this complex
cascade by activation of Ulk1, and mTORC1 which inhibits
Ulk1 by phosphorylation [72]. In nucleation, Bcl2 bind and
inhibit Beclin1, while, at lysosomal interphase, v-ATPase if
inhibited could severely affect lysosomal biogenesis.
mTORC1 are another sets of inhibitory enzymes that inhibits
TFEB by phosphorylation and influencing biogenesis of lyso-
some [73]. TFEB also plays a prominent act in activation of
autophagy, where if not phosphorylated, it may translocates
into nucleus and clings to CLEAR sequence (a genetic up-
regulation and expression of proteins crucial for lysosomal
biogenesis) and involved in autophagic pathway. ZKSCAN3
a TF, which unlike TFEB, inhibiting autophaagy requiring
proteins and severely affects lysosomal biogenesis.

According to current studies Atg7 is highly exploited in
induced authophagic activation in animal cell-lines treated
with saturated fatty acid. Atg7 induces a lysomal cysteine
protease (cathepsin B) which contributes towards Atg7-
induced NLRP3-dependent pro-inflammatory response and
aggravates lipotoxicity [26]. Unlike chronic hypoxia, acute
hypoxia activates autophagy induction of deacetylase
SIRT1, either inhibition of mTORC1 or by deacetylation of
multiple components of autophagy machinery such as Atg5,
Atg7 and LC3 in T2D [11, 74]. Investigation shows that in
prediabetes subjects, causing of T2D could be delayed by an
“adaptive” increase in mitophagy which may result in preser-
vation of β-cell function [12]. Therefore, Marasco and

Linnemann [11] in their review stated that mutation in genes
essential of mitophagy such as Clec 16a, Pdx1, Pink1 and
Park2/Parkin may contribute towards progression of T2D .
Zummo et al. [75] in their research have developed a thera-
peutic strategies intervention for T2D by modulating
autophagy/lysomal homeostasis with GLP-1 signaling path-
way. Likewise, there are heterogeneous experimentations de-
signed to find novel natural biomolecules that could either
autophagy/lysomal homeostasis or their restoration. Recently
Xu et al. [76] found that trehalose a natural non-reducing
disaccharide could restore hyperglycemia-impaired autopha-
gy . Cur ren t repor t s sugges t downregu la t ion of
macroautophagy in β-cells of T2D patients marked by re-
duced expression of LC3-II marker as well as increased level
of p-62 substrate [77, 78]. It is evidenced by Rezabakhsh et al.
[79] that quercetin is a plant flavonol, could endorse autoph-
agy flux by inducing LC3-II, Beclin-1 and increased utility of
p62. These investigation made are profound example where,
novel therapeutic intervention for treatment of T2D bymanip-
ulating at the sub-cellular level.

3. Epigenetics

Present investigations have reported that, more than 100
genetic alterations could be linked to progression of T2D,
majority of which affects insulin secretion [13]. According
to earlier interpretation, epigenetic modifications can be
depicted variation inherited somatically within genome, with-
out altering DNA sequence of an organism, whereas
epigenomics regarded as complete set of these changes occur-
ring in that particular organism [14]. These modifications of
the genome could be represented as a tool that enables stable
propagation of gene expression from parents to offspring
through histone modification, DNA methylation and non-
coding RNAs [15, 80–82].

4.1 Histone modification

Nuclear proteins in histone octamers could be post-
translationally modified on any residue. These modifications
are known as histone modification, or described as amino
termini modification of histone by 18 different post-
translational modifications [83–85]. In histone modification,
acetylation and methylation in H3 and H4 molecules lysine
residues at amino termini are the most studied processes [80,
84]. Unlike histone tail modifications (that influences nucleo-
some dynamics, chromatin compaction and transcription) his-
tone core modifications were basically indeterminate until re-
cent reports of its effect [86, 87]. Histone core could be mod-
ified by acetylation, methylation, citrullination and phosphor-
ylation affecting chromatin structure by modulating histone-
histone, histone-DNA and histone-chaperones [88, 89].
Histone modification regulates physiological processes
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through transcriptional activation, induced by increased acet-
ylation, while repression through decreased acetylation of his-
tone molecule [84]. Pathophysiology of T2D due to histone
methylation is generally induced by transient hyperglycemia
that changes NFκB-p65 expression in vascular epithelial cells
[90, 91]. Therapeutics in the present era such as GIP and GLP-
1 increases global acetylation of H3 at lysine residues 9 and
18, with increase phosphorylation at serine 10. This further
increases its association with TFs, phosphor-CREB and with
cAMP-response CREB coactivator 2, and targeting IL-1β
[80, 92].

4.2 DNA methylation

DNA methylation is a different set of epigenetic regu-
lator, where carbon-5 of cytosine (C) preceding guanine
(G) is methylated by DNA methyltransferase. Majority
of these C preceding Gs or CpGs are broadly scattered
all over the genome [93]. Previously epigenomic studies
had revealed that, there are approximately 450,000 CpG
sites which is about 1.5% of all CpG sites in human
g e n ome [ 1 5 ] . B u t c u r r e n t l y w i t h I n f i n i um
MethylationEPIC BeadChip Kit more than 850,000
CpG sites at a single-nucleotide resolution could be
studied which is about 2.833% of all the CpG sites in
human genome [94]. Further, methylation status of CpG
islands within promoter region immensely influences
binding affinity of TF to DNA binding sites thereby
regulating gene silencing, transcriptional regulation of
cellular differentiation in specific tissue, promotes inac-
tivation of X chromosome etc. [95–97]. T2D which was
previously contemplated as a nightmare for geneticists
due to weak genetic component, is gradually changing
as increasing number of associated genes are being dis-
covered lately. It is now accepted that genes like Ins,
Pdx1 , (PPARGC1-alpha) , Glp1r and IL1R1 are
hypermethylated in Type-2 diabetic donors [98, 99].
These genes orchestrate significant role in Type-2 dia-
betic pathophysiology like encoding insulin and are es-
sential TFs both for development and functioning of
mature β-cell (Pdx1), mitochondrial transcriptional coac-
tivator (Ppargc1-α), receptors that stimulates insulin se-
cretion and protects activated β-cell mass (Glp1R).
Moreover, higher methylation level was associated with
reduced mRNA expression in diabetic β-cells as well as
higher HbA1c formation indicating critical role of meth-
ylation in T2D [100]. Studies involving methylation
confirmed that out of 27000 CpG methylated sites in
Type-2 diabetic donors, a total of 1649 CpG sites are
altered, annotating 843 genes with 102 varied genes.
Cdkn1A, Pde7b and Sept9 are examples of genes,
whose increased expression and decreased DNA meth-
ylation in diabetic islets are observed [15, 81].

4.3 Non-coding RNAs

ncRNAs are emerging as novel multipotent regulators of T2D
pathogenesis [101–103]. At the dawn of present decade, it is
established that ncRNA like miRNAs are only fraction of
ncRNA that displays its impact in multiple health disorders
including diabetes [104–106]. Functionally there are two ma-
jor groups of ncRNAs structural and regulatory ncRNAs
[107]. Structural ncRNAs are classified as tRNAs and
rRNAs whereas regulatory ncRNAs are categorized based
on base pair length as short ncRNAs, mid-size ncRNAs and
lncRNAs [104, 107, 108]. In T2D pathophysiology, there are
three regulatory ncRNAs including two long ncRNAs (linear
and circular lncRNAs) and one short ncRNAs i.e. miRNAs
[102, 103, 106]. Major fraction of β-cell transcriptome con-
stitute of ncRNAs where involvement of miRNAs are well
established but the exemplified function of lncRNAs in mod-
ulating β-cell is gradually being unrevealed in the present
scientific era [109–111]. Recently Reichelt-Wurm et al.
[112] revealed differential expression pattern of 1746
lncRNAs that was noticeably different from miRNAs associ-
ated with diabetes in mouse model. lncRNAs like, Meg3 reg-
ulates and maintains β-cell’s identity by adjusting insulin pro-
duction, programmed cell death and also promotes insulin
production in hepatocytes. Zhu et al. [113] demonstrated that
promotion of IR by Meg3 could possibly be elevated via ex-
pression of FoxO1 regulated by ATF4, which itself is sup-
pressed by miRNA-214. Similarly, there are number of other
lncRNAs like β-cell long intergenic noncoding RNA 1
(βlinc1) that is important for specification and function of
insulin-producing β-cell which must be further studied for
deeper insight into β-cell failure [114].

5 Nanotechnology based therapy for reversal
of type-2 diabetes

Nanotechnology in present era is being orchestrated as an
influential amalgamation of heterogeneous scientific fields.
Expandability of these nano-systems to be engineered, in a
customizable manner to address specific biological problems
from multiple fronts is in itself a magnificent achievement.
Execution of this idea to device a therapeutic strategy against
diseases and disorders like T2D is slowly catching its drift in
present decade. To understand in depth how nanotechnology
could combat T2D, it is a basic necessity to know differential
types of NPs or nanosystems presently available. For instance,
inorganic, organic and hybrid NPs / nanosystems are the three
basic categories of NPs or nanosystems. Inorganic NPs are
simple metalic NPs and rigid nanosystem in the form of nano-
spheres, nanocapsule and nanocage. Whereas, organic NPs
are extra flexible/ soft organic matrixes like liposomes,
dendrimers, niosomes, micelles etc. [115]. Lastly, hybrid
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NPs / nanosystems which are most intricately customized
nanodelivery systems, widely investigated in present era.
These smart nanosystems in simple terms are standardized
amalgamation of inorganic-organic, inorganic-inorganic
(nanocomposites), and organic-organic nanoparticulated sys-
tems (lipid–polymer hybrid NPs) engineered according to the
specific requirement or use at targeted site [116].

5.1 Inorganic nanoparticles (NPs)/ nanosystems

Inorganic NPs/ nanosystems are either simple metalic NPs
like Ag, Au, ZnO, Se, CeO2 or rigid nanosystem including
SiO2/TiO2 nanospheres or nanocapsule and carbon based
nanotubes or nanocage. Though possibility to completely cure
diabetes using these inorganic NPs/ nanosystems is question-
able, but amelioration of the post diabetic effects without any
side-effects is not out of reach (Table 1).

In detail when synthesized AgNPs subjected to STZ in-
duced male albino rats a raise in the level of antioxydent
enzymes like SOD, Catalase, GPx and GRD was observed
[118]. This might indicate that AgNPs could alleviate oxida-
tive stress under diabetic conditions. Kouame et al. [120] re-
cently showed that Cinnamomum cassia aqueous extract me-
diated Green synthesized AgNPs subjected diabetes induced
SD male rats, a reduced level of glucose, serum urea, creati-
nine, glutathione and malondialdehyde was observed. This
suggests the possible role of AgNPs in modulating oxidative
stress markers and renal function parameters. Green synthe-
sized AuNPs also could alleviate certain post diabetic effects.
Evidence suggests that when diabetic albino mice when
injected with AuNPs an increases expression of reduced
GSH, SOD, CAT, GPx produced [122]. Shilo et al. [124]
demonstrated prevention rapid degradation of conjugated in-
sulin, blood glucose concentration in diabetic male BALB/c
mice after administration of insulin-coated AuNPs. The study
confirmed that insulin-coated AuNPs possesses an adjustable
and prolonged effect on hyperglycemia and are potential for
diabetic treatment.

Other metallic NPs like ZnONPs synthesized by Hussein
et al. [127] showed reduction in blood glucose, maintains in
serum insulin and MDA in diabetic male albino rats after NPs
ingestion. Nazarizadeh et al. [130] in consecutive year added
that ZnONPs could also improves glucose disposal, insulin
level, and zinc status and raise levels of lipid peroxidation
but in diabetic male Wistar rats. Later, El-behery et al. [131]
and Afify et al. [133] demonstrated the efficacy of ZnONPs in
restoring architecture of semi-niferous epithelium and signif-
icant decrease in HbA1c respectively. Evidence suggesting
anti-hyperglycemic activity of SeNPs is slowly coming up
lately. Study conducted by Al-Quraishy et al. [134] suggests
reduced blood glucose, lipid, cholesterol level, glucose-6-
phosphatase activity and an enhanced serum insulin concen-
tration, malic enzyme, hexokinase and glucose-6-phosphate

dehydrogenase activity in diabetic adult male albino Wistar
rats after SeNPs treatment. Additionally, alleviation of oxida-
tive stress, improvement in pancreatic islet function and en-
hanced glucose utilization activity was also observed in dia-
betic SD rats and Goto Kakizaki rats after insulin-loaded
SeNPs treatment [135]. Recently, Deng et al. [137] demon-
strated that oral administration of mulberry leaf and Pueraria
Lobata extracts loaded SeNPs to diabetic SD rats and Goto
Kakizaki rats could effectively alleviates the oxidative stress,
improve the pancreatic function, and promote glucose utiliza-
tion by adipocytes. Similarly Abdulmalek and Balbaa [138]
showed that HFD/STZ-induced adult male Wistar rats when
administered with SeNPs and metformin improves in insulin
signaling proteins like pIRS1/pAKT/pGSK-3β/pAMPK was
observed.

Over 50% of diabetic patients are affected by neuropathy
and presently the impact of CeO2NPs in limiting the worsen-
ing condition of diabetic neuropathy is promising, as per cur-
rent research. Studies conducted by Najafi et al. [139] shows
that diabetic male Wistar rats when subjected to CeO2NPs
total thiol molecules, total antioxidant power, ADP/ATP ratio
and body weight were recovered. Additionally, a decrease in
lipid peroxidation and nociception latency was also observed.
CeO2 nanocubes were efficient in angiogenesis under diabetic
condition in Goto Kakizaki rats by interrupting TNF-α secre-
tion at the transcription level, elevated EGF expression and in
diminishing inflammatory reaction [141]. Recently, Pascual
et al. [144] showed that CeO2NPs could also lessen the extra-
cellular ROS and escalating expression of ADIPOQ and Il10
in diabetic mouse 3T3-L1 adipocytes. Antidiabetic drugs of
protein origin are receiving mounting interest due to their
specific functions and fewer side effects. The extensive appli-
cation of protein drugs are stalled due their intrinsic properties
such as structural and physiochemical sensitivity to tempera-
ture and pH from an entropic point of view [167]. Current
evidence suggests that amphoteric NPs like SiO2 have limited
therapeutic effect but serves as an excellent delivery system
for protein based drugs [168]. In relation diabetes Hei et al.
[150] designed an intelligent glucose-responsive insulin deliv-
ery system based on MSNP loaded with phenylboronic acids
as glucose-responsive units and zinc oxide NPs as the capping
agents. Hybrid MSNPs-Metformin developed by demonstrat-
ed by Patiño-Herrera et al. [151] prevented excessive drug
ingest and increased release time of the drug. As per ongoing
research, MSNPs are effectively exploited as a delivery sys-
tem for either synthetic/ natural drug or natural antidiabetic
proteins (Table 1).

The same is speculated for carbon based nanodelivery sys-
tems like fullerene, carbon nanotubes, carbon nanohorn,
grapheme, carbon dots and comparatively related NPs for di-
agnosis like quantum dots. Recent investigations impact of
amino-acid-functionalized GFNPs on db/db diabetic mice
showed a promising improvement of their condition. The
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GFNPs could decrease hyperglycemia, reversed the pancreas
islets dysfunctions and normalized the insulin secretory func-
tion, improved hepatic IR, inhibition of GNG and increasing
glycogenesis in the liver [154]. As these carbon based nano-
systems are an emerging platforms for both treatment and
diagnosis therefore limited advancement are reported.
Table 1 enlists carbon nanohorn, graphene and quantum dots
in sensing glucose non-enzymetically, diabetic wound healing
by boronic acid functionalized graphene in Wistar albino rats
and efficient anti-diabetic drug release by carbon dots [157,
160, 161, 163, 165]. Current antidiabetic research involving
inorganic NPs are mostly focused on sensing glucose or insu-
lin [169–172]. Alghazzawi et al. [169], developed a non-
enzymatic glucose detection sensor using rGO/NiO nanocom-
posite that exhibited good sensitivity, selectivity and was re-
peatable, stable, and economical. Similarly, Lavanya et al.
[171] and Inyang et al. [172] also engineered non-enzymatic
glucose detection sensors but with pureMgNi2O3 andMgNi2-
xAxO3 (A =Co or Zn; x =2.5, 10, 25wt.%) NPs and CuONPs
on a FTO respectively. Both of the detection systems were
highly efficient in sensing glucose. Later, an aultra sensitive
and highly selective immunochemical insulin detection sys-
tem based on Ag/ZnIn2S4/RGO quenched by Au@SiO2 NPs
was developed by Khan et al. [170].

5.2 Organic nanoparticles (NPs)/ nanosystems

Though inorganic NPs are efficient delivery systems but they
have certain limitations such as rigidity, size dependent toxic-
ity and nano-accumulation after chronic ingestion. To rule out
such limitation, beneficiary properties of organic NPs like the
ability to be metabolized after unloading their therapeutic con-
tents are being recognized by researchers [95]. The mode of
delivery of therapeutics could be modulated by selecting spe-
cific design features and chemical requirements for the syn-
thesis purpose. Since, sustained release or burst release kinet-
ics can directly influence therapeutic competence and toxicity
of the nanosystem therefore, selection of appropriate compo-
nent of the organic NPs based on their release properties is of
concern [203]. Multiple form of organic NPs are exploited in
field of nanomedicine but only certain specific organic NPs
are presently being evaluated for their antidiabetic activity.
These includes polymeric NPs, lipid based NPs, dendrimers,
neosomes and nanomicelles (Table 2).

Heterogeneous verity of polymers (synthetic and natural)
have been identified which greatly contributed towards drug
delivery properties such as biodistribution/ bioavailability,
biocompatibility, immunocompatibility etc. in biomedical
sector [115]. Polymeric NP developed by Fang et al. [179]
was efficient for pH based insulin delivery to diabetic SD rats.
El-Naggar et al. [180] in a similar manner developed PLA-
PEG copolymer NPs for the delivery of natural compound
(Curcumin) to diabetic male white albino rats. Positively they

found that the curcumin loaded nanosystem could trigger a
remarkable decrease of serum glucose level, reduces the dia-
betic rate and attenuates liver inflammation, suppress NF-κB
activation, COX-2 and TGF-β expression [180]. Even the
simple form of polymeric NPs like chitosan NPs proves to
be efficient in delivery of polydatin to diabetic male Wistar
albino rats, which significantly improves body weight and
hepatic glycogen contents [178]. Therefore, most of the inves-
tigation involving polymeric NPs are diverted towards con-
trolled delivery of antidiabetic therapeutic agents [181–183].
Recently an effort was made by Laddha and Kshirsagar [181]
to deliver pioglitazone-a a PPAR-γ agonist through topical
administration by a surface modified PLGA NPs to posterior
section of the eye. The entramp efficiency and release study
was done in vitro which showed better entrampment efficien-
cy and initial initial burst release followed by controlled re-
lease of pioglitazone-a. The in vivo delivery efficiency was
also experimented on STZ-induced diabetic Wistar rats which
showed controlled release of the PPAR-γ agonist which had
an dose dependent impact on reduction of VEGF concentra-
tion in vitreous fluid [181]. Likewise, Arun et al. [182] devel-
oped Thyroscyphus ramosus derived chitosan nanodelivery
system for the delivery of Metformin to STZ-induced diabetic
albino Wistar rats, which was proved efficient in delivery. In
virto delivery of insulin was attempted byWong et al. [183] to
skeletal muscle cells. The capability to induce glucose uptake
in C2C12 and HT29 cell lines by in virto delivery insulin-
loaded chitosan NPs showed promising results.

Ongoing advancement in solid-lipid NPs and outstanding
efficiency of nanostructured lipid nanocarriers as a biocom-
patible vehicle in therapeutic delivery have stunned present
researchers. Further, their well structured bio-absorbable and
biocompatible properties have granted them a unique prospec-
tive to explore [204]. Limitations like transportation of thera-
peutics across major barriers such as BBB are now nullified.
Preliminarily investigation on solid-lipid NPs by Sarmento
et al. [184] devised a cetyl palmitate-based solid lipid NPs
for insulin delivery to male diabetic Wistar rats. The lipid
nanoteraputic could significantly reduce glucose levels, pro-
tects insulin and promote the insulin absorption in diabetic rat
[184]. In vivo transdermal patches of metformin loaded solid
lipid NPs in diabetic rats were significant in sustained de-
crease in bloog glucose level [185]. LMWP-fused growth fac-
tors (EGF, IGF-I), and PDGF-A complexed with HA, were
encapsulated within cationic elastic liposomes to determine
diabetic wound-healing efficiency in Human fibroblast
(CCD-986sk) cells, female C57/BL6 mice. Modified growth
factor loaded cationic elastic liposomes promoted fibroblast
proliferation and the production of procollagen significantly,
improves skin permeation, also significantly accelerates an-
giogenesis rate [186]. Currently lipid based NPs are also ex-
tensively experimented for evaluating their efficacy in deliv-
ering antidiabetic therapeutic agents [193, 194]. Recently in a
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research by Shaveta et al. [194], showed that, PGL conjugated
SLNs loaded with pioglitazone an antidiabetic agent for the
determination of in vitro and in vivo drug delivery efficacy via
spectrophotometric analysis and in male albino Wistar rats
induced with low dose STZ respectuively. Their result dem-
onstrated that SLNs had low particle size, high encapsulation
efficiency, high and prolonged release activity [194].
Nanostructured polymer-based cochleates [lipid-based poly-
mer] are also being used for delivery purposes of insulin
[193]. Khair et al. [193] demonstrates that insulin loaded
polymer-based cochleates served as a promising delivery tool
verified via in vivo delivery efficiency in SD rat model
(Table 2).

Well-organized, hyperbranched organic compound such as
dendrimers are receiving much attention in current scenario
owing to their enhanced properties such as monodispersity,
biocompatibility and biodegradability [205]. These com-
pounds are also an extraordinary vehicle for gene, peptide or
drugs (natural/ synthetic) delivery at the targeted site [206].
Despite the previous utility in biomedical science, their inves-
tigations as a carrier for antidiabetic drugs are now gradually
gaining much appreciation. Some of their antidiabetic effi-
ciencies include lessening of blood glucose concentration
and reduction of diabetes-induced permeabilization of
blood–brain barrier [195]. PAMAM dendrimer G3 could im-
prove efficiency of impaired respiration of diabetic Wistar
rat’s cardiac cell mitochondria [196]. Presently inhibition of
EGFR-ERK1/2-ROCK, improved vascular remodeling and
dysfunction were achieved in diabetic male Wistar rats by
nano-sized PAMAM dendrimers [198] (Table 2).

Organic non-ionic surfactant-based vesicle like noisome,
has emerges as the centre of attraction for current investiga-
tors. Though these nano-delivery systems have ample distrib-
uted applications in diseases management but their efficacy as
an antidiabetic drug carrier is limited. The investigations made
showed significant hypoglycemic effect, increases in SOD,
CAT, and GSH, along with decreased lipid peroxidation level
was obtained by embelin loaded nano-niosome in diabetic
albino Wistar rats [199]. Recently it was observed that
gymnemic acid loaded niosomes could substantially decreases
antioxidant level, lipid levels, and significantly reduces pro-
inflammatory cytokines like IL-6, TNF-α and fibronectin
levels in Wistar rats [200].

Other organic NPs like nanomicelles which are described
as supramolecular assemblage of surfactant molecule distrib-
uted in a colloidal liquid that gives rise to a globular micelle
ranging in nano-size. Efficacy in their encapsulation, biocom-
patibility, colloidal stability and prolonged circulation time are
some of the important properties of these polymeric micelles
[207]. Specifically like PEG-PLA nanomicelles encapsulating
curcumin are described to be significant in augmenting re-
epithelialization of epidermis and collagen aggregation in
the wound area consecutively accelerating angiogenesis,

fibroblast accumulation in diabetic adult male BALB/C mice
[201]. Again PVCL-PVA-PEG nanomicelle loaded with
curcumin promotes corneal epithelial diabetic wound healing
in diabetic male C57BL/6 mice [202].

5.3 Hybrid nanoparticles (NPs)/ nanosystems

Inorganic and organic NPs / Nanosystems are efficient but
might be extra efficient in a combined form i.e. hybrid NPs,
which is by far much sophisticated form of NPs/ Nanosystem.
Starting from inorganic NPs such as Ag, Au, Se, SiO2, CNT,
fullerene and graphene oxide towards organic NPs such as
polymeric NPs, lipid NPs and niosomes all are been explored
for their antidiabetic activity. Hybrid nanosystems can be con-
sidered as a trailblazing/emerging technology both diagnosis
and therapy of T2D [208, 209].

Diagnoses of diabetes through hybrid nanosystem based
therapy are successful only to specific test like detection of
glucose in blood. The nano-based advancement in present
prospective includes development of sensors like non-
enzymatic glucose detection, nano-based glucose sensor and
electrochemical glucose detection [211, 213] (Table 3). Dai
et al. [214] developed a Cu2O–BSA core-shell nanoparticles
modified glassy carbon electrode which exhibited good glu-
cose detection with a lowest detection limit, with linear detec-
tion range and a high sensitivity along with reliable anti-
interference property to uric acid, ascorbic acid, and acetamin-
ophen. Recently Ni NPs-modified graphene–diamond hybrid
electrodes was developed by Cui et al. [213] exhibits efficient
glucose sensing capacity with higher resolution in detection.
Porous NiMn2O4 nanosheet arrays on nickel foam a form of
non-enzymatic glucose detection sensor exhibited high sensi-
tivity and a fast response [211]. Further in-depth research is
required to further broaden the detection of other bio-
molecules associated with diabetes like advanced glycation
end-products in blood. Over all almost every research con-
ducted related to diabetes including inorganic NPs even at
present is also predominantly directed towards development
of nano-biosensors for detection of glucose and insulin con-
centration [215, 216].

Treatment of T2D with the help of hybrid nanosystems is
much more efficient due to a specific property that is target
specific delivery (Table 3). Curcumin-encapsulated PBLG-
PEG-PBLG NPs could effectively alleviate pathological mor-
phological damage of myocardium, increased H2S and [Ca2+]
levels, and unregulated the expression of calcium-sensing re-
ceptor, endogenous cystathionine γ-lyase, and calmodulin in
diabetic male SD rats [227]. Mukhopadhyay et al. [229]
showed that succinylated chitosan-alginate core-shell-corona
NPs encapsulating quercetin could maintain glucose homeo-
stasis, significant reduction of blood cholesterol and triglycer-
ide in diabetic male Wistar rats. Delivery of proteins like in-
sulin by mucoadhesive NPs based on mucin-chitosan
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complexes and chitosan-coated cationic liposomes is gaining
much attention lately [228, 230]. With the advancement of
science, progresses made in the field of nanotechnology espe-
cially encompassing hybrid nanodelivery system in diabetic
researches are lately being prioritized, essentially due to their
unique properties like targeted delivery and tunable release
efficiency etc. [18, 241, 243, 245]. Currently hybrid nanosys-
tems like CA/Gel electrospun mat loaded with berberine and
TA/Al3+ NPs systems loaded with liraglutide are being ex-
plored for verifying their effect on deibetic complications like
diabetic foot ulcer and prediabetic glycemic condition respec-
tively [241, 245]. The therapeutic efficiency of nanostructure
loaded berberine L929 cell line in dult Wistar rats showed
complete epithelialization and less infiltrated polymorphonu-
clear inflammatory cells deposition [241]. Whereas the
iraglutide loded nanosystem showed exceptional delivery ef-
ficiency in T2D db/db mice [245]. Pouran et al. [242] have
experimented insulin therapeutic efficacy of Green synthe-
sized ZnO/Ag nanocomposites in alloxan-induced diabetic
Wistar rats. They observed that nanocomposite was efficieni
in enhancing of the insulin secretion and HDL-C plasma
levels, while successfully reducing the FBG, T−CHOL and
T-TG levels in diabetic rat model [242]. Lately, in an in vivo
study was conducted where, the wound healing property of
M-SeNPs-CCH complex nanohybrid system was verified on
diabetic Wistar rats infected with Staphylococcus aureus
[243]. The study confirmed that the nanohybrid system was
effective in wound contraction, angiogenesis, fibroblastosis,
collagenesis, and proliferation of hair follicle and epidermis
[243]. In summation it will not be wrong to state that hybrid
nano-delivery system holds immense potential in lessening
the severity T2D and associated complications. But still ad-
vancements in nanotechnological research needs to progress,
in refineing the current hybrid nano-based therapeutic systems
for T2D treatment.

6 Future prospective of nanotechnology
in reversal of type-2 diabetes

As previously described cutting-edge advancements made in
understanding T2D, it clear that dynamic machineries starting
with inflammasome, autophagy, and epigenetics could im-
mensely impel the prospect of diabetic therapy. Numerous
factors contribute towards atiology of T2D which are also
described in detail previously. Therefore recent investigations
must make efforts such as induction ofβ-cell proliferation and
differentiation, regulation of inflammasome, autophagy, and
epigenetics to alleviate T2D.

Inducing β-cell proliferation and differentiation by activa-
tion of Wnt signaling pathway is one such possibilities that
can be achieved through a targeted nanodelivery system. In
this signaling pathway, arresting the expression of one

specific component within degradation complex i.e GSK-3,
may result in intact β-catenin, which could then translocates
into nucleus and promotes β-cell proliferation [246]. A
targeted PNDS could be designed for in vivo for activation
of theWnt signalling pathway. The PNDS then could be load-
ed with NTP in conjugation with GSK-3β antisense oligonu-
cleotide for gene silencing of GSK-3β. Later, this PNDS can
be tagged with an agonist against pancreatic receptor specific
to human β-cell for target-specific delivery. The peptide and
antisense oligonucleotide conjugate could migrate into the
cells through endocytosis and NTP could lead antisense oli-
gonucleotide into the nucleus. Once inside the nucleus, anti-
sense oligonucleotide could silence GSK-3β gene, which ul-
timately may inactivate β-catenin destruction complex ensu-
ing in unhindered Wnt signaling pathway and promote β-cell
proliferation and differentiation (Fig. 4).

Acknowledging the role of inflammasomes in T2D, an
effort can be made for targeted silencing of specific
inflammasomes modulators that could effectively alienate
metabolic stress. The present review provides an effective
target motive to regulated T2D by nano-based targeting (Fig.
5). A number of investigations also suggest defensive mech-
anism of inflated autophagy against redox stress inβ-cells as a
preliminary action [7]. Further, it is also evidenced that under
diabetic condition glucolipotoxicity based oxidative stress in
β-cells may affect sensitive catalytic thiols of Atg3 and Atg7
which prevents LC3 lipidation, resulting in negative regula-
tion of autophagy [247, 248]. Under such circumstances, nat-
ural antioxidants like bioactive phytocompounds could be en-
capsulated or linked to aβ-cells targeted nano delivery system
and evaluated for their antioxidant activity and revival of au-
tophagy (Fig. 6).

Additionally, within secretory granules under low pH, in-
sulin and proinsulin inhibits aggregation and maintains IAPP
in soluble state. Further, in conjunction with glucose stimuli in
β-cell, IAPP is coexpressed and co-secreted with insulin,
thereby enhanced expression of IAPP aggregate formation
can be a likely scenario under high insulin demand (IR)
[249]. To remove these aggregation cells mainly deploy three
mechanisms which includes ubiquitin protease system, au-
tophagy, and aggresome formation. Out of three majorly in-
vestigated enzymes, Zn2+ metalloprotease named IDE which
is generally involved in the clearance of insulin also degrades
IAPP aggregations [250, 251]. THE second IAPP degrading
enzyme, NEP is a type-2 Zn-containing metalloprotease
expressed in diverse cell-type including β-cells could be an
alternative target [252]. Lastly, UCH-L1 abundantly
expressed in β-cells degrades IAPP by promoting its
ubiquitination can also be targeted in therapeutic intervention
purposes [253]. Recent research states that autophagy abnor-
malities specifically Atg 7 gene in β-cells may lead to the
deposition of protein aggregates [254]. Sequestosome 1
(p62/SQSTM1) a multifunctional stress-inducible scaffold
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protein can form cytosolic protein inclusion with simulta-
neous degradation of specific protein clump by aggrephagy

could be an example of such phenomenon [250, 255]. The
possibilities of powering these enzymes and other protein

Fig. 5 The Schematic for the role of NLRP3 inflammasome in type-2
diabetes and its targeting by nanoparticles. Damage associated molecular
pattern (DAMPs) such as islet amyloid polypeptide (IAPP), endoplasmic
reticulum (ER) stress, reactive oxygen species (ROS), urate, extracellular
ATP, fatty acids, ceramide can be recognized by NLRP3 inflammasome
in myeloid cells. The assembly of NLRP3 with ASC and procaspase-1
activates inflammasome which cleave CARD domain to release active

caspase-1. Caspase-1 converts pro IL-1β and pro IL-18 in to active IL-1β
and IL-18. Such proinflamatory cytokines may induce insulin resistance
or reduction in mass of pancreatic β-cells leading to development of
diabetes mellitus. The different modulators of inflammasome can be car-
ried by NPs to target the inflammasome in the myeloid cell. Inspired from
[9, 22–24]

Fig. 4 In vivo activation of Wnt
signalling pathway using
polymeric nano-delivery system
(PNDS). In absence of Wnt mol-
ecule, active β-catenin degrada-
tion complex degrades β-catenin
and suppresses the proliferation of
β-cells in Islets of Langerhans.
The PNDS mediated targeting
and release of antisense RNA (for
example, Gsk3β) in the nucleus
could destroy the Gsk3β which is
required for stability of degrada-
tion complex. In absence of
Gsk3β, β-catenin could be
translocated to the nucleus for
gene expression. Inspired from
[246]
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degradation systems as a therapeutic measure against neural
diseases show promising results, investigations in diabetes
research might also lead to certain novel findings [251, 256,
257].

Disruption of epigenome homeostatic balance that is de-
regulation in DNA methylation, histone modifications, and
RNA-mediated processes, may cause assorted pathologies im-
pact, finally leading to T2D [15]. DNA methylation patterns
within several loci such as Hnf4A, Irs1, Kcnq1, Pparg, Fto,
and Tcf7L2 are some of the genetic variants persuading to
T2D have been acknowledged recently [258]. Like DNA
methylation, post-translational modifications to histone pro-
teins such as variation in the levels of histone PTMs such as
H3K9ac and H3K4me at key fibrotic, inflammatory, and cell
cycle genes, are also concerned in the development of diabetes
and its vascular complications [259]. Under the diabetic con-
dition, oxidation results mostly from glucotoxicity and
lipotoxicity, affecting the DNA methylation, post-
translational modifications to histone proteins. These effects
could be reversed preliminarily by countervailing the oxida-
tive stress by implementing the effectiveness of natural anti-
oxidant compounds, delivered through a targeted nano-
delivery system. Recently, through wet and dry lab analyses
of published reports, it was understood that Prkar1A gene is
correlated to glucose metabolism, blood coagulation, and in-
sulin signaling and targeted by miRNAs in T2DM. Later

Pordzik et al. [260] observed that miR-30a-5p, miR-30d-5p,
and miR-30c-5p are the most extensively regulated miRNAs
across all specified ontologies and hence indulged as most
promising biomarkers of T2DM to be confirmed in future
clinical studies.

7 Conclusion

With a present death rate of 5 million per year and the future
7th cause of death, diabetes, alone holds a global expenditure
of 760 billion US dollars per year. Despite the investment
made for the treatment of diabetes, the possibility of a novel
therapeutic intervention is questionable and the available com-
mercialized therapeutics demonstrates limitations that need to
be addressed. The conceptualized refinement of available
commercialized anti-diabetic therapeutics has become the
need of the present scientific community. This refinement will
be abridged if the amalgamation of present cutting-edge sci-
ence like nanotechnology is restricted. Additionally, if current
evolving knowledge on intracellular modulating factors in-
volved in inflammasome, autophagy, and gene regulating epi-
genetic changes remains unacknowledged in T2D. Targeting
these governing mediators/ modulators with a nano-targeting
system could be an effective means for the treatment of T2D.
From the present review, advancement in nanoscience for the

Fig. 6 Role of inactivation of autophagy by Atg3 and Atg7 oxidation in
Diabetes mellitus. The transfer of LC3 from inactive Atg3 & Atg7 to
phosphatidyl ethanolamine (PE) results in maturation of autophagosome
and activation of Atg3 and Atg7, which become vulnerable to
glucolipotoxicity based oxidative stress under diabetic condition. Under
oxidizing conditions, the catalytic thiol group of both Atg3 & Atg7 form
intermolecular disulfide bond within same complex or if only a single

catalytic thiol is present within the Atg3/ Atg7 complex, then oxidation
will likely lead to stable S-glutathiolation (GSH). Use of targeted
nanodelivery system carrying natural antioxidants like bioactive
phytocompounds in β-cells can help in neutralization of the reactive
oxygen species (ROS) and revival of autophagy for control of diabetes.
Inspired from [25, 67, 69, 71]
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reversal of T2D has been highlighted, exploiting cellular and
molecular modulating factors like auto-inflammatory, autoph-
agic, genetic, and epigenetic factors. Therefore future re-
search should concern in exploiting some of these strat-
egies mentioned in this review to ensure the probability
of devising a smart therapy for the reversal of T2D in
near future.
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