
Using systematic reviews for hazard and risk assessment
of endocrine disrupting chemicals

Anna Beronius1 & Laura N. Vandenberg2

Published online: 4 February 2016
# Springer Science+Business Media New York 2016

Abstract The possibility that endocrine disrupting chemicals
(EDCs) in our environment contribute to hormonally related
effects and diseases observed in human and wildlife popula-
tions has caused concern among decision makers and re-
searchers alike. EDCs challenge principles traditionally ap-
plied in chemical risk assessment and the identification and
assessment of these compounds has been a much debated
topic during the last decade. State of the science reports and
risk assessments of potential EDCs have been criticized for
not using systematic and transparent approaches in the evalu-
ation of evidence. In the fields of medicine and health care,
systematic review methodologies have been developed and
used to enable objectivity and transparency in the evaluation
of scientific evidence for decision making. Lately, such ap-
proaches have also been promoted for use in the environmen-
tal health sciences and risk assessment of chemicals.
Systematic review approaches could provide a tool for im-
proving the evaluation of evidence for decision making re-
garding EDCs, e.g. by enabling systematic and transparent
use of academic research data in this process. In this review
we discuss the advantages and challenges of applying system-
atic review methodology in the identification and assessment
of EDCs.
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1 Introduction

The question of whether chemicals used in industrial process-
es, consumer products and food production have adverse ef-
fects on health is not a new one. Although Rachel Carson’s
book Silent Spring brought public awareness to this issue in
the 1960s, since that time the number and volume of
chemicals used in commerce has continued to increase [1].
A subset of chemicals has garnered significant attention over
the last two decades, not only by public health officials, risk
assessors and toxicologists, but also by endocrinologists.
These chemicals, coined ‘endocrine disrupting chemicals’
(EDCs), are studied for their ability to interfere with normal
hormone action. To date, databases from the US Food and
Drug Administration and the Endocrine Disruption
Exchange estimate that at least 1000 chemicals may have
endocrine disrupting properties [2, 3]. Most EDCs identified
to date interact with hormone receptors as agonists or antago-
nists [2, 4, 5], but others act via altering hormone “production,
release, transport, metabolism, binding, action, or elimina-
tion” [4]. Importantly, these chemicals are used in a range of
consumer products including personal care products, deter-
gents, upholstery and fabrics, food contact materials, medical
equipment, as well as other uses resulting in exposure to the
general population, such as pesticides (herbicides, insecti-
cides, fungicides, etc.) [6–8].

In 2013, an updated State-of-the-Science review of the
EDC literature was published by the World Health
Organization (WHO) and United Nations Environment
Programme (UNEP) which concluded that there was suffi-
cient evidence from controlled laboratory studies to indicate

* Laura N. Vandenberg
lvandenberg@schoolph.umass.edu

Anna Beronius
Anna.Beronius@aces.su.se

1 Department of Environmental Science and Analytical Chemistry,
Stockholm University, Stockholm, Sweden

2 Department of Environmental Health Sciences, University of
Massachusetts Amherst School of Public Health & Health Sciences,
149BGoessmann, 686 N. Pleasant Street, Amherst, MA 01003, USA

Rev Endocr Metab Disord (2015) 16:273–287
DOI 10.1007/s11154-016-9334-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s11154-016-9334-7&domain=pdf


that EDCs can induce endocrine disorders, and thus EDC
exposures may be implicated in many of these conditions in
humans and wildlife [9]. The report also noted that human
disease trends for many endocrine-related disorders are in-
creasing and that growth and development of wildlife species
have also been affected.

In fall 2015, the Endocrine Society released a Second
Scientific Statement on EDCs [10], updating a prior statement
that was published in 2009 [11]. The second report, termed
EDC-2, reviewed 1300 studies of human populations and lab-
oratory experiments, many of which showed relationships (as-
sociations or causal links) between EDC exposures and dis-
eases. Focusing largely on data produced over the past five
years, EDC-2 drew conclusions about the strength of evidence
between EDC exposures and obesity, diabetes and cardiovas-
cular disease; female reproductive disorders; male reproduc-
tive disorders; hormone-sensitive cancers; thyroid conditions;
and neurodevelopmental and neuroendocrine effects [12].

The possibility that EDCs in our environment are a con-
tributing factor to endocrine related effects in both human and
wildlife populations implies that past risk assessments of these
chemicals have failed to adequately protect human health and
the environment. The publication of the 2013WHO report [9]
and the 2015 EDC-2 Statement [10], along with other reviews
of large portions of the EDC scientific literature [11, 13–16],
have heightened ongoing debates about the hazards and risks
associated with these chemicals. In fact, a number of back-
and-forth exchanges between different groups of scientists,
including those associated with or funded by chemical indus-
tries, have highlighted what appears to be a deep divide in the
scientific community about many issues associated with the
identification, study and assessment of EDCs (see [17, 18],
and [19–22], and [23–25]). Considering the strength of the
evidence detailed in the UNEP/WHO report and EDC-2, some
have begun to argue that this is a new example of
‘manufactured doubt’ [24]. This term indicates a financial
incentive to block consensus building and public health pro-
tective decisions; methods to ‘manufacture doubt’ were orig-
inally developed by the tobacco industry to fight association
of its products with lung cancer and other adverse health out-
comes [26, 27].

One criticism of the WHO/UNEP report and other reviews
that have been conducted on large portions of the EDC liter-
ature has focused on the methods that were used to select the
studies to be assessed. A number of critics have noted that
systematic review methods were not used, with the implica-
tion that the use of systematic review methods would have led
to different conclusions about the strength of the evidence
linking EDC exposures to health outcomes [17, 23, 28].
These critiques fail to note that agreed upon methods for sys-
tematic review for EDCs do not yet exist. Here, wewill review
the hazard and risk assessment process for EDCs and other
environmental chemicals, and the role that systematic review

could play in improving the identification and assessment of
EDCs for decision-making. We will describe the methods that
are currently available to systematically review and integrate
evidence from human epidemiology, in vitro mechanistic, lab-
oratory animal, wildlife, and in silico studies of EDCs. We
describe why EDCs may require systematic review methods
that are distinct from the methods that are used for other en-
vironmental chemicals. Finally, we discuss some of the limi-
tations to systematic reviews, especially as they relate to large
analyses like the UNEP/WHO and EDC-2 reports.

2 A brief overview of the risk assessment process
for EDCs

Generally speaking, the purpose of risk assessment of
chemicals is to evaluate scientific data in order to provide a
scientific basis for decision makers to act (if needed) to reduce
chemical risks to human health or the environment. For ex-
ample, regulatory risk assessment is used as the basis for ap-
proving or restricting different uses of chemicals. The risk
assessment process consists of three main parts: hazard assess-
ment (including hazard identification and hazard characteriza-
tion), exposure assessment, and risk characterization. Figure 1
summarizes these parts, as they relate to human health risk
assessment.

In hazard assessment, toxicological data is reviewed to
identify the adverse effects of the compound (hazard identifi-
cation), as well as to characterize the dose-response and draw
conclusions on a Bsafe^ dose, e.g. calculating a reference dose
for humans (hazard characterization). Hazard assessment is
often based primarily on experimental animal data; if human
data is available it is used as supportive evidence. The expo-
sure assessment aims to identify all sources of exposure to a
compound and estimate exposure levels in the population of
interest, e.g. the general population, certain workers, or a cer-
tain age group. In the risk characterization step, the results
from the hazard and exposure assessments are combined to
draw conclusions concerning risk, e.g. if the estimated expo-
sure exceeds calculated Bsafe^ doses or if the margin between
doses where adverse effects arise and exposure levels is/is not
sufficient. This reviewwill primarily focus on issues related to
the hazard assessment step.

Risk assessment is based on a number of basic principles
and assumptions; in some cases, these assumptions have been
challenged by EDCs. These are summarized below in
Sections 2.1–2.4. In addition, several aspects of the risk as-
sessment process rely, more or less, on expert judgement, such
as the identification and evaluation of relevant data, determin-
ing what effects are to be considered adverse, and the appli-
cation of assessment (or uncertainty) factors to calculate ref-
erence doses. Expert judgement can be argued to play an im-
portant role in hazard and risk assessment by allowing

274 Rev Endocr Metab Disord (2015) 16:273–287



sufficient flexibility to account for all relevant aspects of the
scientific question to be answered. However, it inevitably in-
troduces value-based assumptions to the assessment that may
influence conclusions. It is of key importance that these as-
sumptions are transparently described and justified [29, 30].

2.1 All relevant data should be considered in risk
assessment

Guidance for risk assessment of chemicals issued by different
authorities and organizations generally requires or recom-
mends that all relevant toxicity data should be considered in
the assessment process (e.g. [31–34]). However, the process
for identifying and selecting which data are considered as
evidence in the assessment is rarely transparent [29, 35].
Risk assessors traditionally rely heavily on studies conducted
in accordance with standardized test guidelines and guideline
assays (such as OECD test guidelines) which examine ‘vali-
dated’ endpoints that have been shown to provide reproduc-
ible data in multiple laboratories with appropriate and pre-
determined levels of accuracy and precision [36, 37]. Such
studies are often considered to be reliable and adequate for
risk assessment by default, while non-guideline studies, e.g.
many studies conducted in academic laboratories, typically
are thoroughly evaluated for adequacy before they are includ-
ed as evidence in health risk assessment [33, 34, 38]. Methods
and practices for evaluating toxicity studies for use in risk
assessment is further discussed in Section 3.1.

Standardized guideline assays examine a limited number of
endpoints and commonly focus on endpoints that are consid-
ered apical (e.g. body weight, organ weight, histopathological
lesions) and acknowledged to be toxicologically adverse.
However, these assays are not comprehensive (i.e. they do
not encompass all adverse outcomes) [5, 39, 40]. Numerous
groups have concluded that standard toxicological studies in

many cases do not cover the most sensitive endpoints or sen-
sitive windows of exposure and thus are not sufficient to iden-
tify EDCs as harmful or for calculating reference doses that
are safe for the general public [5, 11, 14, 15, 20–22, 41–45].
For example, the uterotrophic assay, which measures the
weight of a rodent uterus in response to a suspected estrogenic
compound, was validated by the OECD in a process that took
multiple years and participants from dozens of laboratories
[46–48]. Although the uterotrophic response is considered
‘validated’, concerns have been raised about its precision; of
the ten laboratories that tested the EDC nonylphenol, one
identified the lowest observed effective concentration
(LOEC) as 35 mg/kg/day, five as 80 mg/kg/day, and one as
100 mg/kg/day [48]. One laboratory could not identify any
effective dose, and the final two laboratories did not perform
the assay properly [48]. The use of traditional toxicology ap-
proaches including the heavy reliance on guideline studies has
also been challenged because of the failure of many of the
endpoints that are considered ‘adverse’ to anchor to a human
disease. For example, many traditional toxicology assays use
organ weight as a measure of an adverse effect whereas few
human diseases are defined by changes in organ weight or size
[14].

Studies conducted in academic laboratories commonly in-
vestigate endpoints such as assessments of gene expression,
tissue morphology, neurobehaviors, responses to environmen-
tal stressors such as hormones and carcinogens, and others
that are not covered in standardized test guidelines [39,
49–51]. Well conducted and reported academic research stud-
ies may thus provide information that can fill important infor-
mation gaps in risk assessment and contribute to better
targeted conclusions and recommendation for decision mak-
ing. Unfortunately, many risk assessments dismiss academic
studies because the endpoints examined are not considered
toxicologically adverse or relevant to humans [5, 40]; this

Fig. 1 Health risk assessment of
chemicals is conducted in three
parts; the results of the hazard and
exposure assessments are
combined to draw conclusions in
the risk characterization
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has led to protracted arguments about what is meant by ‘ad-
verse’ as well as the role of expert judgement and lack of
transparency in its determination [41, 52–56]. The adequacy
of non-standard studies for the purpose of chemical risk as-
sessment is also often questioned for reasons such as method-
ological limitations and/or being poorly reported [57–60].

2.2 Thresholds for effect

One of the fundamental principles of toxicology, and conse-
quently in chemical risk assessment, is that there is a threshold
for a toxicological response belowwhich no (adverse) effect is
expected to occur [61]. In biological terms, a compound’s
threshold for effect implies a dose-level below which there
are no harmful effects in an organism [62]. However, in the
experimental setting, a threshold is the dose-level below
which no statistically significant adverse effects are observed.
This is commonly termed the no observed (adverse) effect
level (NO(A)EL). The NO(A)EL is thus by no means a no
effect level. Authorities and other experts have lately started
recommending a benchmark dose (BMD) approach for char-
acterizing dose-response and deriving a benchmark dose low-
er bound (BMDL) as an alternative to the NOAEL [63–65].
Nevertheless, the presence or absence of a threshold can never
be experimentally proven because all experiments have a limit
of detection below which effects cannot be observed, i.e. no
conclusion regarding the shape of the dose-response curve can
be made below this detection limit [13, 66].

For the majority of chemicals, excluding genotoxic carcin-
ogens, a threshold for effect is assumed when conducting risk
assessment [61]. This means that a Bsafe^ dose is derived for
humans by dividing the NOAEL or BMDL identified in ani-
mal studies with assessment, or uncertainty, factors to account
for differences in sensitivity between species as well as be-
tween individuals [41]. However, because endogenous hor-
mones are already present, and very small changes in circu-
lating hormone concentrations have been shown to induce
biological responses, it can be argued that EDCs can ‘add’
to the actions of existing biological processes [67–69]; thus,
a threshold cannot be assumed [22]. This may be specifically
relevant during periods of development when hormones play
important organisational roles [70–72]. The Badditivity-to-
background^ argument has also been made to support a no-
threshold-approach for genotoxic carcinogens [73, 74].

2.3 Epidemiology and other “low dose” studies challenge
current risk assessment practices

Risk assessments combine information about hazard with ex-
posure data during the risk characterization process (Fig. 1).
Thus, risk assessment is conducted under the premise that
reducing exposures to compounds can eliminate the risk,

particularly if a ‘threshold’ for adverse effects has been
demonstrated.

Low level exposures to environmental chemicals including
many EDCs have been well-documented by biomonitoring
programs like those conducted by the US CDC [75–77].
Most of these exposures occur below the acceptable daily
intake levels and thus are not expected to induce adverse out-
comes. One major area of debate in the study of EDCs is
whether Blow doses^ can induce adverse effects [78]. There
are several definitions for a Blow dose^ that have been pro-
posed including: 1) doses below the toxicological NOAEL; 2)
doses in the range that humans (or wildlife) typically experi-
ence; or 3) doses that replicate in animals the concentrations
that circulate in human bodies, taking into account differences
in metabolism and toxicokinetics [15, 79, 80]. Human epide-
miology studies are Blow dose^ studies, and hundreds of these
studies have shown associations between EDC exposures and
health outcomes; many have been published in just the last
two years (for illustrative example, see [81–87]). Although
these studies alone cannot indicate causal relationships be-
tween EDC exposures and health effects, they provide support
for the hypothesis that low doses of EDCs, including those
below regulatory ‘safe’ doses, can induce harm.

There are also now hundreds of low dose studies from
controlled laboratory animal experiments [15, 50, 88, 89].
Although some low dose effects examined in non-guideline
studies of EDCs are overt diseases or dysfunctions (see for
example [90–93]), or increased susceptibility to diseases or
dysfunctions (see for example [94–96]), most represent pre-
disease endpoints [97–109], providing support for the links
between EDC exposures and disease pathways, if not the
apical endpoint itself [110, 111]. These low dose studies sug-
gest that EDCs should not just be tested for their toxicity, but
also for their contribution to diseases; the former may not
accurately predict the latter. Furthermore, the presence of
low dose effects in controlled animal studies suggests that
current risk assessments for EDCs may not be sufficiently
public health protective [112].

2.4 Non-monotonic dose response relationships

Another standard assumption in risk assessment is that the
response above the NOAEL will increase with increasing
dose, in a monotonic fashion, i.e. the dose-response curve will
not change direction (or the slope will not change sign) any-
where along the dose span [113]. Similarly, monotonicity is
used as the underlying principle to justify testing chemicals at
high doses in experimental studies and extrapolating down to
draw conclusions about toxicity at low doses [15]. A large
number of studies have, however, reported non-monotonic
dose response curves for both hormones and EDCs. This topic
has recently become a highly debated issue for EDCs [16, 41,
113–117].
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2.5 Risk assessments for EDCs operate at the interface
of toxicology and endocrinology

Numerous groups including members of the Endocrine
Society have argued that hazard and risk assessment of
EDCs should take into account the principles of endocrinolo-
gy [5, 15, 41, 45, 118]. Five general principles of endocrinol-
ogy have been described as relevant to the study of EDCs [9,
41] (see Table 1). A number of different principles guide the
study of EDCs from the perspective of toxicology, a field that
was developed for the purpose of determining the hazards
associated with chemical exposures (Table 2).

Clearly, because EDCs interact in some way with the endo-
crine system while also having toxic features, the study and
assessment of EDCs must consider the features of both the en-
docrine system and toxic responses. Yet, some of the principles
described in the fields of toxicology and endocrinology are at
odds with each other, including issues related to Blow dose^ and
the shape of the dose response curve, described above. Because
of this, the interpretation of studies used for risk assessment
purposes can lead to discrepancies that may be field-specific.

Other factors that are important to the assessment of EDCs
may very well apply to environmental chemicals that do not
have endocrine disrupting properties. For example, it is well
understood that hormones have very different roles during

development compared to adulthood [72, 119], thus EDCs are
expected to have more potent effects during critical periods of
development [120, 121]. Other environmental chemicals may
also have effects that are more profound when exposures occur
during development (e.g. thalidomide induced adverse effects
on adults including permanent nerve damage in some patients,
but effects on developing fetuses were severe and profound,
leading this compound to be classified as a teratogen [122,
123]). Similarly, other environmental compounds can act via
binding to receptors that are not a part of the endocrine system,
and thus alterations to receptor binding are not limited to EDCs
(e.g. neurotoxicants, immunotoxicants, and others [124–126]).

3 Systematic review –what is it, and how can it help?

Systematic review is a method that aims to systematically
identify, evaluate and synthesize evidence for a specific ques-
tion with the goal to provide an objective and transparent
scientific basis for decision making [127, 128]. Systematic
reviews have been primarily used for decision making in the
field of medicine and health care, where this approach is rel-
atively well established [127–129]. In recent years, systematic
review has been increasingly promoted in the field of environ-
mental health sciences and for the risk assessment of

Table 1 Principles of endocrinology

Principle Explanation

Hormones are responsible for coordinating the systems of the body,
and allowing communication and integration of the various tissues
of the body from conception until death.

Although hormones are often considered only for their role in the maintenance of
‘homeostasis’, they have much wider roles that include the development and
differentiation of embryonic and fetal tissues, sexual reproductive functions,
maintenance of bone density, body weight and cardiovascular health, and
many other endpoints.

Hormones mediate effects via specific, context-dependent
interactions with receptors.

The actions of hormones are dictated based on the specificity of their interactions
with receptors, the concentration of the hormone in the blood (including the
bioavailable fractions), the abundance and location of the receptor, and
other factors.

Hormones act at low circulating concentrations. Hormones induce significant biological changes at circulating concentrations
in the part-per-billion or part-per-trillion range. This is because of the
non-linear relationship between hormone concentration and the percentage
of receptors that is bound, as well as the non-linear relationship between the
percent of occupied receptors and induced biological effect.

Hormones often exhibit non-linear and non-monotonic dose
responses.

Like vitamins, nutrients, and other pharmacological agents that interact with
receptors, hormones can induce non-monotonic responses via mechanisms
including receptor downregulation, receptor desensitization, receptor
competition, receptor interactions, endocrine negative feedback loops, and
even traditional toxicology mechanisms (i.e. the induction of cytochromes,
or cytotoxicity).

The effects of hormones differ based on an individual’s stage
of development.

Hormone exposures occurring during periods of development can disrupt the
differentiation of cells, tissues, or organs; these so-called organizational effects
can be observed long after exposures have ceased because the developmental
trajectory of the cell, tissue, organ, or entire organism has been changed. In
contrast, activational effects are those that are observed only during the period
of exposure, thus when hormone treatment ceases these effects subside; these
are typically associated with adult exposures.
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chemicals by regulatory agencies as well as expert groups [29,
130–132] and several specific methods have been developed
[32, 133, 134].

As mentioned above, risk assessment of chemicals is tradi-
tionally founded on the principle of identifying one key toxicity
study onwhich the hazard assessment is based; the key study that
is chosen is often an in vivo toxicity study conducted according
to standardized test guidelines. In contrast, systematic reviews
promote a more integrated use of the entire body of evidence
that is available and relevant for answering a specific question. A
crucial and fundamental principle of systematic review
is that it is a structured and clearly documented process
that promotes objectivity and transparency. The key
characteristics covered in the systematic review process
can be summarized as follows [128]:

& a clearly stated set of objectives with pre-defined eligibil-
ity criteria for study inclusion

& an explicit, reproducible methodology
& a systematic search that attempts to identify all studies that

would meet the eligibility criteria
& an assessment of the validity and/or quality of the findings

of the included studies
& a systematic presentation, and synthesis, of the character-

istics and findings of the included studies

There are several advantages to using a systematic review
methodology in the risk assessment of chemicals in general,
and for the identification and assessment of EDCs specifically,
e.g.:

& It introduces structure and transparency in the process of
identifying and selecting studies to be used as evidence,
allowing this process to be reproducible [32, 133, 134]. It
especially provides a useful tool for structured identifica-
tion, evaluation and synthesis of the evidence in cases
where there is a large amount of (heterogeneous) data
and/or conflicting results between studies.

& It allows for applying expert judgment in a transparent
manner, which is critical for promoting objectivity in
assessment conclusions for environmental chemicals
[29] and has been specifically debated for EDCs [24].

& It potentially allows for better use of academic research
studies in regulatory risk assessment, for example by pro-
viding structured criteria to evaluate the validity and ade-
quacy of studies for that purpose [133–135].

& The practice of identifying one (possibly limited) study as
key evidence on which to base risk assessment conclu-
sions, and subsequent decision making, can be avoided.

& Jointly considering available studies investigating the
same or related endpoints may improve overall confidence

Table 2 Principles of toxicology

Principle Explanation

The relationship between dose and effect is an important feature,
with an expectation of linearity or monotonicity. This is
sometimes described using the maxim, Bthe dose makes the
poison^.

The toxicological response that is observed is expected to be associated with the
amount of exposure, with a monotonic relationship between these two
factors. The effect that is examined can be quantal, such as life/death, or
continuous, such as organ weight. Further, effects can be characterized as
acute (rapidly developing), subacute (less severe than acute), or chronic
(progressing at a slow and varying rate). Because a monotonic relationship is
assumed across the entire dose range, extrapolation from high to low doses
(or vice versa) is possible.

Exposures are characterized based on duration, exposure
route, and developmental stage.

Exposures can be separated based on duration (acute, subacute, subchronic, and
chronic). They also can be distinguished based on the route of exposure (oral,
intravenous, intramuscular, dermal, inhalatory, subcutaneous). They are also
sometimes considered separately if exposures occur during development
versus in adulthood. These factors can influence the severity and type of the
effects observed.

Compounds are studied and understood based on their absorption,
distribution in the body, metabolism, and excretion from the
body (ADME).

ADME can be influenced by the physiological state of the individual (i.e. young
individuals with diminished metabolic capacities) and the physiochemical
properties of the compound (i.e. lipophilic versus hydrophilic substances).
Metabolism is a process to enhance the removal of compounds from the body
(e.g. by changing its water solubility), not necessarily a process that makes
chemicals less toxic.

Toxicants can induce general or tissue-specific effects. Although some toxicants induce general toxic effects, many induce effects that
are tissue- and organ-specific. Some of this specificity can be based on the
route of exposure (i.e. the lungs are the entry-point for inhalation exposures),
the chemical’s accumulation in a specific tissue, the presence of enzymes in
specific organs that metabolize a compound to a more active form, the
presence of specific receptors in a tissue or organ, and other factors including
physiological sensitivities.
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in the data, especially if individual studies have weak-
nesses [53].

& It provides a structured basis for integrating evidence from
several streams of evidence (e.g. epidemiological, experi-
mental in vivo and in vitro data), potentially improving
confidence in the evidence if several streams support the
same conclusions.

3.1 Assessment of study quality

A critical step in a systematic review is the evaluation of the
quality or validity of individual studies that have been identi-
fied and included. Many different terms are used to describe
study Bquality^ by different expert groups and authorities and
in different contexts, rendering discussions sometimes confus-
ing. For the purposes of regulatory risk assessment, the term
study adequacy is commonly used, particularly for toxicity
studies. Adequacy in this context refers to both the reliability
and the relevance of a study [33, 34, 38].

Reliability is defined as the inherent quality of the study and is
tightly linked to the reliability of the methods used, how the
results have been interpreted, as well as how both methods and
results have been reported. For systematic review methods de-
veloped in the clinical field, the term Brisk of bias^ has often been
used to describe similar aspects when evaluating studies [128,
133, 134]. Risk of bias specifically relates to the evaluation of a
study’s internal validity, reflecting characteristics in the study
design that might introduce a systematic error and affect the
magnitude and/or direction of study results. It is therefore a more
specific measure than reliability. Relevance, in turn, refers to how
appropriate the selected test methods are for evaluating a certain
hazard, as well as how relevant the findings are to the risk as-
sessment query in question, e.g. the characterization of the hu-
man health risks from a certain chemical. In other words, reli-
ability (and risk of bias) is an intrinsic characteristic of a study,
which is constant regardless of the context of study evaluation. In
contrast, a study’s relevance depends on the scientific question to
be answered and may vary on a case-by-case basis.

The evaluation of study adequacy also relies on how
completely the study methods and results are reported. If the
research aim, design, performance and results of a study are
not well reported, it may not be possible to evaluate or ensure
sufficient reliability and relevance for regulatory health risk
assessment. The impact of reporting on study reproducibility
and reliability, as well as consequences for decision making,
have been extensively discussed in the scientific literature and
several sets of guidelines for reporting research studies have
been proposed recently (e.g. [135–137]).

A number of methods for evaluating primarily study reli-
ability are available and have been discussed elsewhere
[135, 138]. Some approaches for study evaluation are
summarized below.

3.1.1 The Klimisch approach

Regulatory agencies and organizations, such as the European
Chemicals Agency (ECHA), the US Environmental
Protection Agency (EPA) and the Organisation for
Economic Co-operation and Development (OECD), com-
monly promote the Klimisch approach for evaluating the
Bquality^ of toxicity data [139]. This approach entails sorting
available studies into four categories: 1) BReliable without
restrictions^, 2) BReliable with restrictions^, 3) BNot reliable^
and 4) BNot assignable^. However, a requirement for judging
a study as category 1 is that it should comply with standard-
ized test guidelines, such as OECD test guidelines or national
standards, or be Bcomparable to a guideline study^ [139].
Academic research studies are therefore likely to be catego-
rized as Breliable with restrictions^ at best, or Bnot reliable^. In
practice, this means that if standardized studies are available
they will be preferred over academic research studies in risk
assessment, especially in cases where there are conflicting
results. Given that there is evidence that standardized testing
batteries may be inadequate to identify and assess EDCs [14,
40, 45, 140], this is a severe limitation rendering the Klimisch
approach, as such, unsuitable for use when evaluating studies
for systematic review of EDCs. An additional limitation to the
Klimisch approach is that it provides no detailed criteria and
very little guidance (other than calling for test guideline com-
pliance) for evaluating study quality or for the categorization
of studies. As a result, the evaluation of a study’s quality is
likely to rely heavily on the application of expert judgment
that is not transparent and will probably vary greatly between
assessors [138].

3.1.2 Recently developed approaches for study evaluation

More recent approaches aim to make the study evaluation
process more systematic and transparent, e.g. by providing
detailed pre-defined criteria to evaluate the reliability and rel-
evance of individual studies. New approaches are alsomoving
away from awarding studies conducted according to standard-
ized guidelines with higher scores for reliability by default,
reflecting the attitude that this might not be appropriate and
that academic research studies can be just as reliable as tests
performed under strict implementation of standardized test
guidelines.

Schneider et al. [141] developed the ToxRTool, a software-
based tool intended to facilitate the reliability categorization of
in vitro and in vivo studies according to the Klimisch ap-
proach. The ToxRTool assesses several criteria for reliability
and then calculates an overall quantitative measure of reliabil-
ity (i.e. qualitative assessments are converted to a quantitative
score), which is then translated into Klimisch category 1–3.
However, the assessor has the option to assign a different
Klimisch category than the one provided by the tool based
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on expert judgment. Although there is no specific reliability
criteria for identifying standard guideline studies, this aspect is
included in the items to be considered when reflecting on
study relevance. The ToxRTool is available online at https://
eurl-ecvam.jrc.ec.europa.eu/about-ecvam/archive-
publications/toxrtool.

Science in Risk Assessment and Policy (SciRAP) is anoth-
er initiative to develop a structured approach for the evaluation
of study reliability and relevance [135, 142]. SciRAP provides
criteria for the evaluation of in vivo toxicity and ecotoxicity
studies; additional criteria for the evaluation of in vitro studies
are under development. SciRAP also includes a web-based
tool intended to help the assessor in the application of the
criteria. These resources are freely available online at www.
scirap.org. In contrast to the ToxRTool, the SciRAP method is
based on a qualitative evaluation rather than a numerical score
for reliability. Quantitative scores are avoided in the SciRAP
method because numerical values can be argued to imply a
level of scientific certainty in the evaluation that may be
misleading. The SciRAP method also emphasizes the
evaluation of study relevance in addition to reliability,
illustrating that studies that are judged to be of low
reliability may still be used as supporting evidence in risk
assessment if the results are of very high relevance. In
addition, guidelines for researchers on how to report studies
to better meet the requirements of regulatory risk assessment
have been developed and are available as checklists on the
SciRAP website.

Recently there have been different initiatives to develop
systematic review approaches for environmental chemicals
based on existing methods. The National Toxicology
Program (NTP) Office of Health Assessment and
Translation (OHAT) approach was developed for the purpose
of assessing the hazards and risks from environmental
chemicals to produce NTP monographs and state of the sci-
ence reports [133]. Another approach, the Navigation Guide,
was initiated by the Program on Reproductive Health and the
Environment at University of California San Francisco [134].
Primarily based on methods used for clinical medicine sys-
tematic reviews, the Navigation Guide was specifically devel-
oped as a systematic and transparent methodology to evaluate
the quality of evidence and strength of recommendations
about the relationship between environmental chemicals
and reproductive health. In Europe, the European Food
Safety Authority (EFSA) has also developed and pub-
lished guidance for application of systematic review
methodology to food and feed safety assessments to
support decision making [32].

Study evaluation criteria have also been developed within
the OHAT and Navigation Guide methods for systematic re-
view [133, 134]. Both of these methods focus on the evalua-
tion of internal validity of studies using risk of bias as a mea-
sure. Different Bdomains^ of risk of bias are evaluated

including selection, performance, and detection bias, using
specific questions, resulting in a qualitative assessment of
the study. The OHAT Risk of Bias tool and handbook is avail-
able online at http://ntp.niehs.nih.gov/pubhealth/hat/noms/
index-2.html#Systematic-Review-Methods. EFSA does not
provide specific criteria for the evaluation of individual
studies but refers to other available methods.

It should specifically be noted that the approaches devel-
oped within SciRAP, OHATand the Navigation Guide do not,
by default, attribute greater validity or adequacy to studies
conducted in compliance with standardized test guidelines.

3.2 Systematic review methods for environmental
chemicals depart from the field of medicine

Decision making in the fields of medicine and health care are
chiefly based on human clinical trials. This is reflected in the
approaches for systematic review in these fields, such as the
GRADE and Cochrane approaches [127, 128], which were pri-
marily developed for the evaluation and synthesis of data from
randomized clinical trials. In contrast, drawing conclusions in the
field of environmental health, including assessments that aim to
characterize the potential health effects from EDC exposures,
will be based on different types of studies such as observational
epidemiology (human andwildlife) and experimental in vivo and
in vitro studies. This heterogeneity in data provides an additional
challenge, i.e. combining evidence from different Bstreams^ (ep-
idemiological, in vivo, in vitro, etc.) of evidence. Exposure sce-
narios will also be more complex for environmental chemicals
considering that these exposures can be ubiquitous in populations
and often involuntary. These issues have to be addressed in sys-
tematic review methods developed for application to environ-
mental health questions.

4 Special features of systematic review for EDCs

As described above, systematic review methods were origi-
nally developed in the clinical field to improve assessment of
pharmaceutical and other medical interventions. In contrast,
exposures to environmental chemicals, including EDCs, are
almost always involuntary, exposure scenarios are more com-
plex, and there can be difficulty identifying and documenting
unexposed populations. The question that has been raised is
whether EDCs should be treated differently from other envi-
ronmental chemicals, i.e. if specific considerations need to be
included in risk assessment of EDCs [25].

4.1 Evaluating quality of EDC studies

A number of study design issues have been raised that should be
considered when evaluating the quality of experimental EDC
studies [41, 43, 118, 140, 143–148]. Some important features
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include the use of sensitive species and strains, inclusion of suf-
ficient numbers of doses over an appropriate dose span, appro-
priate routes of exposure, and inclusion of endocrine-sensitive
endpoints [8, 12, 14, 80, 149, 150]. A number of groups have
highlighted the importance of including appropriate positive and
negative controls in EDC studies, and that the failure to include
these controls should diminish their quality ratings during sys-
tematic review evaluations [40, 118, 146, 147, 149, 151]. In
general, the requirements for experimental controls include: 1)
To ensure that the experimental system was capable of
responding to hormones, there must be a positive (significant)
effect of either the test chemical or a known positive control; 2)
Not only should the experiment include a positive control, it
should include a positive control that shows significant effects
at low doses. Hormones are active at very low doses – and the
experimental system should be capable of responding at these
low doses. If no effects are observed in the low dose range for the
positive control, it suggests that the experimental system (or the
animal species, or animal strain) is not appropriate for the assess-
ment of hormones or EDCs; 3) Negative controls – treated in
exactly the same way as the test group with the exception of the
compound administered – are required and should be run con-
currently to the test chemical. Negative control groups should
account for the variability in the experiment including housing
conditions, feed, water, environmental stresses, handling, etc. In
a controlled laboratory experiment, the negative control should
remain truly unexposed to the compound of interest. This can be
challenging for some EDCs which can be found in environmen-
tal media, feed, water, etc. Yet, if no effects of the test compound
are observed and the negative control group is contaminated
(even with low levels of the compound of interest), this may
confound data analysis.

While there is no method available that has been specifically
developed for the evaluation of EDC studies, the SciRAP, OHAT
and Navigation Guide methods include criteria, or can be adjust-
ed, so as to accommodate these issues. SciRAP, for example,
includes criteria for reliability evaluations that address a range
of issues about the characterization of the test compound and
vehicle; the animals, housing conditions and feed; the adminis-
tration route and frequency of dosing; the number of animals and
descriptions of evaluative endpoints; the statistical methods used
including consideration of the litter as the statistical unit; and the
discussion of the results within the context of the field [135].
Relevance evaluations within SciRAP address the species and
strain used; the appropriateness of the timing of exposure; the
relevance of the route of exposure to human exposures; and the
dose levels selected.

4.2 Definitions of an EDC and how they might constrain
systematic reviews in risk assessments

Risk assessors in different agencies use different definitions to
delineate EDCs (reviewed in [22]). For example, the US EPA

defines an EDC as BAn exogenous agent that interferes with
the production, release, transport, metabolism, binding, ac-
tion, or elimination of natural hormones in the body responsi-
ble for the maintenance of homeostasis and the regulation of
developmental processes^ [4]. The WHO defines an EDC as
BAn exogenous substance or mixture that alters function(s) of
the endocrine system and consequently causes adverse effects
in an intact organism, or its progeny, or (sub)populations^
[152]. Finally, the Endocrine Society defines an EDC as Ban
exogenous chemical or mixture of chemicals that interferes
with any aspect of hormone action^ [14]. These different def-
initions thus establish different cut-offs for the evidence that is
required to determine whether a compound is an EDC. The
Endocrine Society definition requires only that a compound is
shown to interfere with hormone action whereas the US EPA
definition requires that a compound interferes with the action
of a hormone that is responsible for homeostasis or regulation
of development. The WHO definition sets the highest bar,
requiring that a compound alters function of the endocrine
system and induces an adverse effect.

Considering these different definitions, the systematic re-
view methods that are used to assemble evidence for risk
assessments would also likely differ. Using the US EPA’s def-
inition, it is likely sufficient to ask only one question in a
systematic review: Does Chemical X alter [specific hormone
action]? In contrast, using the WHO definition, two questions
are needed to conduct a systematic review: Does Chemical X
alter [specific hormone action]? And, do Chemical X expo-
sures induce [adverse health outcome]?

5 Limitations to systematic reviews

5.1 Using systematic review methods for broad questions

To date, a limited number of systematic reviews have been
conducted for EDCs and published in the peer-reviewed liter-
ature (see for example [153–160]); these reviews have largely
focused on chemical-disease dyads (i.e. Is chemical X associ-
ated with disease Y?). Yet, ‘state of science’ reviews are typ-
ically taskedwith addressingmuch broader questions, such as,
^Is there sufficient evidence linking low dose EDC exposures
to (any) human diseases?^ or ^Are EDC exposures associated
with adverse outcomes in wildlife populations?^ Considering
this need, the application of a systematic framework to address
broad questions has not yet been attempted.

How would one go about conducting a broad systematic
review like the kind required in a ‘state of science’ evaluation?
If keywords like ‘endocrine disruptor’ were reliably used in
studies of EDCs, it would be easier to identify and evaluate a
large body of evidence. Unfortunately, terms like ^endocrine
disruptor^ reveal only a small portion of the entire relevant
literature. Further, there are political and economic interests in
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the avoidance of a label like ‘endocrine disruptor’ [21, 161,
162]; acknowledgement that a compound is an EDC would
likely have unwanted consequences for its producer. Instead,
algorithms might search for relevant literature on a chemical-
by-chemical basis (e.g. bisphenol A or BPA or bisphenol-A,
or CAS 80-05-7), and these search results could be combed to
identify any study showing effects on any biological endpoint.
Once collected, the endpoints could be sorted and categorized
for further evaluation, and a new search would com-
mence on the next chemical, repeating until a long list
of chemical searches has been completed. Alternatively,
search algorithms could be used to identify all literature
relevant to a single biological endpoint (e.g. anogenital
distance or AGD or anogenital index), and these results
could be evaluated individually to separate and assess
all studies that included known or possible EDCs. This
again would be repeated until all relevant diseases (and
endpoints) were searched and the resulting literature was
evaluated.

Clearly, conducting systematic reviews for very broad
questions will require extensive resources and improvements
in study indexing and evaluation. Perhaps the first step toward
conducting a ‘systematic state of science’ evaluation will in-
volve multiple complex but targeted questions and subsequent
systematic reviews. The 2013 WHO/UNEP report and 2015
EDC-2 publication each broke their evaluations down by cat-
egories of health endpoints (i.e. female reproduction, endo-
crine cancers, metabolic diseases, etc.) [9, 10]. Systematic
reviews that start with these types of questions (i.e. is a group
of chemicals with similar properties associated with a group of
diseases with a similar etiology?) will likely be a starting point
for future systematic reviews.

5.2 Does this new focus on systematic reviews signal
“the death” of narrative reviews?

Increasingly, journals are requiring authors to describe the
methods they used to select and evaluate the literature includ-
ed in review articles. Some journals require that authors “com-
prehensively review” all relevant studies including those that
are not Bconsistent with expectations^ or the authors’ a priori
hypotheses [163]. Others require that authors follow a check-
list and flow diagram to document how studies were selected
for inclusion [164]. These policies suggest a shifting away
from narrative reviews (where authors select papers for dis-
cussion without describing how specific studies were selected
and others were ignored). Yet, the narrative review clearly has
a role to play in providing historical views of a field, describ-
ing highlights from a broader scientific field of study, and
providing experts’ “intuitive, experiential and explicit per-
spectives” [165]. Although some journals have clearly shifted
toward favouring, or even requiring, systematic reviews,
others continue to value the narrative review.

6 Conclusions

In the last few years, a number of large reviews and consensus
statements including a large review of the EDC literature pub-
lished in 2015 by The Endocrine Society have concluded that
there is sufficient evidence that EDCs can affect the health of
humans and wildlife [9–11, 13–15]. Many of these reviews
have evaluated hundreds or thousands of publications to draw
these conclusions. Yet, these reports have been criticized for
using narrative rather than systematic review methods, with
some criticisms suggesting that the use of systematic review
methods would have decreased the strength of the conclusions
reached. It is worth noting that one such critique [23] identi-
fied a small number of studies that were not included in the
2013WHO/UNEP report, but the authors of the WHO/UNEP
report subsequently determined that the inclusion of these
studies would not have changed the evaluation considering
they were relevant to a body of evidence that was already rated
as relatively weak [24].

Methods for conducting systematic reviews for decision
making in the field of environmental health sciences are just
beginning to be developed. Most of the methods used to date
focus on data derived from a single ‘stream’ of evidence (i.e.
human epidemiology or controlled laboratory animal studies).
Good systematic review methodologies will need to in-
tegrate the evidence from different evidence streams af-
ter their individual evaluation. Systematic reviews for
EDCs also need to consider particular study design fea-
tures that are essential for the assessment of chemicals
that interfere with hormones including the sensitivity of
the endocrine system to low doses, the possibility of
non-monotonic responses, endpoints that are reflective
of endocrine diseases rather than general toxicity, the
importance of timing and dose duration, concerns about
contamination, and strain/species differences in sensitiv-
ity. Many of these features are likely to apply to non-
EDC environmental chemicals, so the methods devel-
oped for the systematic review of EDCs may be more
broadly useful for the field of environmental toxicology.
Finally, we have discussed the ways that defining an
EDC could influence how a systematic review is
conducted.

Another important part of this discussion that should be
considered is whether the mechanism by which a compound
acts must be understood before public health protective ac-
tions are taken. For an environmental chemical with strong
evidence of an association between exposures and a disease
of concern, or strong experimental studies showing causal
relationships between exposures and disease, understanding
the full mechanistic pathway from altered hormone action to
disease onset should not be obligatory. Just as Bradford Hill
did not intend for his ‘viewpoints’ on causal relationships to
be required for action to be taken, evidence specific to
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endocrine disrupting mechanisms should not be required for
an appropriate response to be initiated by risk assessors and
risk managers.
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