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Abstract Organ-specific adult stem cells are essential for or-
gan homeostasis, tissue repair and regeneration. The forma-
tion of such stem cells often takes place during postembryonic
development, a period around birth in mammals when plasma
thyroid hormone concentration is high. The life-long self-re-
newal of the intestinal epithelium has made mammalian intes-
tine a valuable model to study the function and regulation and
adult stem cells. On the other hand, much less is known about
how the adult intestinal stem cells are formed during verte-
brate development. Here, we will review some recent pro-
gresses on this subject, focusing mainly on the formation of
the adult intestine during Xenopus metamorphosis. We will
discuss the role of thyroid hormone signaling pathway in the
process and potential molecular conservations between am-
phibians and mammals as well as the implications in organ
homeostasis and human diseases.

Keywords Thyroid hormone receptor . Stem cell .

Metamorphosis .Xenopus laevis and tropicalis .

Postembryonic development . Intestine

1 Introduction

Adult organ-specific stem cells are critical for organ-homeo-
stasis, tissue-repair and regeneration. The adult mammalian
intestine, especially the mouse intestine, has been a valuable
model system to study adult organ-specific stem cells largely
because of their constant self-renewal of the intestinal epithe-
lium throughout adult life [1–6]. In the intestine, the stem cells
residing at the bottom of the crypts, proliferate and their
daughter cells differentiate into different epithelial cell types
as they migrate along the crypt-villus axis, and eventually
undergo apoptosis at the tip of the villus, thus completing
the self-renewing cycle once every 1-6 days in adult mammals
[2, 7, 8]. Similar processes occur in the intestine in all verte-
brates, including amphibians, with self-renewing once every
2 weeks in Xenopus laevis [9]. Such interesting properties
together with the development of a number of technologies,
such as transgenesis and knockout as well as in vitro cultures,
have enabled extensive studies that have revealed important
mechanistic insights on the function and properties of the
adult stem cells, including many molecular pathways
governing stem cells [2, 10]. On the other hand, much less is
known about when and how such adult intestinal stem cells
are formed during vertebrate development, largely due to the
difficulty to manipulate uterus-enclosed mammalian embryos.

Early studies suggests that in mouse, the formation of adult
intestinal stem cells takes place shortly after birth when plas-
ma thyroid hormone (T3) level high [3, 11–13], suggesting
that T3 plays an important role in the formation of adult intes-
tinal stem cells. Furthermore, TR deficiency leads to defects of
the intestinal development, underlining the importance of this
hormone. It is, however, difficult to study the role of T3 on
intestinal maturation in mammals because of the dependence
of the mammalian embryos or even neonates on the maternal
supply of nutrients, making it difficult to separate the direct vs.
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indirect effects of T3 on the embryos or neonates.
Interestingly, this postembryonic developmental period in
mammals resembles anuran metamorphosis in many aspects
[14, 15]. Importantly, amphibian metamorphosis offers a num-
ber of advantages to study T3 action in vertebrate develop-
ment. First, its total dependence on T3 makes it easy to ma-
nipulate this process in both intact animals and organ/primary
cell cultures [14–16]. Second, extensive earlier studies have
provided detailed biochemical, morphological, cytological,
and molecular information on the metamorphic transforma-
tion of different organs/tissues [14–16]. Finally, the develop-
ment of transgenic, gene knockout and knockin technologies
have made it possible to carry out genetic studies in amphib-
ians, especially the widely used, highly related species
Xenopus laevis and tropicalis [17–26].

Intestinal remodeling during amphibian metamorphosis
bears many similarities to the maturation of mammalian intes-
tine during the neonatal period, also referred to as the
postembryonic development [15]. In the Xenopus laevis and
tropicalis, the tadpole intestine is a simple tubular structure
made of mainly larval epithelial cells with little connective
tissue or muscles, except in the single epithelial fold, the
typhlosole, where connective tissue is abundant (Fig. 1) [27,
28]. During metamorphosis, the tadpole epithelium degener-
ates with the vast majority of the cells undergoing apoptosis.
Some larval epithelial cells, however, dedifferentiate into
highly proliferative cells that express well-known markers of
adult mammalian intestinal stem cells, such as leucine-rich
repeat-containing G-protein coupled receptor 5 (Lgr5) and
Musashi-1 (Msi-1) [29–31]. These adult stem cells

subsequently proliferate and differentiate to form the adult
epithelium. Concurrently, the connective tissue and muscles
also develop extensively. The resulting frog intestine contains
numerous epithelial folds that resemble the crypt-villus struc-
ture in mammals and are surrounded by thick layers of con-
nective tissue and muscles [1, 27, 28, 32, 33]. As in adult
mammals, throughout adult frog life, the stem cells localized
in the trough of the fold proliferate and the daughter cells
differentiate into different epithelial cells as they migrate up
toward the crest of the fold, where they undergo apoptosis [27].

2 T3 regulation of adult intestinal stem cell
development during Xenopus metamorphosis

Like during mammalian postembryonic development, T3
levels peak during amphibian metamorphosis with little T3
present in premetamorphic tadpoles [14, 34]. More important-
ly, blocking the synthesis of endogenous T3 prevents meta-
morphosis while addition of physiological levels of T3 to the
rearing water of premetamorphic tadpoles or even organ cul-
tures derived from premetamorphic tadpoles induces preco-
cious metamorphosis, indicating that T3 plays a causative role
on amphibian metamorphosis [14, 34]. Thus, T3-treatment of
premetamorphic tadpoles leads to precocious remodeling of
the intestine, including the formation of adult intestinal stem
cells [27]. Importantly, this process is organ-autonomous as
T3 can even induce the formation of adult intestinal stem cells
as well as the adult intestinal epithelium when the intestinal
organ cultures from premetamorphic tadpoles are treated with
physiological levels of T3 [1, 35–38]. Making use of the ability
to generate transgenic animals expressing GPF and carrying out
recombinant intestinal organ cultures, we have demonstrated
that adult epithelial stem cells induced by T3 treatment have
their origin in the larval epithelium [32]. Since there has been
no evidence for the existence of epithelial stem cells in the larval
epithelium [27, 39], these findings suggest that T3 induces some
larval cells to develop into adult intestinal stem cells.

3 Mechanism of gene regulation by TR
and an essential role of TR in Xenopus development
and adult stem cell formation

T3 has both genomic and non-genomic effects. The non-
genomic effects are mediated by cell surface and cytoplasmic
binding proteins, including TRs, although their role in verte-
brate development, if any, is unknown [40–45]. At the geno-
mic level, T3 regulates gene transcription through T3 recep-
tors or TRs [14, 40–42, 44, 46]. TRs can both activate and
repress gene transcription. For genes that are induced by T3,
TR mainly functions as heterodimers formed with 9-cis
retinoic acid receptors (RXRs), members of the nuclear

a b c

Fig. 1 Intestinal metamorphosis involves the formation of clusters of
proliferating, undifferentiated epithelial cells at the climax. Tadpoles at
premetamorphic stage 54 (a), climax (b, stage 62), and end of
metamorphosis (c, stage 66) were injected with EdU one hour before
being sacrificed. Cross-sections of the intestine from the resulting
tadpoles were double-stained for EdU (5-Ethynyl-2’-deoxyuridine,
labeling newly synthesized DNA) and IFABP (intestinal fatty acid
binding protein, a marker for differentiated epithelial cells) by
immunohistochemistry. The dotted lines depict the epithelium-
mesenchyme boundary. Note that the EdU-labeled proliferating cells in
the epithelium were few and expressed IFABP at premetamorphosis (a)
and increased in form of clustered cells (proliferating adult stem cells) that
lacked IFABP at the climax of metamorphosis (b). At the end of
metamorphosis, EdU-labeled proliferating cells were localized mainly
in the troughs of the epithelial folds where IFABP expression was low
(c). ep, epithelium. ct, connective tissue. m, muscles. l, lumen. See [29]
for more details
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hormone receptor superfamily that also include TRs [40, 42,
44, 46, 47]. TR/RXR heterodimers bind to T3-response ele-
ments (TREs) in target genes constitutively to regulate target
gene expression in a T3-dependent manner [40, 42, 44,
47–50]. In the absence of T3, TR binds to histone
deacetylase-containing corepressor complexes to repress tran-
scription [51–67]. When T3 is available, TR binds coactivator
complexes, such as those containing histone acetyltransfer-
ases SRC (steroid receptor coactivator) 1-3 and histone meth-
yltransferase PRMT1 (protein arginine methyltransferase 1),
to facilitate epigenetic modification and gene transcription
[42, 56, 68–89]. Molecular studies such as chromatin immu-
noprecipitation (ChIP) assays have shown that TR and RXR
are indeed bound to T3-inducible genes constitutively in pre-
and metamorphosing Xenopus laevis and tropicalis tadpoles
and recruits corepressor and coactivator complexes in a T3
dependent manner in vivo [67, 81, 86–94]. This leads to corre-
sponding changes in local chromatin structure and histone mod-
ifications, accompanying changes in gene transcription [93–98].

To study the role of TRs in Xenopus development, we and
others first used transgenic approach to overexpress mutant
receptors to show that TR is both necessary and sufficient to
mediate the metamorphic effects of T3 [45, 98–112]. To spe-
cifically determine the involvement of TR in the formation of
adult intestinal stem cells, we generated recombinant organ-
cultures of the isolated intestinal epithelium and the non-
epithelium (the rest of the intestine) from wild type and trans-
genic animals expressing a dominant positive TR (dpTR) un-
der the control of a heat shock-inducible promoter [102, 113].
This dpTR functions like constitutively liganded TR except
that it does not bind to T3. We observed that when dpTR was
induced to express in all tissues of the intestine, intestinal
metamorphosis, including larval epithelial cell death and adult
stem cell formation, took place even in the absence of T3
[113]. More importantly, we showed that expression of
dpTR in the larval epithelium alone is able to induce the de-
differentiation of larval epithelial cells to upregulate sonic
hedgehog gene, which is highly expressed in the proliferating
adult epithelial progenitor/stem cells. Interestingly, such cells
fail to upregulate the expression of well-known adult stem cell
markers, such as Msi-1, and the formation of the stem cells
expressing such markers also requires the expression of dpTR
in the rest of the intestinal tissues (the non-epithelium) in the
recombinant organ cultures (Fig. 2) [113]. Theses findings
indicate that TR is necessary and sufficient for T3-induction
of stem cell formation and that this process requires T3 action
in both epithelium and non-epithelium, with the latter likely
contribute to the formation of the so-called stem cell niche [35,
107, 113, 114]. They further suggest that T3-regulated genes
in both the epithelium and non-epithelium are required for
stem cell development. Many such tissue-specific T3-regulat-
ed genes have been identified and the analyses of the spatio-
temporal expression profiles of some of the epithelial genes

indeed support their involvement in adult stem cell formation/
proliferation [115–120].

4 A role of PRMT1 in thyroid hormone-dependent
intestinal stem cell development in Xenopus

Among the T3-regulated genes during intestinal metamorpho-
sis is PRMT1, which has been shown to function as a TR
coactivator [79]. PRMT1 binds to SRC1-3 and is capable of
methylating histone H4 arginine 3 (H4R3) [121].
Consistently, during intestinal remodeling, PRMT1 is recruit-
ed by TR to endogenous target genes and transgenic overex-
pression of PRMT1 enhances TR target gene expression and
accelerates metamorphosis in Xenopus laevis [81].

More importantly, PRMT1 is highly upregulated specifically
in the developing/proliferating adult intestinal stem cells during
metamorphosis and that its upregulation is one of the earliest
events during the dedifferentiation of the larval epithelial cells
in their transformation into adult stem cells (Fig. 3), suggesting a
role of PRMT1 in this process. In support of this, heat shock
treatment of transgenic tadpoles which had transgenic wild type
PRMT1 under the control of a heat shock-inducible promoter
resulted in an increased number of intestinal stem cells during
metamorphosis and knockdown the endogenous PRMT1 with
antisense morpholino oligonucleotide reduced the number of
such stem cells [13]. It is likely that PRMT1 affects the formation
and/or proliferation of adult intestinal stem cells duringmetamor-
phosis by enhancing T3 signaling. In addition, PRMT1may also
act as a coactivator for other transcription factors to affect gene
expression or influence the function of other proteins through
methylation during stem cell development and proliferation.

5 Conservation of T3-dependent intestinal stem cell
development in vertebrates

As indicated in the introduction, the maturation of the intestine
occurs around the time when plasma T3 levels are high in
other vertebrates such as mammals, a period resembling am-
phibian metamorphosis. Furthermore, T3 or TR deficiency in
mouse leads to abnormal intestinal morphology, a decrease in
the number of epithelial cells along the crypt-villus axis and in
proliferating crypt cells [122–125]. It has also been shown that
TRα1 controls intestinal development during maturation at
weaning as well as intestinal homeostasis in adulthood by
activating the proliferation of intestinal progenitors in the
crypt [126]. Thus, T3 and TR may have conserved roles in
regulating the formation of vertebrate adult intestinal stem
cells. Studies on PRMT1 expression during mouse and
zebrafish development support this conservation. Little
PRMT1 or no expression is present in the larval/neonatal in-
testine in zebrafish or mouse when plasma T3 levels were low.
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During the transition to the adult intestine when T3 levels are
high [127, 128], PRMT1 mRNA is upregulated specifically in
the bottom of the developing epithelial fold or crypt in the
intestine of zebrafish or mouse, respectively, suggesting that
T3 regulates the development of the adult epithelial stem cells
in zebrafish and mouse intestine in a process that requires high
levels of PRMT1, similar to that during Xenopus metamor-
phosis. The findings also argue that the embryonic/neonatal
mouse intestinal stem cells are molecularly distinct from those
in the adult mouse intestine.

Two subsequentmouse genetic studies on the transcription-
al repressor, B lymphocyte-induced maturation protein 1
(Blimp1) have also provided evidence to support that mouse
adult intestinal stem cells are distinct from the embryonic/
neonatal epithelial or stem cells [11, 12]. Blimp1 is strongly
expressed throughout the intestinal epithelium of embryonic

and newborn mice when there are no crypts. Shortly after birth
as the intestine matures into the adult form with crypt-villus
axis, Blimp1 expression is down-regulated in the intervillus
pockets where crypts begin to develop, while its expression in
the rest of the epithelial cells persists. As the crypts develop,
all cells in the newly formed crypts lack Blimp1 expression
and eventually, Blimp1 expression is absent throughout the
epithelium in the adult intestine. Thus, the loss of Blimp1
expression in the developing crypt is likely one of the early
events for the embryonic/neonatal epithelial cells to develop
into the adult stem cells, whose offspring subsequently popu-
late the epithelium in the adult intestine. Subsequently, it has
been shown that Blimp1 helps to maintain neonatal tolerance
during postembryonic intestinal maturation [129]. These find-
ings suggest that Blimp1 is important for maintaining the natal
stage of the intestine and the delay of the formation of adult
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Fig. 2 Top. Recombinant intestinal organ culture studies using dpTR-
expressing transgenic (Tg) and wild type (Wt) tadpoles indicate that only
when both the epithelium (Ep) and non-Ep (the rest of the intestine) are
derived from Tg animals, i.e., Tg/Tg, are true stem cells formed.
Recombinants made of Tg Ep and Tg non-Ep (Tg/Tg) and Tg Ep and
Wt non-EP (Tg/Wt) of premetamorphic intestines were cultured with heat
shock treatment for 5 days in vitro. Cross sections were double-immuno-
stained with anti-Shh (green, sonic hedgehog, an adult stem cell precursor
marker) and anti-CK19 (red, cytokeratin-19, which is expressed in
epithelial cells), or anti-Msi-1 (green, Musashi-1, a stem cell marker of
the vertebrate adult intestine) and anti-CK19 (red), or anti-Akt (green, a
stem cell marker of the vertebrate adult intestine) and anti-CK19 (red)
antibodies. In both Tg/Tg (arrowheads) and Tg/Wt intestines, cells
positive for Shh and CK19 become detectable among cells expressing,
indicating the Shh positive cells can be induced by cell-autonomous
action of activated TR in the epithelium. Cells positive for Msi1 and
Akt are also detected among CK19- immunoreactive cells in Tg/Tg

intestine (arrowheads) but not in Tg/Wt intestine. Thus, activation of
TR in the non-epithelial tissues is also required for the stem cell
formation. Not shown here is that most of the epithelial cells undergo
apoptosis when dpTR is expressed in either the EP or non-EP or both, just
like that during metamorphosis when T3 binds to TR. See [113] for
details. Bottom: A model for T3 actions during stem cell development
in Xenopus laevis intestine. During metamorphosis, T3 acts directly (1)
on the larval epithelium as well as (2) on the rest of the intestine (the non-
epithelium), mostly the connective tissue. The vast majority of the larval
epithelial cells are induced to undergo programmed cell death but a small
number of the larval cells within the larval epithelium undergo
dedifferentiation upon receiving the T3 signal (1) to dedifferentiate into
Shh positive precursor cells. However, T3 action in the non-epithelium
(2) is required for these cells to develop into stem cells expressing Msi1
and Akt, with the T3 action in the non-epithelium likely contributes to the
establishment of the stem cell niche
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stem cells while PRMT1 is important for the development of the
adult intestinal stem cells and that the two genesmay function to
keep a balance during transition from the neonatal to adult stage.

6 T3 and adult intestinal physiology and diseases

Aside from its roles in development, T3 is also critical for
normal physiological functions of most, if not all, organs in
the adult vertebrates and T3 levels regulates metabolic rate
[130–132]. T3 and/or T3 metabolism is known to affect stem
cell function and regeneration in different tissues including
muscle and neurons [133–137]. Similarly, a number of studies

suggest that T3 signaling is also critical for adult intestinal
physiology. First, recent discoveries of human patients with
mutations in TRα revealed that disrupting liganded TRα
function causes distinct pathological problems in human com-
pared to similar mutations in the human TRβ [138–141]. In
particular, such patients have constipations, suggesting intes-
tinal defects due to the TRα mutations [139–141]. Second,
altered T3 levels are associated with intestinal abnormalities
and diseases. For example, increased rate of thyroid disorders
has been observed in patients with inflammatory bowl dis-
eases (IBD), such as ulcerative colitis and Crohn’s disease
[142]. Third, studies in mouse have shown that T3 deficiency
or TRα knockout results in abnormal intestinal morphology
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Fig. 3 PRMT1 has conserved spatiotemporal expression patterns during
postembryonic intestinal development in Xenopus laevis, fish, and
mouse. PRMT1 mRNA was analyzed by in situ hybridization in the
intestines at three different developmental stages: larval/neonatal when
plasma T3 level is low; larval to adult transition when T3 level is high,
and end of the transition when T3 is low, in three different animal species.
The stages were stage 54 (premetamorphosis), stage 62 (metamorphic
climax), and stage 66 (end of metamorphosis for Xenopus laevis;
15 days post fertilization (dpf), 20 dpf and 1 year post fertilization (ypf)
for zebrafish; and postnatal day 7 (P7), P21, and postnatal week 14

(P14w) for mouse, respectively. Arrows indicate PRMT1 positive cells
in the intestinal epithelium of zebrafish and mouse. Note that there was
little PRMT1 expression in the larval/neonatal stage prior to the
transformation in all three species. As T3 level rose during intestinal
transformation to the adult type, high levels of PRMT1 expression was
detected only in the proliferating/stem cells located in the crypts in both
mouse and zebrafish and in the clusters of cells in the epithelium at climax
of metamorphosis in Xenopus laevis. ep, epithelium. ct, connective tissue.
m, muscles. l, lumen. Bars, 50 μm for zebrafish and mouse, 100 μm for
Xenopus. See [13] for details
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and a decrease in stem cell proliferation in the adult
[122–126]. Finally, in thyroid patients with either hypothy-
roidism or hyperthyroidism, gastrointestinal manifestations
are common signs of the disease. These include reduced mo-
tility in hypothyroidism vs. increased motility in hyperthy-
roidism, autoimmune gastritis, or esophageal compression
[143]. Patients with hyperthyroidism can experience frequent
bowel movements, diarrhea, nausea and vomiting, while those
with hypothyroidism have overall decreased metabolic func-
tion accompanied by slow intestinal motility and constipation
[144].

T3 and TRs have also been implicated to play a role in
intestinal tumorigenesis. Transgenic overexpression of TRα
in the intestinal epithelium leads to abnormal intestine that has
increased cell proliferation and adenoma in wild type mice;
TRα overexpression also synergizes with over-activation of
WNT signaling caused by mutations in the WNT pathway to
induce intestinal tumorigenesis [5, 145, 146]. Additionally,
TRβmutations and altered TR expression have been reported
in intestinal tumors [147–149]. Since intestinal tumor devel-
opment is likely due to neoplastic transformation of intestinal
stem cells [150–152], T3 and TR presumably affect intestinal
tumorigenesis by regulating adult intestinal stem cells, as sug-
gested by the adult intestinal phenotypes caused by T3 or TR
deficiency in mouse [122–126].

Many T3-regulated genes have also been isolated in the
mouse intestinal crypts [124]. T3 may affect intestinal physi-
ology and pathogenesis through these target genes. Of partic-
ular interests are genes in the Wnt and Notch signaling path-
ways, which are known to be important for adult intestinal
stem cell function [124, 153, 154]. One such gene is the se-
creted frizzled-related protein 2 (sFRP2), which is strongly
upregulated by T3 in the intestinal crypt and modulates cell
fate by regulating Wnt signaling [153]. Similarly, TRα has
been shown to directly regulate the transcription of Jag1 gene,
a member of the Notch pathway [154]. Additionally, as indi-
cated above, the TR coactivator PRMT1 is also highly upreg-
ulated in the developing adult intestinal stem cells during
mouse postembryonic intestinal maturation [13]. It remains
to be investigated whether PRMT1 plays role in T3-
regulation of theWnt and Notch pathways. On the other hand,
our recent unpublished studies suggest that epithelial expres-
sion of PRMT1 is required for the proper maturation of the
mouse intestine as well as intestinal repair (Roediger, J. and
Shi, Y.-B., unpublished observation), supporting a role of
PRMT1 in adult intestinal stem cell development and func-
tion. Additionally, PRMT1 is overexpressed in colon cancers
as well as may other cancers and silencing PRMT1 expression
suppresses cancer cell growth, suggesting that PRMT1 also
play a role in intestinal cancers [155, 156]. Furthermore,
PRMT1 has been associated with other intestinal diseases
such as Hischsprung disease, also known as congenital
megacolon [157], and lipopolysaccharide-induced intestine

tissue inflammation [158]. Thus, proper spatiotemporal ex-
pression of PRMT1 is critical for ensuring normal intestinal
physiology and preventing diseases, possibly through regulat-
ing adult intestinal stem cell function.

Given the involvement of T3 in intestinal diseases and
physiology, one may expect that genes involved in T3 synthe-
sis and metabolism also play a role. In particular, T3 is syn-
thesized as through the deiodination of thyroxin (T4) and can
be metabolized through further deiodination. There are three
deiodinases, D1, D2, and D3, in vertebrates, with D1 and D2
capable of converting T4 to T3 while D3 inactivates T3. It has
been shown that the expression of deiodinases is altered in
several types of human cancers, including the overexpression
of D3 in human colorectal cancers [159–161]. D3 is a direct
downstream target of the Wnt/ β-catenin pathway and thus
represents an interface between the β-catenin and T3 signal-
ing pathways [160]. β-catenin stimulates D3 and reduces D2,
the T4 activating deiodinase, leading to a decrease in intracel-
lular T3. The reduction in T3 in turn promotes cell prolifera-
tion while inhibiting E-cadherin expression and cell differen-
tiation. In colon cancer cells the activity of the Wnt/ β-catenin
pathway is elevated and the expression of D3 is high, suggest-
ing that hormone activation and inactivation pathways are
critical in tumorigenesis [160, 162]. Furthermore, T3 treat-
ment of colorectal cancer spheres represses Wnt pathway
and inhibits tumorigenic potential, indicating that T3 signaling
is a strong determinant in tumorigenesis [162].

7 Conclusion

The external development and total dependence of am-
phibian metamorphosis on T3 and TR has enabled easy
manipulation of this process for molecular and genetic
studies of postembryonic organ development in verte-
brates [45, 93, 94, 97, 98, 100, 163]. In particular, the
analyses of intestinal metamorphosis in Xenopus laevis
and Xenopus tropicalis have revealed important mecha-
nistic insights on how T3 induces the formation of adult
intestinal stem cells and identified many candidate adult
stem cell genes. These studies as well as those in other
vertebrates, especially mouse, have revealed conserved
roles and mechanisms in the intestinal development
and also implicated a role of T3 in regulating adult
intestinal stem cell functions during normal physiology
and pathogenesis, especially tumorigenesis. Clearly,
functional studies of the candidate stem cells genes in
mouse and frogs are needed to determine their roles in
these processes. The recent advancements in knockout
and knockin technologies in Xenopus [19–26] further
enhances the value of the amphibian model for studying
the role of adult organ-specific stem cells in human
intestinal homeostasis and diseases.
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