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Abstract Glucagon-like peptide 1 (GLP-1) is a cleavage
product of the pre-proglucagon gene which is expressed in
the α-cells of the pancreas, the L-cells of the intestine, and
neurons located in the caudal brainstem and hypothalamus.
GLP-1 is of relevance to appetite and weight maintenance
because it has actions on the gastrointestinal tract as well as the
direct regulation of appetite. It delays gastric emptying and
gut motility in humans. In addition, interventricular injections
of GLP-1 inhibit food intake, independent of the presence of
food in the stomach or gastric emptying. Peripherally admin-
istered GLP-1 also affects the central regulation of feeding. It is
therefore the synergistic actions of GLP-1 in the gut and
brain, acting on both central and peripheral receptors that seem
responsible for the effects of the hormone on satiety.
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1 Synthesis and secretion of GLP-1

Glucagon-like peptide 1 (GLP-1) is a cleavage product of the
pre- proglucagon gene [1] which is expressed in the α-cells of
the pancreas, the L-cells of the intestine, and neurons located in
the caudal brainstem and hypothalamus [2]. GLP-1 is primarily
synthesized and secreted by the L cells of the distal small
intestine in response to a nutrient load, although non-nutrient
driven secretion has also been reported [3, 4]. GLP-1 is also
synthesized by a small population of neurones in the nucleus of
the solitary tract (NTS) in the caudal brainstem which project
to areas in the hypothalamus and hindbrain that express GLP-1

receptors (GLP-1- R) [5]. The major bioactive species in
humans are GLP-1 (7–36) amide and GLP-1 (7–37).

In response to a nutrient load, GLP-1 is secreted in a biphas-
ic fashion: the early response occurs within minutes, and lasts
about 30 minutes post prandially while the second phase occurs
an hour or so later [6, 7]. Given that the majority of L cells are
located in the distal intestines, it is unlikely that direct contact
with nutrients is responsible for the first phase of GLP-1
release. In fact, animal studies have shown that the autonomic
nervous system, in particular, the vagus nerve, has an important
role to play in mediating the early release of GLP-1 following a
meal [8]. Administration of atropine, a muscarinic receptor
antagonist in humans after an oral glucose load diminishes
the magnitude of early GLP-1 release, an effect independent
of gastric emptying [9]. More recently, Theodorakis et al. have
shown that even though the density of L cells is lower in the
duodenum, it is likely sufficient to explain early GLP-1 release
[10]. Within the L-cell, the nutrient-sensing pathways that are
involved in GLP-1 secretion are differentially sensitive to glu-
cose, protein, fatty acids and bile acids, all of which are potent
triggers for GLP-1 release [11]. Apart from GLP-1, other
products of posttranslational modification of the proglucagon
gene by prohormone convertase may also be important in
glucose metabolism and energy balance. For example,
oxyntomodulin inhibits gastrointestinal motility and stimulates
pancreatic enzyme secretion and intestinal glucose uptake, in
addition to having a role in the promotion of satiety [12]. GLP-
2 up-regulates intestinal glucose transport, improves intestinal
barrier function, and inhibits food intake, gastric emptying, and
acid secretion [13, 14].

2 Role of GLP-1 in satiety

Satiation signals, produced by activation of gastric mechano-
receptors when the stomach is distended, are relayed via the
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vagal nerves to the NTS in the brainstem. The amount of
gastric distension due to food intake is partly influenced by
the rate of gastric emptying, which in turn affects postprandial
glycemic excursions. GLP-1 delays gastric emptying and gut
motility in healthy lean and obese subjects and patients with
type 2 diabetes [15–17]. GLP-1 also contributes to the change in
gastric volume that occurs in anticipation of food ingestion. This
phenomenon is known as gastric accommodation andmay affect
the perception of stomach distention after food ingestion [18].

The role of the vagus nerve in promoting satiety appears
dependent on the route of administration of GLP-1 as demon-
strated in an experiment on vagotomized rats. Intravenous as
opposed to intraperitoneal infusion of GLP-1 does not require
an intact vagus to attenuate nutrient intake [19].

Central (interventricular) injections of GLP-1 inhibit food
intake, independent of the presence of food in the stomach or
gastric emptying [20]. Also, knock down of the
preproglucagon gene in the NTS has been shown to result in
hyperphagia and weight gain [21]. Mirroring these findings
are neuroimaging studies showing that peripherally adminis-
tered GLP-1 affects brain activity in areas involved in the
regulation of feeding [22, 23]. It is therefore the synergistic
actions of GLP-1 in the gut and brain, acting on both central
and peripheral receptors that seem responsible for the effects
of the hormone on satiety (Fig. 1).

However, the mechanisms involved in both these sites are
likely distinct. In the NTS, GLP-1 that is produced also acts on
local receptors thus creating a local feedback loop [24].
Orexigenic and anorexigenic neurones possess GLP-1 R so
that GLP-1 binding promotes satiety [25]. For example
mRNA levels of the orexigenic neuropeptide Y/agouti-related
peptide (NPY/AgRP) neuron and the anorexigenic

proopiomelanocortin (POMC) neuron, both of which have
GLP-1 receptors, have been shown to decrease and increase
respectively in the presence of central GLP-1 infusions [26].
These findings, however, are not consistent and others have
shown that the effect of GLP-1 on satiety is primarily derived
from its action on anorexigenic hormones so that when NPY/
AgRP neurons are destroyed, the effect of GLP-1 on decreas-
ing satiation persists [27]. In contrast, POMC has been well
documented to induce anorexia in a variety of situations.
POMC neurons project to the NTS (site of GLP-1 production)
and paraventricular nucleus of the hypothalamus (PVN) and
may contribute to the forebrain-brainstem signalling circuit
modulating appetite [28]. GLP-1 receptors are found in the
PVN, arcuate nucleus and ventromedial hypothalamus [29].
The reciprocal connection between the NTS and PVN of the
hypothalamus allows integration of these anorexigenic signals
and may be modulated by GLP-1 (Fig. 1).

Additionally, intracerebroventricular administration of
GLP-1 is able to induce conditioned taste aversion likely
due to a simultaneous effect on visceral sensation [30].

Pharmacologic studies in animals have shown that suppres-
sion of food intake after peripheral administration of the GLP-
1 receptor agonists exendin-4 and liraglutide is mediated by
activation of GLP-1R expressed on vagal afferents as well as
direct CNSGLP-1R activation, highlighting the importance of
the interaction between peripheral and central receptors [31].

3 The contribution of GLP-1 to bariatric surgery

Post-prandial GLP-1 concentrations are increased following
Roux-en-Y gastric bypass, an observation that has fuelled

Fig. 1 The role of GLP-1 in
modulating appetite. GLP-1 has
effects on central and peripheral
receptors. Afferent branches of
the vagus relay information from
chemoreceptors and
mechanoreceptors in the
gastrointestinal tract to the
nucleus tractus solitarius (NTS).
Circulating hormones could
theoretically directly stimulate
areas outside the blood brain
barrier although the role of this
pathway is of uncertain
significance in normal physiology
(−ve denotes an inhibitory effect,
while + ve denotes a permissive/
enhancing effect) [72,73,74]
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interest in investigating the role of GLP-1 in mediating weight
loss and remission of metabolic derangements following
surgery [32–34]

All forms of bariatric surgery lead to weight loss to a
greater or lesser extent. the superiority of RYGB over adjust-
able gastric band and perhaps sleeve gastrectomy, highlights
an important distinction between purely restrictive and
restrictive/malabsorptive procedures. Compared to the purely
restrictive sleeve gastrectomy, patients with type 2 diabetes
who underwent RYGB exhibited greater truncal fat loss and
improved beta cell function at 24 months despite comparable
diabetes remission at 12 months [35]. There are some impor-
tant caveats to this –this study can be criticized in terms of the
small (−er) numbers restudied and the gender differences
between RYGB and SG groups (thereby introducing a con-
founder in regards to initial body composition) limiting the
generalizability of the study [36].

Adjustable gastric banding (AGB) does not trigger an
increase GLP-1 secretion. However, when rats which had
undergone AGB were treated with a GLP-1 agonist, body
weight decreased both while the band was deflated and
inflated. Interestingly, band inflation triggered neural acti-
vation in areas of the NTS known to be targeted by GLP-1
receptor agonism, offering a potential mechanism for the
interaction [37].

We and other have studied the role of endogenous GLP-1 in
glucose metabolism following RYGB using Exendin 9,39, a
competitive antagonist of GLP-1 at its cognate receptor [38].
Non-diabetic subjects who were on average 5 years post-RYGB
and at a steady weight were administered a mixed meal; glucose
fluxes were studied in the presence or absence of Exendin 9,39
infused at a rate of 300 pmol/kg/min. Age and weight-matched
control subjects were studied in a similar experimental design.
111In-DTPA labelling of the solid portion of the meal allowed
measurement of gastric emptying and orocecal transit with a
gamma camera. We found that Exe-9,39 accelerated gastric
emptying suggesting that following RYGB surgery, endogenous
GLP-1 delays gastrointestinal transit. Measurement of gastric
emptying using scintigraphy under the influence of exendin
9,39 in otherwise healthy humans has demonstrated either no
effect or accelerated gastric emptying [39, 40].

Although important, the magnitude of the contribution of
GLP-1 to weight loss and remission of metabolic abnormali-
ties after bariatric surgery was challenged by Wilson-Perez
et al. who studied vertical sleeve gastrectomy in GLP-1 re-
ceptor knock-out mice models [41]. These mice, when com-
pared to their wild-type counterparts responded similarly in
terms of reduced body weight and body fat, improvements in
glucose homeostasis and altered food choice. These intriguing
findings may absolve GLP-1 from mediating much of the
beneficial outcomes following vertical sleeve gastrectomy
but may not necessarily apply to RYGB which also
reconfigures anatomy by moving the distal small intestine

closer to incoming nutrients from the stomach and bypassing
the proximal small intestine.

Whether GLP-1 contributes to the weight loss seen after
bariatric surgery remains to be determined.

4 Role of GLP-1 in the gastrointestinal tract

GLP-1 appears to affect gastrointestinal motility through its
action on both central and peripheral receptors. The vagus
nerve plays an important role in mediating these effects as
shown in both animal and human models, perhaps through its
action on the circular muscle of the intestines [16, 42–44]. In
mouse models, GLP-1 was found to inhibit intestinal motility
through the direct interaction and activation of GLP-1R on
enteric neurons [44]. When GLP-1 was directly infused into
the intracerebroventricular space of rats, gastric emptying was
inhibited suggesting an interaction between peripheral and
central GLP-1 receptors [45]. In contrast to the upper GI tract,
in the colon, GLP-1 serves to accelerate colonic transit an
effect that is also likely mediated by the parasympathetic
nervous system [46, 47]. In addition, GLP-1 contributes to
the ileal brake, an inhibitory feedback loop designed to opti-
mize the digestion and absorption of nutrients [48].

The role of GLP-1 in gastric emptying and accommodation
in the fasting and post-prandial state was investigated in a
placebo-controlled study by Delgado-Aros et al. [18]. Healthy
volunteers were infused GLP-1 and administered an injection
of 99mTc-sodium, which is taken up by the gastric wall. Single
photon emission computed tomography (SPECT) images of
the stomach were taken and processed to produce a 3- dimen-
sional image allowing volume calculations. They demonstrat-
ed an increase in volume of the proximal and distal stomach in
response to GLP-1 in both the fasting and fed states. These
findings have also previously been demonstrated by barostat
studies [49]. Delayed gastric emptying was found to be a
result of relaxation of the proximal stomach accompanied by
an increased tone of the antropyloric region. To compare the
effects of GLP-1 and placebo on maximum tolerated volume
(MTV, the volume ingested until maximum satiety is reached),
the same participants were given a liquid meal and used a
visual analog scale to score the presence of symptoms such as
bloating, fullness, nausea or pain. No difference in MTV was
observed with GLP-1 despite changes in gastric accommoda-
tion and emptying. This observation could be explained by its
known role on central receptors in the regulation of food
intake, independent of its effects on gastrointestinal motility.

The role of the vagal nervous system in mediating the effects
of GLP-1 on gastric accommodation was studied by the same
group [50]. Two observations suggested an important role for the
vagus nerve: 1. Gastric tone is maintained by vagal cholinergic
input. 2. Postprandial pancreatic polypeptide release (under vagal
control) was blunted in the presence of GLP-1.
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The group studied patients with diabetes and cardiovagal
neuropathy in the same experimental design as before. GLP-1
did not influence gastric volume in this group, implying that a
vagally-inducedmechanismwas important for GLP-1’s action
on the stomach. However gastric volume response to a meal in
these patients was no different when compared to healthy
volunteers. This observation illustrates that gastric accommo-
dation after vagotomy recovers with time as has been shown
in both animal and human studies.

5 Clinical effects on weight of GLP-based therapy

In response to a meal, GLP-1 delays gastric emptying and
increases gastric volumes. GLP-1 enhances insulin secretion
and inhibits glucagon-release in a glucose-dependent manner
both in normal individuals as well as in patients with type 2
diabetes [51]. In patients with type 2 diabetes, GLP-1 agonist
infusion in pharmacologic doses enhanced satiation and pro-
moted weight loss [52]. Hence GLP-1 therapy in humans
reduces food intake, appetite and hunger and promotes fullness
and satiety with the ultimate result of promoting weight loss.

GLP-1 receptor agonists are currently FDA approved only
for the treatment of type 2 diabetes, but clinical trials have
consistently shown that they also produce weight loss when
compared to controls. A meta-analysis of GLP-1 agonists
(twice daily exenatide, daily liraglutide or weekly exenatide)
on obese individuals with and without diabetes showed that
when compared to controls, treatment groups achieved a
greater weight loss (weighted mean difference −2.9 kg,
95 % confidence interval −3.6 to −2.2; 21 trials, 6,411 partic-
ipants) [53]. Placebo-controlled trials have demonstrated a
dose-dependent effect of GLP-1 receptor agonists on weight
loss. In patients with type 2 diabetes already on an oral
hypoglycemic agent, exenatide 10 μg twice daily produced
almost twice the amount of weight loss afforded by the 5 μg
twice daily dose, a finding that was subsequently reproduced,
though not quite at the same magnitude, by other groups [54,
55,56]. Increasing doses of liraglutide up to 3 mg per day
continue to produce incremental weight loss in a group of
patients with type 2 diabetes [57]. When exenatide or
liraglutide was compared to insulin therapy in patients with
similar glycemic control, weight loss with GLP-1 receptor
agonist treatment ranged from 1.8 to 4.1 kg, while weight
gain with insulin therapy varied between 1.0 and 4.1 kg [44,
58–60]. There was no significant difference in weight loss in
patients with type 2 diabetes on maximally tolerated oral
hypoglycemic therapy who were either initiated on liraglutide
1.8 mg per day or exenatide 10 μg twice daily [61]. However,
liraglutide at a dose of 1.8 mg per day produced greater weight
loss when compared to exenatide 2 mg once weekly, in
patients with type 2 diabetes on maximum oral hypoglycemic
agents over a 26-week period [62]

A randomized placebo-controlled trial of GLP-1 agonist
therapy (exenatide) in obese adolescents resulted in modest
weight loss, an effect that was equivalent or better than a
similar duration of metformin or orlistat therapy in this group
of patients [63]. The most commonly reported side effects of
nausea and vomiting were similar to that reported in the adult
literature and did not result in drop outs from the study.

The weight loss observed with GLP-1 agonist therapy may
be associated with reductions in total body fat, in particular
visceral and truncal adipose [64, 65].

Also of interest is the successful use of GLP-1 agonists in
the treatment of hypothalamic obesity, suggesting that at least
in this cohort, GLP-1 analogues were capable of inducing
weight loss despite hypothalamic damage [66].

Unlike pure dietary measures, weight loss may be
sustained for up to a period of 3 years in the presence of
GLP-1 agonist therapy [67, 68]. However, once therapy is
discontinued, there is some regain of weight [69]. There seems
to be minimal effect of GLP-1 on energy expenditure per se
and thus the overall negative energy balance seen with GLP-1
therapy is largely a result of decreased energy intake [70].

6 Conclusion

The role of GLP-1 in the modulation of appetite and weight is
orchestrated by a complex brain-gut relationship. GLP-1 is
primarily secreted by the enteroendocrine cells, but there is
additionally a central nervous system source of GLP-1. Acti-
vation of GLP-1 receptors present in the CNS and the gut is
further modulated by cholinergic signals from the vagus
nerve. Through these and other still imprecise mechanisms,
GLP-1 in both physiologic and pharmacologic doses pro-
motes satiety, affects mechanistic properties of the GI tract
and results in negative energy balance. Additionally, its suc-
cess in promoting weight loss makes GLP-1 agonist therapy
an attractive option in the management of type 2 diabetes.
What needs to be balanced against this is the reported associ-
ation between GLP-1 receptor agonist therapy and pancreati-
tis, pancreatic hyperplasia and pancreatic neoplasia [71]. Of
interest, recent work in a novel transgenic mouse model
confirms the presence of GLP-1 receptors in the vasculature
of the exocrine pancreas with only sporadic GLP-1 receptors
identifiable in the pancreatic ducts [29]. The implication that
GLP-1 agonist therapy is directly related to the adverse out-
comes observed is still very much up for debate.

7 Future directions

The discovery of GLP-1 has sparked major innovation in the
therapy of type 2 diabetes as well as a better understanding of
an interaction between the gut and the pancreas to modulate
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glucose homeostasis as well as appetite and weight. At present
GLP-1 receptor agonism has relatively small but significant
effects on weight. The reasons for this are still uncertain and
efforts are underway to better understand the endogenous
factors that dampen GLP-1 signalling. Moreover, compounds
that are agonists for GLP-1 and for other receptors important
in weight regulation may hold future therapeutic promise.
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