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Abstract
Adiponectin, a soluble adipocytokine, plays an important role in the functioning of adipose tissue and in the regulation of
inflammation, particularly hepatic inflammation. The adiponectin subsequently imparts a crucial role in metabolic and hepato-
inflammatory diseases. The most recent evidences indicate that lipotoxicity-induced inflammation in the liver is associated with
obesity-derived alterations and remolding in adipose tissue that culminates in most prevalent liver pathology named as non-
alcoholic fatty liver disease (NAFLD). A comprehensive crosstalk of adiponectin and its cognate receptors, specifically
adiponectin receptor-2 in the liver mediates ameliorative effects in obesity-induced NAFLD by interaction with hepatic perox-
isome proliferator-activated receptors (PPARs). Recent studies highlight the implication of molecular mediators mainly involved
in the pathogenesis of obesity and obesity-driven NAFLD, however, the plausible mechanisms remain elusive. The present
review aimed at collating the data regarding mechanistic approaches of adiponectin and adiponectin-activated PPARs as well as
PPAR-induced adiponectin levels in attenuation of hepatic lipoinflammation. Understanding the rapidly occurring adiponectin-
mediated pathophysiological outcomes might be of importance in the development of new therapies that can potentially resolve
obesity and obesity-associated NAFLD.
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1 Introduction

Obesity develops from a prolonged imbalance of energy
intake and energy expenditure [1, 2] that tends to alter
adipose tissue metabolism as well as its functions [3]. It
has been proven experimentally [4–6] and epidemiologi-
cally [3, 7, 8] that adipose tissue does not function solely
as an energy store. Although it is now being recognized as
a key endocrine organ that releases a number of
adipokines with pro- or anti-inflammatory properties and
stimulate the obesity complications [8–10], affecting the
vital organs of the body, notably the liver [11, 12]. One of
the most prominent liver pathology prevalent globally is
nonalcoholic fatty liver disease (NAFLD) [13, 14]. The
presence of fat (steatosis) in the liver exhibits a collection

of adverse alterations in conjugation with adipose tissue-
driven immune responses and hepatic inflammation [15].
These key factors are involved in the development of
insulin resistance [16], dyslipidemia, and hepatocellular
lipotoxicity in the pathogenesis of NAFLD [15, 17]
(Fig. 1). In addition, these adipose tissue-driven factors
are responsible for metabolic dysregulation and initiation
of molecular signaling in the liver leading to inflammato-
ry changes. The underlying mechanisms are mediated by
generation of oxidative stress, inflammatory changes in
the liver [18–20], infiltration of macrophages or infiltrate
cells and storm of inflammatory cytokines [21, 22].
Blocking of inflammatory pathways and mediators of
NAFLD in steatosis are promising therapeutic strategies
to overcome obesity and obesity-prompted NAFLD.

Low-grade inflammation in hepatic-adipocytes stimulates
liver macrophages, which perpetuate a vicious cycle of in-
flammatory cells recruitment, secretion of free fatty acids
and deleterious adipokines (leptin, vesfatin and resistin) that
predispose to high incidence of metabolic complications
(Fig. 2). However, the abundance of adiponectin, an anti-
inflammatory adipo-cytokine [10], efficiently ameliorates
and dampens the obesity-induced hepatic inflammation. In
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the liver, an intricate crosstalk at cellular level assists the
adiponectin to control lipid dysregulation as well as cellular
inflammatory process. One of the substantial player for this
cellular regulation is peroxisome proliferator-activated recep-
tors (PPARs) [23, 24]. The PPARs belong to nuclear receptor
(NR) subfamily1, group C, member 3 (NR1C3) and these are
highly expressed in the liver and exerting anti-inflammatory
effects on following receptor-ligand binding [25–29]
(Table 1).

2 Adiponectin and adiponectin level
in metabolic disorders as a potential
therapeutic target

Post-translationally the adiponectin, an adipocyte-specific fac-
tor and a monomeric glycoprotein, modifies into different
multimers, comprising of low molecular weight (LMW) or
trimer, middle molecular weight (MMW) or hexamer, and
high molecular weight (HMW) [12]. Since first described in
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Fig. 2 Energy homeostasis vs
adipocyte dysfunctioning: role
of adipo-cytokines in
development of metabolic
syndrome. The effects of
adiponectin balance on a variety
of organs and its immunological
implications have proposed the
adiponectin as a key player in
diverse metabolic processes. Such
implications would have
important applications in drug
development, diagnosis and
research for metabolic syndrome
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Fig. 1 Prevalence and
pathogenesis of obesity-
prompted NAFLD. Obesity is a
chronic disease with equal
prevalence of 5.7–40% in
children, mediated by multiple
factors, including dyslipidemia,
insulin resistance and
lipoinflammation are above all.
Hepatocellular lipotoxicity-
induced inflammation and
steatosis-induced insulin
resistance simultaneously (with
prevalence of 3–24%) are major
drivers towards 75% of the liver
injuries; whereas, NAFLD has
been reported as one of the most
prevalent liver pathologies
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1995, the adiponectin was studied by many researchers dem-
onstrating its exclusive physiological effects while the mys-
tery of adiponectin as a hormone was resolved later.
Pharmaco-dynamically active adiponectin following release
interacts with its specific surface receptors designated as
“AdipoR1” and “AdipoR2” [41, 42]. These receptors are
ubiquitously expressed throughout the body organs particular-
ly in skeletal muscle and liver, respectively, where a remark-
able contribution of adiponectin in energy homeostasis and
role of its ligands has been reported by various experimental
studies [11, 12, 43]. Recent data [12, 44–46] of over expres-
sion and/or suppression of receptor activity have shown that
both isoforms of adiponectin receptor allow binding of the
multimerized fragments of adiponectin with varying affinities
for globular (LMW) and full-length (MMW, HMW)
multimers. The AdipoR1 preferably binds to globular
adiponectin than a full-length adiponectin that has a weak
affinity. In contrary, the AdipoR2 has moderate affinity for
both globular as well as full-length adiponectin [42, 45, 47].

Adiponectin is a crucial adipokine that is associated with
obesity, although the physiological role of adiponectin in the
pathology of many organs remains obscure. The plasma con-
centration of adiponectin ranges from 0.01–0.05% of total
plasma proteins (5-10 μg/ml) with a half-life of approximately
75 min [45, 48]. The soluble level of adiponectin are higher in
women than men revealing a sexual predisposition [45].
Contrary to other adipokines, the adiponectin level surprising-
ly declines in obese patients that is a hallmark of obesity [46].
Recent studies [41, 49–52] reflect inverse association of im-
paired level of adiponectin in pathogenesis of obesity and
obesity-prompted metabolic syndrome and hepatocellular car-
cinoma [53]. Moreover, diversity in cellular localization of
AdipoR1 and AdipoR2 affects the resident tissue crucially
(Fig. 2). Kubota et al., [54] in 2002 was first to elucidate the
direct relation of adiponectin signaling with diabetes and ath-
erosclerosis in vivo. They reported the mild insulin resistance-
to-moderate along with mild glucose tolerance in adipo± and
adipo−/− mice, respectively. Whereas, adipo−/− mice showed a
two-fold neo-intimal formation in response to external vascu-
lar injury. Further experimental evidence [55] revealed that
globular adiponectin in transgenic ob/ob mice showed partial
amelioration of insulin resistance and diabetes, but not of obe-
sity. Moreover, a recent study shows that the expression of
AdipoR1 in duodenum-jejunum can improve type 2 diabetes
mellitus (T2DM). According to this research, a microRNA
(miRNA)-320 is a potential candidate for expressing
AdipoR1 in the duodenum and subsequently mediate amelio-
ration of T2DM in the duodenum-jejunum bypass (DJB) sur-
gery [56]. In the liver, the AdipoR2 existence dominantly
triggers cellular mechanisms (adenosine monophosphate-
activated protein kinase-(AMPK)-pathway) to regulate
adiponectin-prompted lipid regulation, gluconeogenesis as
well as hepatic stellate cells (HSCs) mediated liver fibrosis

in contrast to KO mice [57]. Moreover, the adiponectin-
activated AMPK pathway protects against liver cancer devel-
opment [53].

2.1 Adiponectin-activated AdipoR2 dependent
hepatic-communication: A mechanistic approach
to immune transrepression and/or transactivation

In context to evidences of a latest study [57], suggests that the
presence of both AdipoR1 and AdipoR2 to restrain liver fi-
brosis is not essential in vivo.Moreover, absence of AdipoR2
correlates with enhanced liver fibrosis. In activated HSCs [58]
the AdipoR2 is necessary for mediating adiponectin-prompted
anti-fibrotic responses and cell migration as absence of
AdipoR2 is unable to activate AMPK in vitro [57]. The
adiponectin is critical to modulate AMPK pathway [59] for
insulin sensitivity and glucose metabolism and to acetyl CoA
carboxylase (ACC) [6], as an adjunct to AMPK for lipid me-
tabolism [57, 60]. Additionally, the indirect protective effect
of adiponectin is by enhancing the levels of key players in
lipid lowering mechanisms, namely- ceramidase [61, 62]
which inhibits hepatic lipid accumulation and improves insu-
lin sensitivity, and carnitine palmitoyltransferase (CPT)-1 [48]
. The over expression of acid ceramidase induced by
adiponectin is key to its potential therapeutic effect in lipid
and glucose homeostasis [61, 62]. Whereas, a latest research
revealed that CPT-1 is a latent regulator of fatty acid β-
oxidation (FAO) in fatty acid degradation that facilitates ame-
lioration diet-induced obesity and hepatic steatosis [63].
Moreover, FAO is a bioenergetic pathway for self-
differentiation and self-renewal of many immune cells by
yielding adenosine tri-phosphate (ATP) [64]. Moreover, the
adiponectin interacts with adaptor protein containing a
pleckstrin homology domain (APPL1) and provokes the acti-
vation of AMPK and PPAR- alpha (PPARα). Thereby, de-
creasing hepatic glucose production (gluconeogenesis) and
increasing fatty acid oxidation that leads to lower insulin re-
sistance (IR) as a result of decreased triglycerides [60].

The adiponectin-activated AdipoR2 appears to have a di-
rect effect on progression of inflammation in antagonizing
outcomes of 1) other deleterious adipokines and 2) pro-
inflammatory cytokines released by activated resident im-
mune cells, mainly Kupffer cells (KCs), dendritic cells
(DCs), liver sinusoidal endothelial cells (LSEC), vascular en-
dothelial cells (VECs), HSCs [1, 65]. Consequential synergis-
tic inflammatory responses by these collective pro-
inflamamtory cytokines challenge adiponectin. Therefore,
the adiponectin-activated AdipoR2 activates both AMPK
downstream signaling and PPARα. As a result, restorative
effects of adiponectin against lipoinflammation have been re-
ported by inhibiting the release of plethora of pro-
inflammatory cytokines notably tumor necrosis factor
(TNF)-α, interleukin (IL)-6, interferon (IFN)-γ [60] and
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nuclear factor kappa B (NFκB), induction of IL-10 expres-
sion, IL-1 receptor antagonist (IL-1RA) [66] and suppression
of reactive oxygen species (ROS) [59, 67]. This extensive
crosstalk of adiponectin, immune cells and inflammatory me-
diators at hepatocellular level enable adiponectin to control
steatosis in obesity as well as obesity-prompted NAFLD
(Fig. 3).

3 A crosstalk of PPAR signaling
and adiponectin activity in the liver

It has been proposed by recent findings [14, 68] that NAFLD
occurrence is a “dual-hit” process. According to this hypoth-
esis, the first hit results from triglyceride accumulation in the
hepato-adipocytes due to prolonged imbalance of glucose [21]
and lipid input and output. Therefore, the adipocyte dysregu-
lation proves a driving force for insulin resistance (IR) and
subsequently to the pathogenesis of NAFLD. The second hit
in this NAFLD progression model is an imbalance of pro- and
anti-inflammatory factors accompanying with the generation
of reactive oxygen species (ROS) resulting in exacerbating
inflammation [18]. Recent data [40, 66] highlighted high
levels of TNFα [69] and IL-6 for IR and NFκB as a remark-
able proinflammatory mediator that are crucially involved in
the pathogenesis of NAFLD [70, 71]. A direct relationship
between obesity and inflammation was first proposed by
Hotamisligil et al., [72] that indicated the positive association
between adipose mass and expression of proinflammatory cy-
tokine namely- TNFα [21, 73]. Thus, over production of
TNFα by adipocytes [23], activation of PPARα by

adiponectin and PPAR-gamma(γ)-induced adiponectin ex-
pression [23, 47, 67] and immune-related proteins are key
mediators of obesity-induced NAFLD (Fig. 3).

Chronic inflammation and dyslipidemia concomitantly
suggest targeting the hepatic PPARs for pleiotropic pharma-
cological actions. The isoforms of PPARα/β/γ work commu-
nally to confer amelioration in obesity and obesity-induced
NAFLD. The PPARα and PPARγ prominently operate for
attenuation of inflammatory mechanisms, while other iso-
form, PPAR-beta(β) has been reported as a potential target
for treatment of IR [74]. The PPARα activation recovers
steatosis and inflammation in pre-clinical models of NAFLD
[75]. Interestingly, PPARα is also a transcriptional regulator
of genes involved in peroxisomal and mitochondrial β-oxida-
tion, fatty acid (FA) transport and hepatic glucose production.
The anti-inflammatory effects of PPARα regulate
transactivation of anti-inflammatory genes including IL-10
and IL1RA along with transrepression of pro-inflammatory
response genes essentially of ACC, NFκB, sterol-regulatory-
element-binding protein 1C (SREBP1C), a main transcription-
al factor regulating expression of genes encoding mediators of
lipid synthesis [75]. A recent research confirms the PPARγ
induced transrepression of inflammatory cytokines. Evidently,
the PPARγ agonism significantly inhibits lipopolysacchride
(LPS)- induced secretion of TNFα, IL-1β and nitric oxide
(NO) and attenuates inflammation in BV-2 microglial cells
during neuroinflammation [24].

Accordingly, the adiponectin-induced activation of hepatic
PPARs as well as increased expression of adiponectin by
PPARγ implicates signal transduction in the liver. Activation
of a cascade of signaling events mediates adiponectin-induced

Plasma membrane

CeramidaseCPT-1

AMPK

PPAR

PPRE Pro-inflammatory cytokines 
and transcriptional factors
(TNFα, IL-6, NFκB, IFNγ) 

CPT-1, Anti-inflammatory cytokines
(Adiponectin, IL-10, IL-1RA)

Insulin sensitivity

Lipid accumulation

eNOSNO

ROSOxidative 
stress

ACC

Triglycerides

Nucleus

Cytoplasm

Mitochondria

Inflammation

Adiponectin

AdipoR2

SREBP1C

β-oxidation of fatty acids

Fig. 3 Adiponectin-induced
intricate crosstalk between
AdipoR2 and PPAR in
hepatocytes. A hypothetical
model showing mechanistic
approach of adiponectin and
adiponectin-activated PPARs as
well as PPAR-induced
adiponectin levels in attenuation
of deleterious inflammatory
mechanisms, oxidative status and
imbalance of triglycerides levels,
simultaneously. Specifically,
adiponectin provokes hepatic
AdipoR2-induced AMPK
downstream signaling and
triggers PPAR-induced
transcriptional factors to
ameliorate oxidative status,
inflammation and high levels of
triglycerides resulted from
adipocytes remodeling and
obesity-driven alterations
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biological responses that include increased enzyme synthesis,
glucose uptake and utilization, glycogen synthesis, reduced
inflammation, lipolysis, and gluconeogenesis.

3.1 PPAR ligand-mediated ameliorative effects
in obesity and NAFLD: A therapeutic perspective

All three hepatic PPAR isotypes are potential targets for li-
gands and show pluripotent effects against lipoinflammation
[76]. Each isotype has equal affinity for endogenous and/or
exogenous ligands. Endogenous ligands such as polyunsatu-
rated fatty acids and eicosanoid metabolites (e.g., prostacyclin
and 15 hydroxyeicosatetraenoic acid (15-HETE) as well as
exogenously administered artificial agonists, including
GW501516, GW0742, L-165041, and carbacyclin are capable
to initiate PPAR activity. In addition, the pharmacological
activity of PPARs can be inhibited by several inverse agonists
and antagonists [77]. The PPARs can be therapeutically
exploited for dyslipidemia, IR, inflammation, and coagulation
disorders that promote type 2 diabetes (T2DM) in obese pa-
tients. All three PPAR isotypes have demonstrated anti-
inflammatory and anti-obesity effects in these conditions.

The expression of adiponectin induced by PPARγ ago-
nists, rosiglitazone and pioglitazone are reported to improve
IR in diabetic patients [45] and trigger downstream AMPK
signaling. Rosiglitazone treatment reversed induction and pro-
gression of hepatic fibrosis and HSCs activation by sGC/
cGMP/PKG and PI3K/AKT signals [78]. The activation of
AMPK pathway reported by latest studies [79, 80] demon-
strated improved IR and hepatic ischemia perfusion injury.
Fibrate attenuates steatohepatitis by suppressing the expres-
sion of several cytokines [72] through PPARα agonism [68].
Moreover, fibrate induced expression of AdipoR2 modulates
the adiponectin signaling and action [67]. A recent study in-
vestigated that 2-(4-(5-chlorobenzo[d]thiazol-2-yl)phenoxy)-
2,2-difluoroacetic acid (MHY3200) is a more potent PPARα
agonist thanWY14643 in high fat diet (HFD)-induced hepatic
lipoinflammation [81]. The HFD is the root cause for initiation
of obesity and obesity-derived complications. Whereas, a re-
cent study showed that HFD induces PPARγ expression by
surplus free fatty acids (FA) in hyperlipidemic condition
indicatinga positive feedback regulation over FAO and keto-
genic enzymes by controlling lipotoxicity in 8 weeks old
C57BL/6 wild type (WT) mice. While upregulation of mito-
chondrial metabolic enzymes 3-hydroxy-3-methylglutaryl-
CoA synthase (HMGCS2), mitochondrialβ-hydroxy butyrate
dehydrogenase (BDH1) and pyruvate dehydrogenase kinase
isoform 4 (PDK4) by PPARγ activation are responsible for
cardiac dysfunction [82]. A study highlighted that expression
of PPARγ and PPARβ by activated neutrophils. These cells
activated by G protein coupled receptors (GPCRs) agonist N-
formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLP) that
binds to membrane-formylated peptide and activates

intracellular inflammation pathways. Later LYSO-7, an insu-
lin sensitizing agent, inhibited resultant gene and protein ex-
pression of adhesionmolecules, CD62 L and CD18, abolished
adhesion of neutrophils to endothelial cells, impaired its che-
motaxis, blocked the enhancement of intracellular calcium
levels, induced the expression of PPARγ as well as PPARβ/
δ and reduced NF-κB [83]. Accumulating evidences have
indicated protective role of PPARs in fibrogenesis. In this
context, a recent study reported a mechanistic approach of
PPARγ in amelioration of hypoxia-induced hepatic
fibrogenesis in a rat model.

Several pharmacotherapies modulate more than one PPAR
form for treating metabolic challenges simultaneously by
targeting transrepression and/or transactivation of genes.
Thus, synthetic/artificial/exogenous PPARs ligands could be
an essential tool to avoid NAFLD progression and other obe-
sity related metabolic health issues (Table 1).

3.1.1 Future perspective

The worldwide increasing prevalence of obesity and related
complications, a public health menace and create alarming
conditions in the healthcare system. The major determinant
of health problems seen in overweight and obesity is inflam-
mation, which emphasizes the link between nutrition, meta-
bolic organs, and the immune system. Nevertheless, interde-
pendent pathophysiological linkage of these disorders may
overcome resultant abnormalities aforetime. Indeed, intricate
crosstalk between adiponectin and hepatic PPARs mediated
by AdipoR2, AMPK pathway, transactivation of many anti-
inflammatory genes of CPT-1, adiponectin, IL-10 and IL1RA
along with suppression of transcriptional activation of pro-
inflammatory response genes essentially of ACC, NFκB,
SREBP1C, activation of ceramidase and ACC, can be prom-
ising therapeutic targets in combating this multifactorial syn-
drome at cellular level.

Currently, adiponectin and PPAR serve as emerging mod-
ulators of cellular metabolic functions within the liver. Now,
certain links between lipid signaling and inflammation under-
scores the need of finely tuned crosstalk at cellular and mo-
lecular level. Developing pharmacotherapeutic ligands that
target integrated network of adiponectin and hepatic PPARs
may provide potential therapeutic perspectives for synthesiz-
ing anti-obesity as well as anti-inflammatory ligands for treat-
ment of obesity and obesity-induced NAFLD.
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