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Abstract Metabolic syndrome (MetS) is a cluster of metabolic
abnormalities characterized by central obesity, dyslipidemias,
hypertension, high fasting glucose, chronic low-grade inflam-
mation and oxidative stress. This condition has become an
increasing problem in our society where about 34 % of adults
are diagnosed with MetS. In parallel with the adult situation, a
significant number of children present lipid abnormalities and
insulin resistance, which can be used as markers of MetS in the
pediatric population. Changes in lifestyle including healthy
dietary regimens and increased physical activity should be the
first lines of therapy to decrease MetS. In this article, we present
the most recent information on successful dietary modifications
that can reduce the parameters associated with MetS. Success-
ful dietary strategies include energy restriction and weight loss,
manipulation of dietary macronutrients—either through restric-
tion of carbohydrates, fat, or enrichment in beneficial fatty
acids, incorporation of functional foods and bioactive nutrients,
and adherence to dietary and lifestyle patterns such the Medi-
terranean diet and diet/exercise regimens. Together, the recent
findings presented in this review serve as evidence to support
the therapeutic treatment of MetS through diet.
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CVD Cardiovascular disease

DHA Docosahexanoic acid

EPA Eicosapentanoic acid

FFA Free fatty acids

GPX Glutathione peroxidase
HDL-C HDL-cholesterol

HOMA Homeostatic model assessment

IL Interleukin

Keapl Kelch-like ECH-associated protein 1

LDL-C LDL-cholesterol

MCP-1 Monocyte chemoattractant protein-1

MetS Metabolic syndrome

MUFA Monounsaturated fatty acid

NAFLD Non-alcoholic fatty liver disease

NFE2L2 Nuclear factor (erythroid-derived 2)-like 2

NF-«B Nuclear factor k B

PBMC Peripheral blood mononuclear cells

PUFA Polyunsaturated fatty acid

PYY Peptide tyrosine tyrosine

RESMENA Metabolic Syndrome Reduction in Navarra
dietary pattern

ROS Reactive oxygen species

SFA Saturated fatty acid

sICAM-1 Soluble intercellular adhesion molecule 1

T2DM Type 2 diabetes mellitus

TG Triglyceride

TLR Toll-like receptor
TNF«x Tumor necrosis factor o
TXNRD1 Thioredoxin reductase 1
wC Waist circumference

1 Introduction

The metabolic syndrome (MetS) constitutes a cluster of met-
abolic abnormalities, which double the risk for coronary heart
disease (CHD) and increase the risk for type 2 diabetes
mellitus (T2DM) 5-fold [1]. In the US, 34 % of the adult
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population has been classified as having MetS, with preva-
lence being higher in other regions of the world [2, 3]. More
alarmingly, children as young as 8 years old are now present-
ing with dyslipidemias and insulin resistance associated with
MetS [4, 5]. Thus, MetS has become a significant public
health problem associated with increased health costs as it
develops into T2DM and CHD [6].

Although MetS definitions can vary across different re-
gions of the world and by different organizations, each defi-
nition similarly defines MetS to include central obesity, hy-
pertension, low HDL cholesterol (HDL-C), high triglycerides
(TG), and elevated concentrations of fasting blood glucose
[7]. In addition to these defining characteristics, MetS is also
associated with chronic low-grade inflammation, insulin re-
sistance, atherogenic dyslipidemias and dysfunctional lipo-
proteins, elevated oxidative stress, a prothrombotic state, and
endothelial dysfunction [8, 9]. Physiological parameters asso-
ciated with MetS are depicted in Fig. 1. Research has clearly
demonstrated that these MetS parameters can be reduced with
dietary interventions that are targeted for weight reduction,
management of plasma lipids and glucose, and reductions in
blood pressure and inflammatory markers [10, 11]. The purpose
of this review is to present some of the dietary strategies that are
commonly used to resolve MetS and associated metabolic

Fig. 1 Overview of MetS
parameters. Regardless of the
metabolic syndrome (MetS)
definition used, individuals
classified with MetS possess a
combination of key parameters,
including abdominal obesity, high
fasting blood glucose, reduced
HDL-cholesterol (HDL-C),
elevated fasting plasma
triglycerides (TG), and elevated
blood pressure (inner circles). In
addition to these defining
characteristics, MetS is
additionally associated with
chronic low-grade inflammation,
insulin resistance, atherogenic
dyslipidemias and dysfunctional
lipoproteins, elevated oxidative
stress, a prothrombotic state, and
endothelial dysfunction (outer
circles). All of these factors
contribute to the increased risk of
cardiovascular disease (CVD) and
type 2 diabetes mellitus (T2DM)
in this population
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abnormalities—particularly emphasizing studies published
within the last year. The dietary strategies presented include
changes in daily energy intake, macronutrient composition,
consumption of functional foods and bioactive nutrients, and
adherence to dietary/lifestyle programs. Together, the recent
findings presented in this review serve as evidence to support
the therapeutic treatment of MetS through diet.

2 Energy restriction

Energy restriction is known to be an effective strategy to
promote weight loss and ameliorate MetS status [11], while
it has also been associated with improved immunity and
prolonged lifespan [12]. Energy restriction is often achieved
by reducing fat intake [13]; therefore, the majority of findings
from energy-restricted diets presented in this section can sim-
ilarly be classified as low-fat diet interventions.

Energy restriction has been shown to improve body compo-
sition, blood pressure, plasma lipids, inflammatory markers,
and insulin sensitivity in children [14], as well as overweight/
obese adults following an energy-restricted diet containing low
fructose or moderate natural fructose levels [15]. While reduc-
ing fructose as added sugar is beneficial in ameliorating MetS
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parameters during energy restriction, the consumption of whole
grains vs refined grains provides further benefit. In 50 obese
male and female subjects with MetS following a hypocaloric
diet (—500 kcal/day), body composition and plasma lipids were
improved by caloric restriction regardless of grain type intake.
However, whole grain intake promoted greater decreases in
waist circumference, as well as a 38 % decrease in C-reactive
protein (CRP) that was not observed in the calorie-restricted
refined grain group [16]. Whole grain intake was associated
with greater intakes of fiber and magnesium, which have inde-
pendently been implicated in protection against MetS [11].
Magnesium deficiency promotes oxidative stress and inflam-
mation, and may also affect pathways implicated in dysfunc-
tional endothelium and maintenance of body weight [17].

Energy restriction has also been shown to alter lipoprotein
kinetics and metabolism in MetS [18-21]. Weight loss from
energy restriction has been shown to induce favorable shifts in
markers of TG-rich lipoproteins, including reductions in apo-
lipoprotein (apo) C-III, VLDL-apoB, and remnant-like
particle-cholesterol and -TG levels in men with MetS [18].
Using stable isotope tracers, Ng et al. [19]. reported that
consumption of a low-fat, hypocaloric diet reduced the produc-
tion of VLDL apoB-100, as well as the catabolism of LDL
apoB-100, corresponding to reductions in plasma TG, LDL-
cholesterol (LDL-C), and apoB. Further, this diet reduced the
catabolic and production rates of HDL apoA-I without chang-
ing plasma HDL-C or apoA-I levels [19]. Reductions in plasma
apoA-II in this population were similarly explained by reduced
fractional catabolic and production rates of apoA-II [20]. A
combination of a free-living hypocaloric diet combined with an
isocaloric Mediterranean diet similarly increased HDL-C
through reducing apoA-I fractional catabolic rate, without
changing production rate [21]. In addition, energy restriction
has further been shown to reverse features of MetS and improve
vascular integrity in aged high-fat diet-fed rats [22].

Together, these findings support the notion that weight-loss
programs targeting energy restriction can be effective ap-
proaches to ameliorating numerous MetS parameters, and can
yield benefits similar to those achieved with diets focused on
portion control and glycemic index. However, these programs
have also been found to reduce HDL-C [23]—a potentially
detrimental effect in populations that already have suboptimal
HDL-C levels [9]. Additional concerns arise with long-term
dietary adherence, since energy-restricted diets can be more
difficult to follow when compared to diets based on food groups
and dietary patterns, such as diets emphasizing carbohydrate
restriction or Mediterranean-style food choices [24, 25].

3 Macronutrient composition

Aside from restricting total calories, manipulation of dietary
macronutrient distribution and type has been associated with

varying degrees of efficacy in treating MetS. This section will
highlight recent studies examining the effects of macronutri-
ents on MetS parameters.

3.1 Carbohydrate restriction

For the purpose of this review, carbohydrate-restricted diets
(CRD) will be defined as a dietary prescription with 10-35 %
of energy from carbohydrate sources. CRD have been shown
to efficiently target all parameters of MetS [26]. CRD decrease
plasma TG, increase HDL-C, lower blood pressure, reduce
plasma glucose and are very effective in reducing visceral
obesity [27]. The effect of CRD on plasma lipids is particularly
important since few lifestyle modification interventions have
been shown to successfully increase HDL-C [10]. Thus, CRD
are possibly the best dietary approach to effectively resolve
MetS. Diets containing 10 % [28] to 40 % [29] of energy from
carbohydrate sources have been shown to effectively amelio-
rate the dyslipidemias and inflammatory markers associated
with MetS. A 25 % CRD similarly reduced these parameters
in populations with a high prevalence of MetS [30].

Some evidence from animal studies suggests that the ben-
eficial effects of CRD on MetS parameters may occur at the
expense of the liver. In a hereditary hypertriglyceridemic rat
model of MetS, high-sucrose feeding promoted VLDL secre-
tion, down-regulated free fatty acid (FFA) oxidation, and
increased de novo FFA synthesis from glucose, whereas the
reverse effect was observed with high-fat feeding [31]. These
changes corresponded to greater plasma TG and FFA in the
sucrose group, as well as increased liver TG deposition in both
fed and fasting states in the high-fat-fed animals [31]. While
this study suggests that more data may be needed to properly
assess the benefits of carbohydrate-restriction in MetS, human
studies have shown that carbohydrate restriction may benefit
hepatic steatosis and MetS [32-34]. Further, carbohydrate-
restriction was shown to be more effective in reducing liver
TG than calorie restriction (=55 % vs. —28 %) in subjects with
non-alcoholic fatty liver disease (NAFLD), despite similar
weight loss between groups [35].

While CRD have been shown to ameliorate numerous
MetS parameters, a recent cross-sectional study by Merino
et al. [36]. reported that reduced carbohydrate intake (as a
percentage of total energy) was associated with more adverse
small artery vascular function in subjects with both MetS and
T2DM. However, additional markers of MetS, cardiovascular
disease (CVD), and inflammation did not differ between
quartiles of carbohydrate intake [36]. Additionally, a 12-
week hypocaloric CRD (12 % carbohydrate, 59 % fat, 28 %
protein) increased postprandial flow-mediated dilation when
compared to a hypocaloric low-fat diet (56 % carbohydrate,
24 % fat, 20 % protein) in overweight men with moderate
hypertriglyceridemia [37], thereby suggesting that CRD im-
proves endothelial function.
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3.2 Dietary fat composition

Various dietary strategies for MetS are based on manipulation
of dietary fat—whether through restriction of total fat (as % of
energy), or through dietary enrichment of specific fatty acids.

For instance, a variety of monounsaturated fatty acids
(MUFA) and MUFA-rich foods have been found to be pro-
tective against MetS and various CVD risk factors [38],
whereas 7-3 polyunsaturated fatty acids (PUFA), including
o-linoleic acid (ALA), eicosapentanoic acid (EPA) and
docohexanoic acid (DHA), have similarly been found to exert
beneficial effects on MetS parameters—particularly in regard
to inflammation [39].

Restriction of total dietary fat as a “low-fat” diet prescription
is typically accompanied by restriction of total calories [13]. As
described above, energy-restricted, low-fat diets are known to
be effective at improving MetS parameters, including body
composition, blood pressure, plasma lipids, inflammatory
markers, and insulin sensitivity [14, 15]. However, low-fat diets
are less effective at decreasing biomarkers for MetS when
compared to CRD [26] or the Mediterranean diet [40]. Further,
compliance to low-fat diets is particularly important since low-
fat diets without caloric restriction may increase plasma TG
while reducing HDL-C [41], thereby exacerbating MetS. Sim-
ilarly, high-fat feeding without carbohydrate-restriction can also
promote adverse metabolic outcomes. Interestingly, high-fat
feeding (42 % of energy) has also been shown to alter adipocyte
progenitor cell populations and gene expression profiles in
C57BL/6 mice. In addition to impairing glucose tolerance and
insulin sensitivity, high-fat feeding reduced adipocyte progen-
itor cell populations in thermogenic brown adipose tissue,
while also promoting vascular dysfunction and oxidative stress
in perivascular adipose tissue arteries [42]. Together, these
findings emphasize the importance of adhering to dietary
guidelines when significantly manipulating dietary macronutri-
ent distribution, while also suggesting that dietary therapies that
optimize intake of beneficial fatty acids may be preferable to
reducing total dietary fat in the treatment of MetS.

Numerous publications have recently highlighted the find-
ings of the LIPGENE study, which compared the effects of a
MUFA- or saturated fatty acid (SFA)-rich diet, in addition to
low-fat, high complex carbohydrate diets (LFHCC) either with
or without 7#-3 PUFA supplementation in MetS [43—48]. In the
LIPGENE cohort, consumption of a MUFA-rich diet reduced
postprandial nuclear factor kB (NF-kB) activity and p65
subunit protein expression in peripheral blood mononuclear
cells (PBMC), whereas postprandial tumor necrosis factor o
(TNF«) and metalloproteinase 9 mRNA expression were lower
when compared to intake of a SFA-rich diet [43]. Proteomic
analysis revealed that a SFA-rich meal further increased post-
prandial PBMC proteins related to oxidative stress and DNA
damage, whereas a MUFA-rich meal additionally increased
some oxidative stress proteins [44].
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Dietary fat has also been shown to differentially affect
antioxidant defenses and inflammation in adipose tissue [45,
46]. In the LIPGENE MetS cohort, SFA consumption reduced
postprandial expression of antioxidant enzymes catalase, glu-
tathione peroxidase 1 and 3 (GPX1; GPX3), and thioredoxin
reductase 1 (TXNRD1), while also increasing mRNA expres-
sion of reactive oxygen species (ROS)-generating NADPH
oxidase subunits, and kelch-like ECH-associated protein 1
(Keapl)—the negative regulator of antioxidant-promoting
transcription factor nuclear factor (erythroid-derived 2)-like
2 (NFE2L2). Conversely, the MUFA-rich diet increased post-
prandial catalase, GPX1, GPX3, and TXNRDI when com-
pared to SFA, while also inducing lower Keapl expression
[45]. Interestingly, adipose tissue mRNA expression of inter-
leukin (IL)-1f3 increased over the 12-week intervention in all
diet groups, as did postprandial expression of NF-kB p65, IL-
6, monocyte chemoattractant protein (MCP-1), and IL-1p.
Plasma levels of IL-6 similarly increased postprandially in
both LFHCC groups, with a trend toward increasing in SFA
and MUFA groups [46]. These findings suggest that MUFA
promotes increases in adipose antioxidant defenses, despite
increasing expression of inflammatory cytokines.

Interestingly, MUFA- and LFHCC n-3 PUFA-rich diets
further promoted postprandial plasma TG and TG-rich lipo-
protein clearance when compared to SFA-rich diet and a
LFHCC diet alone (without #-3 PUFA) in the MetS LIPGENE
cohort [47]. In skeletal muscle, MUFA- and LFHCC #n-3
PUFA-rich diets reduced lipogenic gene expression and in a
subset of insulin resistant LIPGENE subjects when compared
to insulin sensitive subjects, suggesting that MUFA- and n-3
PUFA-rich diets promote insulin sensitivity [48].

Dietary fatty acids have been shown to supplement the
beneficial effects of other dietary treatments. The addition of
MUFA and ALA-rich rapeseed oil to a 6-month energy-
restricted diet was more effective in reducing diastolic blood
pressure and serum TG when compared to an olive oil-enriched
energy-restricted diet in European men and women with MetS
[49]. ALA has similarly been shown to improve abdominal
obesity, insulin resistance, dyslipidemia, and vascular function
in a high-carbohydrate, high-fat diet—fed rat model of MetS, in
addition to improving cardiac and liver inflammation and tissue
integrity. Similar beneficial effects were observed in DHA and
EPA-fed rats in all parameters other than glucose tolerance [50].
Conversely, oleic acid-rich macademia oil and linoleic-rich
safflower oil were shown to increase plasma glucose in the
same MetS rat model, and were less favorable in regard to
improving adiposity [51]. In women with MetS, microen-
capsulated conjugated linoleic acid intake during a 90-day
hypocaloric diet reduced body fat mass and plasma insulin
without altering waist circumference, plasma lipids or blood
pressure. Although the placebo (calorie-restricted) group re-
duced fat mass and waist circumference (WC), the changes in
body composition occurred at a slower rate [52].
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Similar benefits of MetS parameters have been demonstrat-
ed by intake of foods rich in MUFA and n-3 PUFA. In the
NHANES 2001-2008 cohort, consumption of MUFA-, fiber-,
and antioxidant-rich avocados was associated with a reduced
risk of MetS [53]. Consumption of pistachio nuts (42 g or
70 g) during a 12-week American Heart Association step I diet
reduced aspartate transaminase in MetS, while also promoting
faster glucose clearance from plasma following a glucose
challenge. While intake of 42 g of pistachio nuts reduced
plasma TG, intake of 70 g pistachio nuts increased LDL-C;
however, LDL-C was similarly increased in the control,
pistachio-free diet [54]. Fish oil has also been shown to protect
against renal injury while promoting anti-inflammatory renal
eicosanoid metabolism in a JCR:LA-corpulent rat model of
MetS [55]. Together, these data provide evidence to support
optimization of diet plans through enrichment of specific fatty
acids in the treatment of MetS.

3.3 Protein and amino acids

MetS parameters can be favorably modulated by altering total
dietary protein (as % of energy), whole food protein sources,
and supplementation with specific amino acids. A recent study
compared the effects of normal (0.8 g protein .kg—'day ') vs.
high protein (1.4 g protein .kg—'day ') on parameters of MetS
in overweight/obese men following an energy-restricted
(=750 kcal/day) diet for 12 weeks [56]. All subjects improved
body composition and markers of dyslipidemia and insulin
resistance during the intervention, with no effect on resting
energy expenditure or blood pressure; however, the high pro-
tein group lost less lean body mass when compared to the
normal protein group [56]. Increased protein intake during
calorie restriction has been shown to be an important consider-
ation in older MetS populations to maintain adequate blood
protein homeostasis [57].

Beneficial effects on MetS parameters have also been ob-
served from intake of specific protein sources. Sardine protein
was more effective than casein in diminishing high-fat diet-
induced insulin resistance, inflammation, and adipose tissue
oxidative stress in a fructose-induced rat model of MetS [58].
Similar benefits from sardine powder feeding were observed in
control chow-fed animals when compared to those fed casein.
Cod protein (for 4 weeks) has been shown to reduce CRP [59]
and insulin sensitivity [60] in insulin resistant men and women,
although it was less effective at reducing total cholesterol,
LDL-C, and apoB concentrations when compared to diets rich
in beef, pork, veal, egg, and milk product protein [59].

In a placebo-controlled cross-over trial, consumption of L-
arginine-enriched biscuits in combination with a hypocaloric
diet reduced body weigh, fat mass, plasma glucose, and the
proinsulin/insulin ratio in MetS when compared to placebo
[61]. The addition of L-arginine further improved markers of
endothelial function, such as post-ischemic blood flow, and

plasma nitrite and nitrate, and cyclic guanosine monophos-
phate. Similar benefits were observed postprandially in
healthy subjects [61]. Similar to the role of fatty acids in
treating MetS, these findings suggest that intake of high-
quality protein and amino acids may provide further benefits
to diet therapies.

4 Functional foods and nutrients

In addition to restriction of energy or modulation of dietary
macronutrient content, favorable effects on MetS parameters
have been observed through intake of various functional foods
and bioactive nutrients. The findings from the recent studies
highlighted below provide evidence for incorporation of spe-
cific foods into dietary patterns to enhance the effects of
therapeutic diet strategies.

4.1 Alcohol

Alcohol consumption has been shown to both ameliorate and
worsen parameters of MetS. The relationship between alcohol
and risk of MetS has been shown to vary according to the type
and quantity of alcohol consumed, while also differentially
affecting the various MetS parameters [62]. In a recent cross-
sectional study, alcohol consumption was shown to dose-
dependently increase risk of MetS due to negative impact on
triglycerides, abdominal obesity, and fasting glucose. Converse-
ly, a dose-dependent inverse relationship was observed between
alcohol intake and risk of low plasma HDL-C [62]. Moderate
alcohol consumption has been shown to increase plasma
HDL-C, while also increasing the cholesterol-accepting ca-
pacity of HDL from cholesterol-laden cells [63, 64]. Moderate
consumption of beer, red wine, and spirits has additionally
been shown to increase the activity of paraoxonase [65]—an
HDL-associated antioxidant enzyme [66]. Together, these
findings support the notion that moderate alcohol intake can
reduce CVD risk, perhaps in part by improving the athero-
genic functions of HDL [67].

Conversely, recent findings suggest that alcohol may wors-
en glucose insensitivity in a hypercaloric/high-fat diet-fed
swine model of MetS by altering hepatic and skeletal muscle
insulin signaling pathways [68]. Heavy drinking has also been
associated with an increased risk of MetS in Korean [69, 70]
and US populations [71]. Therefore, while moderate alcohol
consumption favorably affects HDL, careful consideration
must be made to ensure that additional MetS parameters are
not worsened.

4.2 Antioxidants

Antioxidant compounds provided by bioactive foods (i.e.
fruits and vegetables) and supplements are known to possess
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a wide range of biological activities with antioxidant, anti-
inflammatory and hypolipidemic effects [72, 73]. According-
ly, greater dietary and serum antioxidant status has been
associated with lower incidence of MetS and MetS parameters
[74-76]. While supplementation of vitamins A, C, and E
protected against sodium-induced MetS in albino rats by
improving plasma lipids (dyslipidemia), insulin sensitivity,
and antioxidant defenses [77], antioxidant supplementation
(vitamins C and E, (-carotene, selenium, and zinc) for
7.5 years did not appear to influence risk of developing MetS
in French SU.VIMAX study participants [78]. However,
serum [-carotene and vitamin C were negatively associated
with risk of developing MetS, whereas serum zinc was posi-
tively associated with MetS risk, suggesting that diets con-
taining antioxidant-rich foods are still protective against MetS
development [78].

Although results remain inconclusive, numerous flavonoids
and polyphenols have been shown to improve parameters of
MetS, including markers of dyslipidemia, endothelial dysfunc-
tion, hypertension, obesity and energy expenditure, and insulin
resistance [73, 79]. Similar beneficial effects have been dem-
onstrated with functional foods such as pomegranate, which
contain a diverse array of bioactive nutrients and phytochemi-
cals that possess insulin-sensitizing, anti-inflammatory, and
anti-atherosclerotic properties [80]. In a 30-day placebo-
controlled, double-blind study conducted in men with MetS, a
polyphenol-rich, freeze-dried grape preparation reduced systol-
ic blood pressure and plasma soluble intercellular adhesion
molecule 1 (SICAM-1) while increasing flow-mediated vaso-
dilation [81]. In a swine model of MetS, resveratrol has been
shown to protect against chronic ischemia by preserving myo-
cardial function [82], while transgenic resveratrol-enriched rice
further improved blood glucose and plasma lipids in high-fat
diet fed C57BL mice [83]. Further, antioxidant-rich cocoa
lowered TG, glucose, and blood pressure in a rat model of
MetS, while additionally reducing liver steatosis when fed in
combination with either oats or fish oil [84]. Dietary total
antioxidant capacity has similarly been associated with im-
provements in body composition and liver enzymes in MetS
subjects participating in clinical intervention trials [85].

A number of recent studies have reported beneficial effects
of blueberry intake on MetS parameters. In a placebo-
controlled cross-over study, a wild blueberry drink further
reduced oxidized DNA bases in blood mononuclear cells in
men with American Heart Association-designated CVD risk
factors, while also increasing resistance to H,O,-induced
DNA damage; however, no differences in additional markers
of dyslipidemia, inflammation, antioxidant defenses, or vas-
cular function were observed [86]. Conversely, consumption
of polyphenol-rich bilberries have similarly been shown to
improve plasma and PBMC inflammatory markers in MetS,
including suppression of genes involved in toll-like receptor
(TLR) signaling, and monocyte transmigration, adhesion and
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differentiation to macrophages [87]. Similarly, obese Zucker
rats (a model of MetS) fed a wild blueberry-enriched diet
displayed favorable reductions in pro-inflammatory TNFe,
IL-6 and CRP in the plasma, while liver and abdominal
adipose tissue mRNA expression of TNF«x, IL-6, and
NF-kB were further suppressed by blueberry feeding. Inter-
estingly, lean Zucker rats similarly benefited from wild blue-
berry feeding, as evidenced by reduced NF-kB and CRP
mRNA expression in the liver, as well as increased
adiponectin expression in adipose [88]. It has been hypothe-
sized that some of the beneficial effects of wild blueberries
may be attributable to their effect on modulating intestinal
microbiota populations in the human gut [89]. Regardless of
the mechanism, these recent findings support the concept that
antioxidant- and phytonutrient-rich foods and supplements
favorably modulate MetS parameters.

4.3 Dairy

Several studies have assessed the effects of dairy consumption
on MetS, as dairy products are rich sources of protein and
micronutrients [90]. Rideout et al. [91]. compared the effects
of low- (no more than 2 servings/day) vs. high-dairy (4
servings/day) consumption for 6 months in a randomized,
cross-over intervention in MetS. At the end of the interven-
tion, both low- and high-dairy diets were equally effective in
lowering plasma glucose and lipids and in reducing blood
pressure; however, high-dairy intake resulted in lower plasma
insulin and insulin resistance when compared to low-dairy
intake [41]. Similarly, when associations of markers of insulin
resistance and dairy intake were assessed in a Japanese pop-
ulation [92], authors reported that the individuals in the
highest quartile for dairy intake presented the lowest mean
of insulin resistance markers. In addition, while they found no
association between low-fat dairy and homeostatic model
assessment (HOMA), consumption of high-fat dairy was in-
versely associated with insulin resistance among Japanese
adults [92]. Accordingly, high dairy intake was associated
with a lower risk of MetS in Korean adults from the Korean
National Health and Examination Surveys (n=4862) [93].
While dairy appears to benefit markers of insulin sensitiv-
ity in MetS, conflicting data has been reported on the effects of
dairy on weight loss and body composition. Jones et al. [94].
demonstrated that a calcium-rich dairy diet was not associated
with greater weight loss in individuals with MetS, although
the high-dairy group were more satiated, had lower dietary fat
intake, and had higher concentrations of peptide tyrosine
tyrosine (PY'Y) when compared to the low-dairy group. Con-
versely, high intake of dairy was associated with lower body
mass index and WC in men over the course of 5 years, whereas
no significant on changes in metabolic profile were observed in
women [95]. However, daily intake of 500 ml skim milk for
12 weeks increased HDL-C in overweight men and women
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with MetS, whereas the addition of conjugated linoleic acid-
supplementation further reduced total fat mass [96]; although,
no other changes in MetS parameters, plasma lipids, or insulin
sensitivity were observed. These findings suggest that inclu-
sion of dairy into a habitual diet may promote improvements in
markers of insulin sensitivity, blood pressure, dyslipidemia,
and potentially body composition.

4.4 Eggs and carbohydrate-restriction

Numerous recent studies have demonstrated that the addition
of daily egg intake to CRD provides benefits on reducing
MetS parameters beyond that of CRD alone [97-100]. Eggs
are a rich source of protein and bioactive phospholipids, in
addition to antioxidant carotenoids lutein and zeaxanthin pro-
vided in the yolk [99, 100]. Blesso et al. [98]. conducted a
clinical intervention with 37 individuals (25 females and 12
males) who were randomly allocated to consume either 3 eggs
per day (n=20) or the equivalent amount of egg substitute
(n=17). In agreement with previous reports on CRD, all
subjects experienced improvements in MetS biomarkers, in-
cluding low HDL-C, high TG, atherogenic lipoproteins, blood
pressure and plasma glucose; however, improvements were
greater in the volunteers consuming 3 eggs per day. Individ-
uals in the egg group had more favorable increases in LDL
and HDL particle size [97], higher increases in HDL-C, great-
er reductions in pro-inflammatory TNF« and serum amyloid
A [98], and more pronounced decreases in plasma insulin and
insulin resistance [97]. Further, lutein and zeaxanthin concen-
trations increased in plasma, LDL, and HDL fractions as a
result of whole egg consumption, which may be attributable to
increased bioavailability of these carotenoids from egg yolk
[99]. These findings corresponded to an increased capacity of
subject serum to accept cholesterol from cholesterol-laden
macrophage foam cells, further supporting the notion that
egg intake during carbohydrate-restriction provides greater
benefit to MetS in the prevention of CVD [100].

4.5 Fiber

MetS parameters have been shown to be ameliorated by intake
of both soluble and insoluble fiber. 3-glucans—types of soluble
fiber—have been shown to improve various parameters of
MetS, including abdominal obesity, appetite, hypertension, hy-
perglycemia and insulin levels. 3-glucans may also serve as a
beneficial prebiotic to exert favorable effects on gut microbiota
[101]. Supplementation with soluble fiber from partially hydro-
lyzed guar gum for 4-6 weeks reduced waist circumference,
serum frans-fatty acids, glycosylated hemoglobin, and urinary
albumin excretion in male and female patients with MetS and
T2DM [102]. Intake of soluble fibers have additionally been
shown to promote greater improvements in plasma lipids and
glucose when compared to insoluble fiber [103].

Beneficial effects on MetS parameters have also been
demonstrated with intake of soluble fiber-rich foods. Con-
sumption of pulses (beans, lentils, chickpeas, yellow peas)
for 8 weeks has been shown to be more effective at increasing
HDL-C and C-peptide when compared to energy restriction
(=500 kcal/day) in overweight/obese adults, while both die-
tary strategies improved waist circumference, systolic blood
pressure, glycosylated hemoglobin, and glucose sensitivity.
Interestingly, energy restriction was more effective at reducing
insulin in women, whereas the pulse-rich diet was more
effective at reducing insulin in men [104].

While benefits may not be as pronounced [103], similar
beneficial effects on additional MetS parameters have been
observed with intake of insoluble fiber. In men and women
with MetS, intake of high-amylose maize-derived insoluble
fiber increased glucose uptake by forearm muscle, reduced
plasma FFA, and increased mRNA expression of adipose
tissue lipases and perilipin [105]. Lipases are important for
lipid mobilization and uptake, and have been shown to be
reduced in obesity and T2DM [106, 107]. These changes
corresponded to lower fasting plasma glucose, insulin, and
HOMA measures; however, no differences were observed
in hepatic insulin sensitivity as measured by euglycemic-
hyperinsulinemic clamp [105].

4.6 Probiotics

An increasing amount of evidence has highlighted an impor-
tant role for gut microbiota in the prevention, development,
and severity of chronic metabolic diseases. Modulation of
intestinal microflora populations has therefore become a target
for diet therapies [108]. Supplementation with probiotics has
recently been shown to exert beneficial effects on MetS, and
has been associated with reducing body, liver, and adipose
tissue weight in animal models [109]. Supplementation with
Bifidobacterium adolescentis helped preserve insulin sensitiv-
ity in a high-fat diet-induced rat model of MetS [110], whereas
similar protection from high-fat/fructose feeding against insu-
lin resistance was observed in rats fed Lactobacillus pantarum
K68 [111]. Supplementation with Lactobacillus plantarum
and Lactobacillus curvatus similarly decreased plasma TG,
glucose, and insulin in a fructose-fed rat model of MetS,
as well as reductions in thiobarbituric acid reactive sub-
stances—a marker of oxidative stress [112]. Higher daily
probiotic doses further altered hepatic gene expression to
increase f3-oxidation genes, while reducing mRNA expres-
sion of lipogenic genes. These changes corresponded to re-
duced liver mass and cholesterol levels from probiotic intake
when compared to the high-fat diet-fed rats without probiotic
treatment [112].

Although probiotic treatment has favorable effects of lipid
metabolism, conflicting effects on inflammation have been re-
ported. In addition to reducing hepatic lipids, heat-inactivated
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Lactobacillus gasseri TMC0356 increased blood leukocyte
counts, in addition to increasing CRP, TNF«, IL-6, and immu-
noglobulin G in a high-fat/salt-fed rat model of MetS [113].
Conversely, plasma TNFx and IL-13 were found to be reduced
by probiotics in high-fat/cholesterol-fed C57BL/6 J mice [109]
and in a high-fat/fructose rat model of MetS [111]. These
differences may be attributable to variations in probiotic strains
and experimental models.

In humans, a recent probiotic supplementation study
conducted in MetS subjects found that supplementation of
Lactobacillus casei for 3 months increased serum levels of
CRP and lipopolysaccharide-binding protein [114]—both
markers of inflammation associated with acute-phase re-
sponses to infection, obesity, and MetS [115]. Although MetS
subjects also had greater gut permeability when compared to
healthy controls, supplementation had no effect on circulating
levels of endotoxin, neutrophil function, or TLR-2, -4, or -9
neutrophil expression [114]. Together, these findings suggest
that further research is warranted to determine the effects of
probiotic supplementation on dyslipidemia, inflammation, im-
munity, and CVD outcomes in MetS before recommendations
can be made.

5 Dietary and lifestyle regimens

The goal behind the development of dietary patterns and life-
style regimens is to enhance global diet quality and the ease of
adherence to a therapeutic program. These dietary patterns
often incorporate many of the functional foods and nutrients
described above to enhance metabolic benefits obtained from
energy restriction and macronutrient manipulation.

5.1 Mediterranean diet

There is consistent evidence from epidemiological data and
clinical interventions that the Mediterranean diet is an effec-
tive approach to reduce risk of MetS, as well as lower the
incidence of individual MetS parameters [7, 116]. This
nutrient-dense dietary pattern promotes incorporation of ben-
eficial fatty acids and phytonutrient-rich foods to exert thera-
peutic benefits under both weight-stable and weight-loss
conditions.

Jones etal. [117]. conducted a dietary intervention in which
89 women with MetS followed a Mediterranean-style diet for
12 weeks. Half of the subjects (n=45) were additionally given
a medical food rich in soy protein and soy sterols while the
remaining subjects (n=44) only followed the Mediterranean
dietary prescription. Independent of group assignment, all
subjects experienced significant reductions in body weight,
plasma TG, blood pressure and WC, as well as decreases in
atherogenic lipoproteins [118] and inflammatory markers
[119]. At the end of the intervention, almost 50 % of the
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women no longer had MetS [117]. In addition to reductions
in inflammation, Mediterranean diets have additionally been
shown to improve markers of insulin resistance and lipoprotein
metabolism [120-122]. A 3-month Mediterranean diet de-
creased plasma TG and chylomicron-associated apolipoprotein
B-48 after a test meal in MetS [123], whereas LDL-C and apo
B were reduced after a 4-week isoenergetic Mediterranean diet
in men and women with MetS risk factors [124].

Other studies have reported a significant decrease in body
weight even after 2 years of following the Mediterranean diet,
where weight loss was greater than for those who were fol-
lowing a low-fat diet [25]. In addition to promoting greater
weight loss, the Mediterranean diet appears to be more effec-
tive in reducing dyslipidemias, plasma glucose, CRP [40], and
markers of oxidative stress [125] when compared to a low-fat
diet. Interestingly, other studies have also shown decreases in
CRP in the absence of weight loss [122]. Further, in a study
that examined 7,447 individuals aged 55-80 years who were
followed for 4.8 years, a significant decrease in the incidence
of major coronary events was reported when compared to a
control low-fat diet [126]. Results from these studies suggest
an overall protection of this dietary prescription on biomarkers
for MetS.

5.2 Meal timing and energy density

In addition to regulating specific food intake and overall
dietary composition, the timing, energy density, and food
patterns of meals have been associated with MetS outcomes.
A case-control study by Menegotto et al. [127]. reported that
MetS patients with T2DM consumed lunches with higher
energy density, in addition to lower intake of beans, vegeta-
bles and meat at lunch. Almoosawi et al. [128]. additionally
reported that carbohydrate intake for breakfast and mid-
morning meals while reducing fat was protective against
developing MetS in middle age, while also protective against
abdominal obesity and high plasma TG. In Korean adults,
breakfast patterns consisting of eggs, breads, and processed
meat were associated with worse MetS outcomes, whereas
breakfasts consisting of potato, fruit, and nuts were associated
with lower risk of having high fasting glucose and blood
pressure [129]. These findings suggest that distribution of
energy and food groups throughout the day contribute to the
efficacy of dietary interventions.

5.3 Combined dietary and lifestyle regimens

In contrast to focusing on specific foods and nutrients, recent
studies have also examined the impact of global dietary and
lifestyle changes on MetS outcomes, which often include a
universal overhaul of dietary practices and incorporation of
physical activity. Japanese men had a lower risk of MetS with
closer adherence to the American Heart Association Diet and
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Lifestyle guidelines, which promote consuming diets rich in
fruits, vegetables, whole grains, oily fish, while limiting total
fat, saturated fat, dietary cholesterol, added sugars, sodium,
and excessive alcohol intake [130]. High-sodium intake has
similarly been associated with MetS incidence, as well as
associated insulin resistance, hypertension, low HDL-C, and
cortisol levels [131].

The efficacy of two energy-restricted diets (<30 %) on
ameliorating MetS dysfunction in conjunction with hypergly-
cemia was recently investigated by de la Iglesia et al. [132]..
The two diets were based on 1) the American Heart Associ-
ation recommendations (55 % carbohydrate, 15 % protein,
30 % fat over 3—5 meals per day while keeping cholesterol
<300 mg/d), or 2) the Metabolic Syndrome Reduction in
Navarra (RESMENA) diet, which was characterized by a
target macronutrient distribution of 40 % carbohydrates,
30 % protein, and 30 % fat, low-glycemic load, high n-3 fatty

Fig. 2 Dietary strategies to
reduce MetS. Lifestyle
modification that includes healthy
dietary regimens and increased
physical activity should be the
first-lines of therapy to decrease
metabolic syndrome (MetS).
Successful dietary strategies
include 1) energy restriction, 2)
manipulation of dietary
macronutrients; either through

restriction of carbohydrates, fat, Macronutrient composition:
or enrichment in CRD
monounsaturated fatty acids Low-fat diets

UFA) or n-3 polyunsaturated MUFA
(M ) poyu n-3 PUFA

fatty acids (PUFA), or inclusion
of high-quality protein sources, 3)
incorporation of functional foods
and bioactive nutrients, such as
alcohol, antioxidants-rich foods,
dairy, eggs in combination with
carbohydrate-restricted diets
(CRD), fiber, and probiotics; and
4) adherence to dietary/lifestyle
patterns such the Mediterranean
diet and diet/exercise regimens.
Together, these therapeutic
dietary strategies reduce the
classical defining MetS
parameters, in addition to markers
of insulin resistance,
dyslipidemia, inflammation,
oxidative stress, and endothelial

High-quality protein

dysfunction .

acid content, high dietary antioxidant capacity, and increased
meal frequency (seven meals per day). After 180 days, both
diets improved body composition, blood pressure, TG, and
markers of insulin sensitivity; however, only the RESMENA
diet improved plasma oxidized LDL, glucose, FFA levels, and
android fat mass. Conversely, the American Heart Association
diet had more favorable effects on HDL-C, AST, and
malondialdehyde [132].

Combined diet and exercise programs have also been shown
to reduce rates of MetS development and incidence in impaired
glucose tolerant subjects [133]. Both high- and low-glycemic
diets (non-energy restricted) while following an exercise pro-
gram were equally effective in reducing blood pressure, TG,
and glucose in MetS, whereas the low-glycemic diet was more
effective at reducing waist circumference [134]. The addition of
physical activity aided in additional reductions in visceral adi-
posity in men following an energy-restricted diet (—500 kcal/

Alcohol
Antioxidants
Dairy
Eggs + CRD
Fiber
Probiotics

Mediterranean diet
Meal timing and energy density
Physical activity

‘-

MetS Parameters
Insulin resistance
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day) [135], where high intensity exercise (either resistance or
endurance) has been found to be more effective in reducing
visceral fat than moderate exercise [136].

6 Conclusion

It is clear from the studies presented in this review that dietary
and lifestyle modifications can significantly improve metabolic
abnormalities associated with MetS [10, 11]. An overview of
the effects of energy restriction, dietary macronutrient compo-
sition, functional foods and bioactive nutrients, and dietary/
lifestyle regimens on MetS parameters is depicted in Fig. 2.
Together, these therapeutic dietary strategies reduce the classi-
cal defining MetS parameters—including abdominal obesity,
high fasting blood glucose, reduced HDL-C, elevated fasting
plasma TG, and elevated blood pressure—in addition markers
of chronic low-grade inflammation, insulin resistance, athero-
genic dyslipidemias and dysfunctional lipoproteins, elevated
oxidative stress, a prothrombotic state, and endothelial dysfunc-
tion. While different dictary strategies have varying degree of
efficacy on the broad range of MetS parameters, the findings
presented in this review provide comprehensive evidence to
support the therapeutic treatment of MetS through diet.
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