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Abstract With the dramatically increasing prevalence of obe-
sity and type 2 diabetes mellitus (T2DM) worldwide, there is
an urgent need for new strategies to combat the growing
epidemic of these metabolic diseases. Diet is an essential
factor affecting the development of and risk for obesity and
T2DM and it can either help or hurt. In searching for preven-
tative and therapeutic strategies, it is therefore advantageous
to consider the potential of certain foods and their bioactive
compounds to reverse or prevent the pathogenic processes
associated with metabolic disease. Anthocyanins are naturally
occurring polyphenolic compounds abundant in dark-colored
fruits, vegetables and grains. Epidemiological studies suggest
that increased consumption of anthocyanins lowers the risk of
T2DM. Many in vitro and in vivo studies also reveal an array
of mechanisms through which anthocyanins could prevent or
reverse obesity- and T2DM-related pathologies including pro-
motion of antioxidant and anti-inflammatory activities, im-
provement of insulin resistance, and hypolipidemic and hypo-
glycemic actions. Here, we summarize the data on
anthocyanin-mediated protection against obesity and T2DM
and the underlying mechanisms. Further population-based
and long-term human intervention studies are necessary to
ultimately evaluate the use of anthocyanins for protection/
prevention against the development of obesity and T2DM.

Keywords Anthocyanin . Inflammation .Obesity .Oxidative
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Abbreviations
CAN Anthocyanin
ACD Anthocyanidin
AMPK AMP-activated protein kinase
BMI Body mass index
C3G Cyanidin-3-O-β-glucoside
CETP Cholesteryl ester transfer protein
CVD Cardiovascular disease
GLUT4 Glucose transporter 4
GSH Glutathione
HDL High-density lipoproteins
HFD High fat diet
hs-CRP High-sensitivity C-reactive protein
IL-8 Interleukin-8
LDL Low-density lipoproteins
LPS Lipopolysaccharide
MAPK Mitogen-activated protein kinase
MCP-1 Monocyte chemotactic protein 1
MMD Monocyte to macrophage differentiation associator
NF-Κb Nuclear factor κB
PPARγ Peroxisome proliferator-activated receptor γ
ROS Reactive oxygen species
SOD Superoxide dismutase
T2DM Type 2 diabetes mellitus
TNFα Tumor necrosis factor α

1 Introduction

In recent years, the overweight and obese population has
reached pandemic levels, leading to a dramatic rise in the
incidence of type 2 diabetes mellitus (T2DM) and its associ-
ated complications, such as diabetic nephropathy, ischemic
heart disease, and stroke. As a result, these comorbidities have
collectively become the leading healthcare burden and cause
of mortality worldwide [1–3] and have necessitated
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development of effective population-wide interventions
and policy recommendations to solve these urgent public
health problems.

Lifestyle and dietary habits are major factors determining
the development and progression of obesity and T2DM.
Mounting evidence indicates that dietary modifications that
increase fruit and vegetable intake could prevent these chronic
degenerative diseases [4]. Fruits and vegetables contain a high
amount of water, fiber, vitamins and minerals, but are
low in calories. When substituted for high calorie foods,
they can aid in controlling body weight [5]. Furthermore,
studies have reported the presence of many bioactive com-
pounds called phytonutrients or phytochemicals in fruits
and vegetables and their mechanisms of action have
been characterized in both cell culture and animal
models [6]. Among them, polyphenols, such as resveratrol,
catechins and anthocyanins, are of great interest due to their
wide distribution in plant foods and potent health-promoting
activities [7–9].

Anthocyanins naturally occur in the vacuolar sap of the
epidermal tissues of flowers and fruits, imparting a pink, red,
blue, or purple color. They belong to the family of compounds
known as flavonoids, and are distinguished from other flavo-
noids as a separate class by their flavylium cation structures
[10]. Anthocyanins are present in nature mainly in the form of
heterosides. The aglycon form of anthocyanins, also called
anthocyanidin, is structurally based on the flavilium ion or 2-
phenylbenzopyrilium, and presents hydroxyl and methoxyl
groups in different positions. The physical and chemical prop-
erties of anthocyanins have been systematically reviewed in
several recent articles [10–12]. The aim of this article is to
summarize recent studies exploring the relationship between
anthocyanins and development of obesity and T2DM, includ-
ing epidemiological studies, randomized trials, animal models
and in vitro studies. This review will focus on the putative
biological mechanisms through which anthocyanins prevent
obesity and diabetes.

2 Anthocyanins intake and their major food source

Anthocyanins are of great nutritional interest, because they are
found in a wide variety of plant foods. They are especially
abundant in dark-colored fruits such as berries, cherries, haw-
thorn, peaches, grapes, apples, and plums as well as some
dark-colored vegetables, such as red onion, red radish, black
beans, eggplant, red cabbage, and purple potatoes [13, 14]. In
addition to the fruits and vegetables listed above, anthocya-
nins also accumulate in pigmented grains, such as black rice,
red sorghum, and purple maize [11]. The relative abundance
of anthocyanins varies due to different external and internal
factors, such as genetic and agronomic variation, light inten-
sity and type, temperature, harvest time, storage and

processing technique. For example, the red grape (Vitis
vinifera L. cv Cabernet Sauvignon) contains anthocyanin at
different concentrations depending on the stage of ma-
turity at which it is harvested, with values reaching as
high as 1.87 mg/g fresh weight, while in red wines
anthocyanin concentrations vary according to grape maturity
as well as the type of vinification, sugar concentration and
yeast metabolism, with values ranging from 411 to 728 mg/L
in young wines [15].

Until recently, assessment of anthocyanin intake was ham-
pered by the limited data on anthocyanins in food composition
tables. In 2003, the United States Department of Agriculture
(USDA) established the first database for the flavonoid con-
tent of 225 kinds of foods. Now, the average anthocyanin
content of common foods can be easily retrieved from the
new version of the USDA Database (506 food items) and the
Phenol-Explorer database (452 food items) [16, 17]. In addi-
tion to their natural occurrence in fruits, vegetables and grains,
anthocyanins can also be used as colorants in beverages, fruit
fillings, snacks and dairy products, accounting for a consider-
able portion of anthocyanins in the average diet.

Based on the anthocyanin content database and dietary
survey assessment, several estimates of anthocyanin intake
have been published. In 1976, Kuhnau reported that the aver-
age daily intake of anthocyanins in the United States is around
215mg during the summer and 180mg during the winter [18].
However, recent investigations by Wu and colleagues that
take into consideration more than 100 kinds of common foods
estimate values of anthocyanin consumption of only 12.5 mg/
d in the United States [13]. In ten countries participating in the
European Prospective Investigation into Cancer and Nutrition
(EPIC) study, the mean anthocyanidin (aglycone of anthocy-
anin) intake for each country ranged from 19.8 to 64.9 mg/d
[19]. In south China, the average intake of anthocyanidin was
estimated at 27.6 mg/d [20], similar to those of Germany
(35.1 mg/d), the United Kingdom (26.1 mg/d), Denmark
(28.2 mg/d) and the Netherlands (21.9 mg/d) [19]. As one
can imagine, dietary habits and choices have a significant
impact on anthocyanin consumption. For instance, the tradi-
tional Fijian diet contains a lot of meat from sea mammals and
land animals, but few fruits and vegetables, and there-
fore their anthocyanin intake (0.04 mg/d) is far lower
than that of Europeans, who eat a mixture of food items
[21]. Recently, new intake estimates were published for
children and adolescents, allowing a comparison of an-
thocyanin intake across different ages and countries
(Table 1) [22, 23]. It is important to note that deviations
may occur due to the older, less complete versions of the
USDA database and differences in food items
ascertained on dietary questionnaires. It is also plausible that
relying solely on dietary questionnaires may have introduced
misclassification, as dietary habits are dynamic, frequently
changing and evolving.
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3 Epidemiology and clinical trials of anthocyanins
on obesity and T2DM

3.1 Prospective and cross-sectional studies

Several large, prospective and cross-sectional studies assessing
the relationship between anthocyanin intake and the incidence
of T2DM are summarized in Table 2. In a prospective,
population-based cohort study in Finland, dietary question-
naires were collected from 10,054 men and women and an
association was found between higher consumption of apples
and berries, foods rich in anthocyanins, and a lower risk for
T2DM [27]. Similarly, Mursu et al. reported that a higher intake
of berries correlated with a significantly reduced (35 % lower)
risk of T2DM in middle-aged and older Finnish men, whereas

no associations were shown with other fruits and vegetables
[28]. In line with these findings, three, large, prospective, cohort
studies from the United States that included 200,994 health
professionals revealed that consumption of foods rich in antho-
cyanins, particularly strawberries, blueberries and grapes/rai-
sins, was inversely associated with the risk of hypertension and
T2DM [29, 30]. In addition, data from studies assessing indi-
vidual flavonoid consumption suggest that a mean intake of
22.3 mg/d of anthocyanins correlates with reduced risk of
T2DM, whereas no significant associations were found for
other flavonoid subclasses or total flavonoid intake [31]. In
contrast, a longitudinal analysis within the Framingham
Offspring cohort of 2,915 members found an inverse associa-
tion between higher flavonol intake and risk of T2DM, but
there was no specific association with anthocyanins [32]. These

Table 1 Estimated intake of anthocyanin/anthocyanidin in different ages and countries

Country Subjects ACN/ACD intake (mg/d) References

United States Adults ACN: 180 (winter), 215 (summer) Kuhnau, J., 1976 [18]

United States Participants of NHANES 2001-2002 ACN: 12.5 Wu et al., 2006 [13]

Fiji 140 households in Fiji Food
Choice Survey

ACN: 0.04 Lako et al., 2006 [21]

Australia Participants of the National
Nutrition Survey 1995

n=13858, ACN: 2.9 Johannot, et al., 2006 [24]

China Residents of Guangzhou Men, n=446, ACD: 26.6±0.6a;
Women, n=947, ACD: 27.1±0.4

Li et al., 2013 [20]

France Participants of the SU.VI.MAX study Men, n=2596, Women, n=2364, ACD:
35, ACN: 57

Perez-Jimenez, et aL., 2011[25]

Greece Participants of EPIC study Men, n=1314, ACD: 37.8±1.3b;
Women, n=1373, ACD: 25.8±1.3

Zamora-Ros et al., 2011 [19]

Spain Participants of
EPIC study

Men, n=1377, ACD: 41.7±2.6;
Women, n=1443, ACD: 22.7±2.8

Zamora-Ros et al., 2011 [19]

Italy Participants of
EPIC study

Men, n=1442, ACD:56.5±2.5;
Women, n=2511, ACD: 35.2±2.1

Zamora-Ros et al., 2011 [19]

Germany Participants of
EPIC study

Men, n=2267, ACD: 31.7±1.5;
Women, n=2148, ACD: 38.4±1.5

Zamora-Ros et al., 2011 [19]

Netherlands Participants of
EPIC study

Men, n=1024, ACD:19.8±1.5;
Women, n=2956, ACD: 23.9±1.3

Zamora-Ros et al., 2011 [19]

United Kingdom Participants of EPIC study Men, n=516, ACD: 24.8±3.5; Women,
n=767, ACD: 27.4±2.7

Zamora-Ros et al., 2011 [19]

Denmark Participants of
EPIC study

Men, n=1923, ACD: 29.8±1.8;
Women, n=1994, ACD: 26.6±1.2

Zamora-Ros et al., 2011 [19]

Sweden Participants of
EPIC study

Men, n=2700, ACD: 20.7±1.3;
Women, n=3285, ACD: 20.7±1.2

Zamora-Ros et al., 2011 [19]

Finland Adults in the
FINDIET 2002 Study

Men, n=912, ACD: 53 Women,
n=1095, ACD: 43

Ovaskainen et al., 2008 [26]

Germany 12 months old
infants in
DONALD Study

N=738, ACD: 6.24 (1.29, 7.42) Drossard et al., 2011 [23]

Germany 3 years old toddlers in
DONALD Study

N=701, ACD: 8.69 (2.03, 9.94) Drossard et al., 2011 [23]

Germany 7–12 years old children in
DONALD Study

Boys, n=599, ACD: 12.06 (5.57, 14.37)
Girls, n=582, ACD: 12.41 (6.04, 14.47)

Drossard et al., 2013 [22]

Germany 13–18 years old adolescents in
DONALD Study

Boys, n=368, ACD: 15.23 (2.33, 17.46)
Girls, n=355, ACD: 12.19 (2.40, 14.54)

Drossard et al., 2013 [22]

a Expressed as mean±SEM (all such values); b Geometric mean with upper and lower quartiles in parentheses (all such values); ACN anthocyanin; ACD
anthocyanidin; DONALD Dortmund Nutritional and Anthropometric Longitudinally Designed, NHANES National Health and Nutrition Examination
Survey; EPIC European Prospective Investigation into Cancer and Nutrition; SU.VI.MAX Supplementation of Vitamins, Minerals and Antioxidants
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prospective studies are based on observational data and cannot
rule out the potential for residual bias related to lifestyle differ-
ences between individuals consuming higher or lower amounts
of anthocyanins and other flavonoids.

Several cross-sectional studies confirm the inverse associ-
ation between anthocyanin intake and markers of metabolic
disorders from obesity and T2DM. In a cross-sectional study
of 1,997 females from the United Kingdom, higher intake of
anthocyanins was associated with significantly lower central
systolic blood pressure [33], and lower peripheral insulin
resistance resulting from decreased insulin concentrations in
blood [34]. The authors also observed that increased anthocy-
anin consumption correlated with lower concentrations of
high-sensitivity C-reactive protein (hs-CRP), a marker of sys-
temic inflammation in obesity and T2DM [35]. In our recent
cross-sectional study, residents of south China who consumed
higher daily amounts of anthocyanidins had elevated serum
high-density lipoprotein (HDL)-cholesterol concentrations,
reflecting better lipid profiles [20].

Collectively, the epidemiological data provide clear evi-
dence that increased anthocyanin intake is associated with a
lower incidence of T2DM, and suggest that overweight/obese
subjects should consider consuming more anthocyanin-rich
foods to prevent development and progression of T2DM.

3.2 Intervention studies

To date, the anti-diabetic potentials of anthocyanin-rich foods
have been well documented in the context of their antioxidant,
anti-inflammatory, and hypolipidemic properties (Table 3).
However, it is possible that these findings reflect other dietary
components that co-exist in anthocyanin-rich foods, and ran-
domized trials are needed to establish the effects that can be
specifically attributed to anthocyanins. Therefore, recent ef-
forts have been directed toward elucidating the impact of
consuming purified anthocyanins on the development and
progression of obesity and T2DM. A randomized double-
blind trial of 32 obese men and women with insulin resistance
examined the effect of consuming bioactives extracted from
blueberries over the course of 6 weeks. This intervention
resulted in a significant improvement of whole-body insulin
sensitivity [36]. Recently, we found that in overweight, dys-
lipidemic patients, consumption of anthocyanins isolated from
berries produced favorable effects on blood lipoprotein pro-
files, including increased HDL-cholesterol and decreased
low-density lipoproteins (LDL)-cholesterol [37, 38]. Purified
anthocyanin supplementation also decreased the activity of
plasma cholesteryl ester transfer protein (CETP) and enhanced
the activity of HDL-associated paraoxonase-1, leading to an
increase in cholesterol efflux capacity and promotion of the
antioxidant effects on HDL, respectively [39]. Furthermore,
anthocyanin consumption significantly decreased the levels of
serum hs-CRP, soluble vascular cell adhesion molecule-1

(sVCAM-1), and interleukin-1β (IL-1β), indicating an atten-
uated inflammatory response in overweight subjects with
hyperlipidemia [40]. The findings were similar in a study of
healthy adults consuming 300 mg anthocyanins per day for
3 weeks [41]. Most recently, Liu et al. reported that purified
anthocyanin supplementation for 12 weeks significantly re-
duced fasting blood glucose and increased serum adiponectin
concentrations in patients with T2DM [42]. These promising
results warrant further long-term clinical trials assessing the
effects of anthocyanin consumption on metabolic and cardio-
vascular health in overweight, obese and diabetic people.

4 Laboratory studies of anthocyanins on obesity
and T2DM

In recent years, many in vitro and in vivo studies have been
conducted to investigate the biological effects of anthocyanins
and their mechanisms of action. Using both genetic and die-
tary models of obesity, animal studies have examined the
effect of anthocyanins (either anthocyanin extracts from dif-
ferent plants or pure anthocyanin) on obesity- and T2DM-
related pathologies, including oxidative stress, chronic inflam-
mation, insulin resistance, hyperlipidemia and hyperglycemia.
Mechanistic studies using cell lines and purified enzymes
have focused on the ability of anthocyanins to inhibit free
radical generation, improve insulin signaling, alter the expres-
sion of genes involved in inflammatory response, or directly
modulate the activities of key enzymes.

4.1 Inhibition of body weight gain

Controlling weight gain is the first step in treating and
preventing obesity and type 2 diabetes. In 2003, Tsuda et al.
published the first report on the preventive effects of antho-
cyanins against obesity [52]. C57BL/6 J mice were fed a high
fat diet (HFD) with or without anthocyanin-rich purple corn
color (2 g/kg of diet) for 12 weeks. Anthocyanin supplemen-
tation was found to significantly reduce HFD-induced body
weight gain and fat accumulation in white and brown adipose
tissue. Subsequently, anthocyanin extracts from blackberries
(Rubus sp.), blueberries (Vaccinium angustifolium), mul-
berries (Morus australis Poir) and blood oranges (Citrus
sinensis L. Osbeck) were shown to prevent obesity in mice
fed a HFD [53–56]. Wu and colleagues recently reported
further evidence supporting a role for anthocyanins in con-
trolling weight gain [57]. They fed mice a HFD for 8 weeks
and then the HFD was continued but supplemented with
different doses (50, 100, or 200 mg/kg diet) of anthocyanins
fromhoneysuckle (LoniceraCaeruleaL.) for another 8weeks.
Supplementation of the HFD with 100 or 200 mg/kg sup-
pressed body weight gain by 24% and 17%, respectively. In a
study of ovariectomized rats, Kaume et al. reported that
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treatment with 10 % anthocyanin-rich blackberries protected
against body weight gain and hepatic lipid accumulation and
this likely resulted from suppression of lipid synthesis in liver
and in adipose tissue [58]. Interestingly, Badshah et al. dem-
onstrated that anthocyanins from black soybean can efficiently
prevent obesity in rats by inhibiting expression of neuropep-
tide Y and activating the γ-amino butyric acid (GABA) re-
ceptor in the hypothalamus [59]. In summary, studies in rodent
models suggest that anthocyanins protect against weight gain
and fat accumulation induced by high fat diet or estrogen loss.
However, the effects of administering anthocyanins in a pow-
dered mixture remain controversial. The majority of studies
evaluating the biological effects of anthocyanins have relied
on anthocyanin-rich crude extracts from plant sources, and it
is unclear which particular anthocyanin molecular structure is
responsible for the anti-obesity activity. Furthermore, based
on average weight and daily food intake, the animals in these
studies would have consumed approximately 50–300 mg an-
thocyanins per kilogram body weight per day; such an oral
dose would be impractical in humans.

4.2 Relief of oxidative stress

In obesity and prediabetes, chronically elevated insulin levels
lead to increased mitochondrial respiration and ultimately
increased generation of reactive oxygen species (ROS).
Elevated ROS production saturates the neutralizing capacity
of antioxidant defenses, resulting in oxidative stress
[60]. Prolonged oxidative stress impairs glucose uptake in
muscle and adipose tissue and decreases insulin secretion
from pancreatic β cells, thereby accelerating the pathologic
process of T2DM [61].

The antioxidant properties of anthocyanins are well char-
acterized. Anthocyanins may serve as free radical scavengers,
hydrogen-donating compounds, singlet oxygen quenchers,
and metal ion chelators, and therefore they rank highly in
in vitro analyses of antioxidant characteristics such as oxygen
radical absorbance capacity (ORAC) and ferric reducing an-
tioxidant potential (FRAP) [62]. The potent antioxidant activ-
ities of anthocyanins have been attributed to their molecular
structure, particularly the phenolic hydroxyl groups attached
to ring structures [63]. However, there is emerging evidence
that anthocyanins and their aglycones exert modulatory ac-
tions on antioxidant signaling molecules, enzyme activity, and
gene expression in both cellular and animal models. Chiang
et al. reported that the antioxidant effects of anthocyanin-rich
black rice extract are mediated through decreases in free-
radical generation as well as increases in hepatic superoxide
dismutase (SOD) and catalase activities in C57BL/6 mice
[64]. Roy et al. examined the effect of pure anthocyanidin
on hyperglycemia-related oxidative damage in rats. Rats with
streptozotocin (STZ)-induced diabetes received an intraperi-
toneal injection of the anthocyanin pelargonidin (3 mg/kg

body weight, BW). The injection of pelargonidin resulted in
increased serum levels of SOD and catalase, and decreased
levels of malondialdehyde and fructosamine [65]. Recently,
Zhu et al. observed that treatment of human HepG2 cells with
cyanidin-3-O-β-glucoside (C3G), the most abundant antho-
cyanin in plants, increased glutamate–cysteine ligase expres-
sion, which in turnmediated a reduction in ROS levels [66]. In
the same study, the authors reported that C3G (200 mg/kg
diet) increased glutathione (GSH) synthesis in the liver of
diabetic db/db mice through a protein kinase A (PKA)- and
cAMP-response-element binding protein (CREB)- dependent
induction of the glutamate–cysteine ligase catalytic subunit
[66]. These observations suggest that anthocyanins may mod-
ulate antioxidant defense by activating anti-oxidative enzymes
and promoting GSH synthesis.

4.3 Regulation of inflammatory response

Inflammation is a key component of obesity-related metabolic
disorders such as T2DM. Excess energy intake stimulates
over-production of ROS, resulting in metabolic oxidative
stress and cellular redox imbalance. This change in cellular
redox status activates redox sensitive signaling molecules,
including nuclear factor κB (NF-κB), mitogen-activated
protein kinases (MAPKs) and other stress signaling
molecules, resulting in increased expression of many inflam-
matory mediators, such as TNFα, IL-6 and monocyte chemo-
tactic protein 1 (MCP-1), which further exacerbate the proin-
flammatory state.

NF-κB is an oxidative stress-sensitive transcription factor
that controls the expression of numerous genes involved in the
inflammatory response, and therefore inhibiting NF-κB acti-
vation is one potentially effective way to reduce inflammation.
In cultured monocytes, anthocyanins isolated from bilberries
and black currants efficiently suppressed lipopolysaccharide
(LPS)-induced activation of NF-κB [41]. The authors also
observed down-regulation of several NF-κB related inflam-
matory mediators, including IL-8, RANTES (regulated on
activation, normal T cell expressed and secreted) and
interferon-α. Examining cellular mechanisms more closely,
Jeong et al. demonstrated that anthocyanins from black soy-
bean prevented the transcriptional effects of NF-κB by
inhibiting nuclear translocation in LPS-stimulated BV2 cells.
The mechanisms blocking nuclear translocation of NF-κB
involved reducing inhibitor of NF-κB alpha degradation as
well as phosphorylation of extracellular signal-regulated ki-
nase, c-Jun N-terminal kinase, and p38 mitogen-activated
protein kinase [67]. The reproducibility of this anthocyanin-
mediated inhibition of the NF-κB pathway was confirmed
using pure anthocyanin C3G in human macrophage and en-
dothelial cells [68–70].

The anti-inflammatory properties of anthocyanins have
been demonstrated in animal models as well. In mice with
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HFD-induced obesity, supplementation with blueberry pow-
der (2.7 % of total energy) was associated with a ~50 %
reduction in the frequency of dead adipocytes and a global
downregulation of inflammatory genes (TNFα, IL-6, MCP-1,
inducible nitric oxide synthase, etc.) in adipose tissue [71]. In
studies with rats fed a fructose-rich diet, 100 and 200 mg
chokeberry extract/kg BW (representing an estimated daily
intake of anthocyanins about 10 and 20 mg/kg BW) signifi-
cantly reduced expression of genes for inflammatory cyto-
kines such as IL-1β, IL-6 and TNFα, and enhanced protein
and gene expression of ZFP36 (zinc finger protein) in the
epididymal adipose tissue [72]. To clarify whether this effect
was due primarily to anthocyanins, or if it was resulted from
other polyphenols in the extracts, HFD-induced obese mice
and diabetic db/db mice received pure anthocyanin C3G
(200 mg/kg diet) for 5 weeks. The results revealed that C3G
decreased serum concentrations of inflammatory cytokines
(TNFα, IL-6 and MCP-1). Also, examination of the white
adipose tissue in C3G-treated mice showed lower mRNA
levels of the above cytokines and reduced macrophage infil-
tration [73]. In a separate study, a mixture of anthocyanins
from wild mulberry and C3G reduced mRNA and protein
levels of cyclooxygenase-2 (COX2), the main enzyme respon-
sible for generating proinflammatory prostanoids. As a result,
the anthocyanin mixture effectively minimized carrageenan-
induced acute inflammation in mice [74]. Interestingly, antho-
cyanin supplementation does not affect the systemic immune
system, serum inflammation markers, or activation of NF-κB
in adipose tissue, in healthy, unchallenged rats [75]. These
observations suggest that anthocyanins may modulate inflam-
matory responses induced by a variety of stress factors, espe-
cially metabolic stress, by inhibiting NF-κB transactivation.

4.4 Improvement of insulin resistance

Obesity is strongly associated with insulin resistance, and the
improvement of insulin resistance is important in preventing
the development of T2DM. The efficacy of anthocyanins in
preventing insulin resistance has been demonstrated in differ-
ent animal models. Treatment of HFD-fed mice with 1 g/kg
anthocyanins purified from Cornelian cherries (Cornus mas)
resulted in decreased weight gain and improved glucose tol-
erance compared with untreated HFD-fed controls [76]. We
have compared the effects of treatment with anthocyanin-rich
black rice extract (5 g/kg diet) or pioglitazone (270 mg/kg
diet), an insulin-sensitizing drug, in high-fructose fed rats, and
found that both treatments improved glucose intolerance and
hyperlipidemia. However, pioglitazone could reverse the
fructose-induced hyperinsulinemia whereas the black rice ex-
tract could not [77]. In our second study, HFD-induced obese
mice or genetically diabetic db/db mice received dietary C3G
supplementation (2 g/kg diet) for 5 weeks. We found that
dietary C3G lowered fasting glucose levels and markedly

improved insulin sensitivity assessed by insulin tolerance tests
in both HFD and db/db mice, as compared with
unsupplemented controls [73]. In a study of KK-Ay diabetic
mice, Sasaki et al. reported that treatment with 2 g/kg dietary
C3G significantly up-regulated the glucose transporter 4
(GLUT4) and down-regulated retinol binding protein 4
(RBP4) in white adipose tissue, thereby improving hypergly-
cemia and insulin resistance [78].

A major metabolic defect associated with insulin resistance
is the failure of peripheral tissues in the body to properly
utilize glucose, thereby resulting in chronic hyperglycemia.
GLUT4 is the primary insulin-dependent glucose transporter,
which is present predominantly in skeletal muscle, myocardi-
um, and adipose tissue. Some compelling studies have report-
ed that anthocyanins achieve their hypoglycemic effects by
promoting GLUT4-dependent glucose uptake in peripheral
cells and tissues. Nizamutdinova et al. reported that adminis-
tration of black soybean anthocyanins to STZ-induced diabet-
ic rats markedly enhanced GLUT4 membrane localization in
heart and skeletal muscle tissues, decreased fasting blood
glucose levels, and improved heart hemodynamic function
[79]. Similarly, in cultured L6 myotubes, treatment with
C3G significantly increased GLUT4 protein expression in
the plasma membrane fraction without affecting total
GLUT4 protein expression, indicating increased localization
of GLUT4 to the cell surface [80]. In H2O2- or TNFα-induced
insulin-resistant 3 T3-L1 adipocytes, C3G reduced intracellu-
lar ROS production and increased insulin-stimulated glucose
uptake in a dose-dependent manner, indicating that
anthocyanin-mediated reversal of adipocyte dysfunction
could be a crucial target for preventing insulin resistance
[81]. Tsuda et al. demonstrated that adiponectin and leptin,
which are two important adipocytokines regulating metabo-
lism, were upregulated by C3G in primary human and rat
adipocytes [82, 83]. Peroxisome proliferator-activated recep-
tor γ (PPARγ) is a ligand-activated nuclear hormone receptor
that controls glucose and lipid metabolism and the transcrip-
tion of proteins involved in glucose and fatty acid uptake [84].
To further investigate the mechanism underlying the insulin-
sensitizing effects of C3G, Scazzocchio et al. assessed PPARγ
gene expression and transcriptional activity in human omental
and murine adipocytes. The investigators found that the C3G-
mediated increase in glucose uptake was associated with
enhanced GLUT4 translocation to the membrane and en-
hanced adiponectin secretion, both caused by increased
PPARγ activity [85]. Furthermore, the PPAR-promoting ac-
tivity was confirmed using cyanidin, the aglycone of C3G, in
lipid-loaded primary hepatocytes [86].

4.5 Alleviation of chronic diabetic complications

The aim of diabetes management is to protect patients from
the acute and chronic complications associated with diabetes.
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Acute complications include diabetic ketoacidosis,
hyperosmolar coma, infections, hypoglycaemic episodes etc.
Some of the chronic or long term complications include eye,
kidney and nerve damage. Metabolic confusion has been
implicated as a major contributor to these diabetic complica-
tions. AMP-activated protein kinase (AMPK) is a crucial
cellular energy sensor and plays a pivotal role in regulating
lipid metabolism, glucose homeostasis, and insulin sensitivity.
Elevated glucose can inhibit AMPK phosphorylation and
activity, thereby impairing its downstream signaling and
energy-conserving effects and resulting in glycolysis and li-
polysis which worsen diabetic pathology [87]. Several studies
have suggested that anthocyanins impact metabolic homeo-
stasis by targeting AMPK. Kurimoto et al. reported that die-
tary black soybean seed coat extract, which is rich in antho-
cyanins, activated AMPK in skeletal muscle and liver of KK-
Ay mice. The activation of AMPK resulted in enhanced glu-
cose utilization and suppression of gluconeogenesis in re-
sponse to insulin [80]. Our study further demonstrated in-
creased phosphorylation of AMPK in the skeletal muscle
and visceral adipose of KK-Ay mice gave pure C3G. This
was accompanied by the suppression of lipoprotein lipase in
visceral adipose tissue and reduction of plasma triglyceride
levels [88]. In diabetic apolipoprotein E-deficient mice, an-
thocyanin C3G supplementation effectively increased the
number of circulating endothelial progenitor cells (EPC) and
improved their function, including adhesion, migration, and
tube formation. The restoration of EPC number and function
after C3G treatment was paralleled by increased AMPK acti-
vation [89]. In vitro data showed that incubation with C3G
increased the activity of AMPK and provided significant
protection against high glucose-induced lipolysis in 3 T3-L1
adipocytes [90]. In addition, anthocyanin treatment of HepG2
hepatocytes increased AMPK and acetyl-coenzyme A carbox-
ylase (ACC) phosphorylation, leading to stimulation of carni-
tine palmitoyl transferase 1 (CPT-1) expression and a signif-
icant increase in fatty acid oxidation [91, 92]. These observa-
tions suggest that anthocyanins can improve diabetes-
associated pathologies and disorders by activating AMPK.

Diabetic nephropathy is one of the most common micro-
vascular complications of diabetes and a leading cause of end-
stage renal disease. In order to shed light on the effects of
anthocyanins on renal injury caused by hyperglycemic condi-
tions, diabetic db/dbmice were orally administrated 10 mg/kg
BW anthocyanin-rich purple corn extract daily for 8 weeks.
This intervention resulted in a significant reduction in glomer-
ular monocyte activation and macrophage infiltration in the
kidney tissues of db/db mice [93]. In an earlier study, this
research group reported that the same anthocyanin extract
reduced inflammatory expression of connective tissue growth
factor (CTGF) and secretion of collagen IV in human renal
mesangial cells exposed to high glucose [94]. Anthocyanin
treatment also dampened NF-κB translocation and MCP-1

transcription in high glucose-exposed mesangial cells, sug-
gesting a potentially protective role for anthocyanins in
diabetes-associated mesangial fibrosis and inflammation.

5 Conclusion and perspectives

People can ingest significant amounts of anthocyanins by
consuming dark-colored plant foods. A growing body of
scientific evidence indicates that higher consumption of an-
thocyanins is associated with lower risk of T2DM (Table 2).
The results of most human intervention studies support the
hypothesis that anthocyanins can positively affect markers of
obesity and T2DM (Table 3). Further research on anthocya-
nins may lead to more specific recommendations for con-
sumption of anthocyanin supplements or anthocyanin-rich
foods, and thus aid in managing obesity and T2DM.

Despite the promising results published so far, uncertainty
remains as to whether anthocyanins are capable of reversing
the complex pathological processes accompanying obesity
and T2DM. Though studies support this possibility, they are
too few and methodologically not rigorous enough. To date,
we are not aware of any long-term human intervention studies
relating anthocyanin intake to T2DM incidence, and there are
few clinical studies in humans that have examined the effect of

Fig. 1 Putative biological mechanisms underlying the action of
anthocyanins on obesity and type 2 diabetes
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interventions with anthocyanin-rich diets on intermediate risk
factors for T2DM, such as glucose homeostasis and insulin
resistance. In addition, the results from these published studies
may not be generalizable to other ethnic populations.
Thus, additional large-scale and long-term clinical trials
are necessary to draw a firm conclusion about contribu-
tion of anthocyanins to the management and prevention of
obesity and diabetes.

In the interim, from the perspective of clinical practice,
there are at least two key questions that should be addressed.
Firstly, an effective dose of anthocyanins needs to be validated
in humans. Epidemiological studies indicate that intake of 22–
35 mg anthocyanins per day can be readily associated
with lower risk of T2DM. However, subjects were given
a much higher dose (50–320 mg/d) of anthocyanins in
human intervention trials. Dose–response trials are needed to
ascertain optimal intakes required to reduce the risk of
T2DM. The second key question concerns its safety,
particularly when high doses of anthocyanins are given for
long periods.

Anthocyanins are widely distributed in the human diet, and
we ingest large amounts of anthocyanins daily. No incidences
of anthocyanin poisoning have been reported in humans.
Information from animal studies regarding the occurrence of
adverse effects with anthocyanin treatment is also limited.
Toxicological studies in rats treated with anthocyanins from
purple corn estimated a no-observed-adverse-effect level
(NOAEL) of 5.0 % of the dietary supplementation for both
sexes (male: 3,542 mg/kg/d, female: 3,849 mg/kg/d) [95]. For
humans, anthocyanin was well tolerated even at the highest
doses (640 mg/d for 4 weeks) or longest duration (50 mg/d for
2 years) tested [96, 97]. No adverse effects were reported by
any of the participants consuming anthocyanins or placebo
throughout the intervention period. Therefore, the results of
these studies provide strong support for the safety of conven-
tional use of anthocyanin extract. However, caution should be
exercised in the use of anthocyanins-based dietary supple-
ments due to the source of raw materials. Further, to our
knowledge no studies have been conducted to determine the
upper limit of safety for anthocyanins or similar polyphenols.
Such studies are also warranted.

As schematically shown in Fig. 1, the putative mechanisms
underlying anti-diabetic potentials of anthocyanins might
originate from the inhibition of body weight gain, prevention
of free radical production and lipid peroxidation, regulation of
inflammatory response, reduction of blood glucose and lipids,
and improvement of insulin resistance. The overall beneficial
effects of anthocyanins represent a complex interaction of
multiple signaling pathways, transcription factors, and en-
zymes. Future studies should focus on using in vitro studies
to identify the most promising downstream targets of antho-
cyanins and expanding these findings to mechanistic studies
in animals.
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