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Abstract Type 2 diabetes mellitus is a complex disease
characterized by b-cell failure in the setting of insulin
resistance. In early stages of the disease, pancreatic b-cells
adapt to insulin resistance by increasing mass and function.
As nutrient excess persists, hyperglycemia and elevated free
fatty acids negatively impact b-cell function. This happens
by numerous mechanisms, including the generation of
reactive oxygen species, alterations in metabolic pathways,
increases in intracellular calcium and the activation of
endoplasmic reticulum stress. These processes adversely
affect b-cells by impairing insulin secretion, decreasing
insulin gene expression and ultimately causing apoptosis. In
this review, we will first discuss the regulation of b-cell
mass during normal conditions. Then, we will discuss the
mechanisms of b-cell failure, including glucotoxicity, lipo-
toxicity and endoplasmic reticulum stress. Further research
into mechanisms will reveal the key modulators of b-cell
failure and thus identify possible novel therapeutic targets.
Type 2 diabetes mellitus is a multifactorial disease that has
greatly risen in prevalence in part due to the obesity and

inactivity that characterize the modern Western lifestyle.
Pancreatic b-cells possess the potential to greatly expand
their function and mass in both physiologic and pathologic
states of nutrient excess and increased insulin demand. b-
cell response to nutrient excess occurs by several mecha-
nisms, including hypertrophy and proliferation of existing
b-cells, increased insulin production and secretion, and
formation of new b-cells from progenitor cells [1, 2].
Failure of pancreatic b-cells to adequately expand in
settings of increased insulin demand results in hyperglyce-
mia and diabetes. In this review, we will first discuss the
factors involved in b-cell growth and then discuss the
mechanisms by which b-cell expansion fails and leads to b-
cell failure and diabetes (Fig. 1).
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1 Importance of proliferation, neogenesis, apoptosis

On the basis of multiple studies performed by several
laboratories, it has been shown that the respective
contributions of b-cell proliferation, neogenesis and
apoptosis to overall b-cell mass varies at different stages
of postnatal life as well as in response to stress conditions
[1–8]. Maintenance of b-cell mass in adult life results
predominantly from proliferation of pre-existing b-cells
[9]. However, recent data using lineage tracing demon-
strates that neogenesis from ductal progenitors can
also contribute to b-cell mass during normal conditions
or after b-cell injury [10]. The overall contribution of
neogenesis to maintenance of b-cell mass in postnatal life
is unclear.

Rev Endocr Metab Disord (2008) 9:329–343
DOI 10.1007/s11154-008-9101-5

K. J. Chang-Chen
Division of Endocrinology, Metabolism and Lipid Research,
Washington University School of Medicine,
St. Louis, MO, USA

R. Mullur
Division of Medical Education, Department of Internal Medicine,
Washington University School of Medicine,
St. Louis, MO, USA

E. Bernal-Mizrachi (*)
Washington University School of Medicine,
660 S. Euclid Avenue, Campus Box 8127, St. Louis, MO 63110,
USA
e-mail: ebernal@im.wustl.edu
e-mail: ebernal@dom.wustl.edu



1.1 Response to increased insulin demand—b-cell
proliferation

The regulation of pancreatic b-cell mass occurs via the
interplay of multiple proteins. The three major classes of cell
cycle proteins—cyclins, cyclin-dependent kinases (CDKs),
and cyclin-dependent kinase inhibitors (CKIs) have been
extensively studied and have been found to govern cell cycle
progression in various mammalian cell types [11]. Their role
in b-cell proliferation as demonstrated in various rodent
models is briefly summarized here. Cyclin D1 and cyclin D2
are both expressed in b-cells. Cyclin D1 knockout mice
exhibit normal islet cell size and number. However, cyclin
D1 overexpression in mice has been found to increase b-cell
proliferation and mass in vivo [12]. Cyclin D2 is essential for
regulation of b-cell mass; cyclin D2 knockout mice have
decreased b-cell mass and decreased insulin levels [13, 14].
In the class of cyclin-dependent kinases (CDKs), CDK4 and
CDK2 are expressed in b-cells. CDK4 knockout mice
exhibit normal islets at birth but develop diabetes early in
life [15]. The cyclin-dependent kinase inhibitors (CKIs),
including the four INK4 proteins and the three members of
the Cip/Kip family, are all expressed in pancreatic islets [16].
INK4 proteins complex with CDK4 and prevent the binding
of CDK4 or CDK6 to cyclin D1, leading to cell cycle arrest
[17]. Mice with a mutant form of CDK4 that is resistant to
binding by INK4 proteins exhibit islet hyperplasia [15, 18].
P27Kip1 is particularly interesting because it is regulated by
the insulin signaling pathway and is thought to be a major
factor in the regulation of b-cell mass. Mice lacking p27
show improved glucose tolerance with increased b-cell mass
and proliferation as well as increased serum insulin levels
[19, 20]. In contrast, mice overexpressing p27 during the
early neonatal period show reduced b-cell mass and glucose
intolerance [19]. However, overexpression of p27 in adult
mice has no effect on glucose tolerance or b-cell mass. This
suggests that p27 functions more in the context of b-cell
development or during proliferative conditions and plays a
greater role during early postnatal life than during adult life.
In addition, b-cells from db/db mice exhibit increased p27
levels and deletion of this inhibitor protein rescues the
diabetes from mice deficient in IRS2, indicating that p27 is
part of the abnormal adaptation of b-cells to insulin
resistance [20]. In summary, maintenance of b-cell mass in
adult life during normal conditions results predominantly
from proliferation of pre-existing b-cells and this process is
dependent on the balance between numerous cell cycle
proteins [9, 13, 15, 21].

1.2 Response to increased insulin demand—neogenesis

The contribution of neogenesis to the maintenance of
b-cell mass in both normal conditions and during

adaptation to stress has been debated. The formation of
new b-cells from precursor cells is a process that normally
halts after birth. Numerous studies have implicated the
pancreatic ducts as a source of new b-cells under
regenerative conditions or after exposure to exendin-4 or
beta-cellulin [7, 8, 22–25]. Most recently, Bonner-Weir
et al. [10] genetically labeled pancreatic ductal cells with
carbonic anhydrase II to serve as a duct cell-specific
promoter to drive Cre recombinase. This technique
allowed for the identification of ductal cells as the source
of new islets via lineage tracing experiments.

1.3 Response to increased insulin demand—apoptosis

Apoptosis in b-cells is a highly complex process,
governed by pro- and anti-apoptotic genes, extracellular
signals and intracellular ATP levels [26]. b-cell apoptosis
is a major contributor to the development of type 1
diabetes, with a reduction in b-cell mass of approximately
70% at the time of diagnosis. In contrast, there is a 25–
50% reduction in b-cell mass seen at the time of diagnosis
of type 2 diabetes, suggesting that b-cell dysfunction also
contributes to the initial disease process [27, 28]. Howev-
er, b-cell apoptosis could be a major contributor to the

Fig. 1 The mechanisms by which b-cell failure and apoptosis occur
are complex, not completely unraveled and involve the interplay of
numerous factors and conditions. These factors are summarized in this
figure. Glucotoxicity and lipotoxicity lead to the production of ROS,
which activate JNK. JNK activity leads to a decrease in IRS signaling
and may directly be involved in decreased Pdx-1 activity by
translocation from the nucleus to the cytoplasm [183]. In addition,
glucose and FA have both been found to induce ER stress. Chronic
glucose elevation inhibits FA oxidation and favors the generation of
ceramide and lipid partitioning, which ultimately results in b-cell
dysfunction and apoptosis. AMPK activation promotes fatty acid
oxidation by phosphorylation and inhibition of acetyl-CoA carboxylase
or via down regulation of the transcription factor sterol-regulatory-
element-binding-protein-1c (SREBP1c) and subsequent decreases in
acetyl-CoA carboxylase. Glucose and FA also activate the UPR
response and induce ER stress. The ER stress response and its effectors
are activated in response to misfolded proteins in order to protect b-cells
from apoptosis; however, activation of these processes under conditions
of long-term elevation of FFA and glucose can lead to b-cell
dysfunction and ultimately apoptosis. Activation of ER stress leads to
inhibition of insulin mRNA and protein expression and may also be
pro-apoptotic. The mechanisms for induction of apoptosis by ER stress
are not completely known, but induction of CHOP is an important
component. In addition, induction of ATF3 and SREBP can down-
regulate IRS signaling by repressing IRS2 transcription. One interesting
finding is that inhibition of IRS signaling seems to be a common
pathway induced by the majority of the mechanisms described for b-cell
failure. An additional event is the increase in mTOR signaling by
nutrient excess (glucose). This results in negative feedback inhibition on
IRS1 and possibly IRS2 by activation of S6K signaling. The decrease in
IRS signaling induces GSK3b and Foxo1 function. Activation of these
molecules ultimately reduces Pdx1 levels and increases the levels of the
cell cycle inhibitor p27

b
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pathogenesis of b-cell failure in late stages of the
development of Type 2 Diabetes [29, 30].

2 Factors that govern b-cell mass

2.1 Glucose and nutrients

Evidence implicating the role of glucose in b-cell mass and
proliferation comes from in vitro and in vivo experiments.
Glucose induces b-cell replication in fetal islets and adult
rat islets [31, 32]. In vivo experiments have shown that rats
and mice subjected to glucose infusion demonstrate
increased b-cell mass [33–35]. These results have also
been demonstrated using insulinoma cells [36]. Some
evidence suggests that glucose also increases b-cell mass
via anti-apoptotic effects in rats treated with glucose
infusion and in insulinoma cells [34]. The contribution of
proliferation, cell size and apoptosis in response to glucose
infusion is unclear, but the early changes appear to be
mediated by increases in proliferation and cell size.

The signaling pathways and mechanism by which
glucose stimulates b-cell mass and proliferation are not
entirely understood. Several pathways have been impli-
cated: (1) Autocrine effects of secreted insulin. (2)
Induction of calcium signaling. (3) Activation of the
TSC2/mTOR signaling pathway. Glucose activation of
the insulin receptor activates Akt signaling, via autocrine
effects of secreted insulin [37, 38]. Activation of the
insulin receptor and other receptor tyrosine kinases
activates Akt signaling, a major pathway for b-cell
proliferation [39, 40]. In addition to activation of Akt
signaling, glucose can induce the mTOR signaling
pathway directly or indirectly, by increasing the concen-
tration of ATP and subsequent inactivation of AMP
kinase. Recent data suggests that the mTOR signaling
pathway is an important regulator of b-cell mass and
proliferation [41–45]. Finally, an increase in intracellular
calcium could also play an important role in growth
signals induced by glucose as demonstrated by recent
studies addressing the importance of calcineurin, the only
calcium-regulated phosphatase. b-cell-specific deletion of
the calcineurin phosphatase regulatory subunit, calcineurin
b1 (Cnb1), induces age-dependent diabetes characterized
by decreased b-cell proliferation and mass. This phenotype
was rescued by overexpression of active NFATc1, indicat-
ing the importance of this pathway in regulation of b-cell
mass by calcium signals [41]. Activation of other
transcription factors like CREB and SRF could also
participate in growth responses induced by glucose/
calcium signaling [42, 43]. It is important to note that
while moderate increases in glucose levels induce b-cell
proliferation and survival, prolonged exposure of b-cells

to significant elevations in blood glucose levels causes
impaired proliferation and increased b-cell failure and
apoptosis (see glucotoxicity below).

2.2 Growth factors

2.2.1 Prolactin, placental lactogen, growth hormone,
PTHrP and HGF

Numerous growth factors have been shown to regulate b-
cell proliferation. The lactogens prolactin, placental lacto-
gen (PL) and growth hormone (GH) increase b-cell mass in
response to increased insulin demand. Prolactin receptors
are expressed by b-cells and their expression is upregulated
during pregnancy [44]. In vitro experiments in islets
showed that incubation with prolactin, placental lactogen
and growth hormone leads to increased b-cell proliferation
[45, 46]. Transgenic mice overexpressing PL in b-cells
exhibit increased b-cell mass and hyperinsulinemia [47].
Moreover, mice lacking the prolactin receptor or the growth
hormone receptor have reduced b-cell mass, decreased
insulin secretion and glucose intolerance [48, 49]. Another
factor that has been shown to augment b-cell proliferation
in in vitro and in vivo studies is parathyroid hormone-related
protein (PTHrP) [50, 51]. However, it is notable that PTHrP
knockout mice have normal b-cell mass as compared to
controls, suggesting the PTHrP may not be crucial for
normal b-cell mass in vivo [52].

Hepatocyte growth factor (HGF) is a mesenchyme-
derived growth factor that is involved in cell proliferation,
migration and differentiation in a variety of tissues [53].
Numerous studies have demonstrated the role of HGF in
the function and proliferation of b-cells [54]. Activated
HGF exerts its actions via the transmembrane c-met
receptor [55]. HGF and c-met are expressed at high levels
during early pancreatic development and are subsequently
maintained at low levels in adult rats [56]. Transgenic mice
with overexpression of HGF have increased b-cell mass and
proliferation and display improved glucose tolerance;
isolated b-cells of these animals show increased glucose-
stimulated insulin secretion (GSIS) and glucose utilization
[54]. Furthermore, mice injected with exogenous HGF gene
prior to receiving streptozotocin showed a protective effect
on b-cell death and an increase in b-cell proliferation
relative to controls [57]. In contrast, mice with deletion of
c-met in b-cells are glucose-intolerant and demonstrate
impaired GSIS [58]. These glucose intolerant mice have
normal b-cell mass and proliferation, suggesting that HGF
is essential for normal insulin secretion, but is not crucial
for b-cell development. Studies thus far suggest that HGF
upregulates b-cell proliferation, decreases apoptosis, and
increases b-cell function, making it an attractive potential
target for therapy [59].

332 Rev Endocr Metab Disord (2008) 9:329–343



These growth factors impact b-cell proliferation via
diverse signaling pathways. Prolactin and placental lacto-
gen both bind to the prolactin receptor. The prolactin
receptor and growth hormone receptor belong to the
cytokine family of receptors which act via the Janus Kinase
(JAK)/Signal Transduction and Activators of Transcription
(STAT) pathway [60]. Activation of this pathway results in
upregulation of Cyclin D2 [61]. Cyclin D2, as discussed
above, is essential for b-cell proliferation. PTHrP exerts its
effects on b-cell proliferation via the adenylate cyclase/
PKA and MAP kinase pathways [11, 62]. This leads to
inactivation of the JNK/c-Jun pathway by dephosphoryla-
tion, leading to upregulation of insulin gene expression
[62]. HGF binds to the c-met receptor and causes activation
of the MAPK and PI3K/Akt pathways, leading to b-cell
proliferation [54]. In addition, in vitro studies in HGF-
treated INS-1 cells demonstrated increased expression of
Protein Kinase C, suggesting another pathway by which
HGF increases b-cell proliferation [63].

2.2.2 Insulin growth factors and insulin

The insulin-like growth factors I (IGF-I) and II (IGF-II) and
their receptors are expressed at different stages during
pancreatic development. Insulin and IGF-I bind to the
insulin and IGF-I receptor respectively, but can each also
cross-react with the other receptor. This makes it difficult to
separate the specific effect of these peptides in b-cell
growth. IGF-I and IGF-II increase b-cell proliferation in rat
islets and insulinoma cell lines in vitro [64–66]. Glucose
enhances IGF-I mediated proliferation of insulinoma cells
in culture and this process is phosphoinositide 3-kinase
(PI3K) dependent [36]. Interestingly, overexpression of
IGF-I in b-cells is associated with increased b-cell
proliferation, but not mass [67]. In contrast, transgenic
mice overexpressing IGF-II exhibit an increase in b-cell
mass due to augmented proliferation [68]. Taken together,
there is clear evidence that the IGF molecules are important
factors in b-cell proliferation and mass.

The effect of insulin receptor signaling on the b-cell has
been assessed in both in vivo and in vitro models. Insulin
infusion in mice induces b-cell proliferation and increases
b-cell mass and this effect is augmented by concomitant
glucose infusion [33]. Mice deficient in the insulin receptor
in b-cells exhibit hyperglycemia and reduced b-cell mass
with age [37]. MIN6 cells with 80% knockdown of the
insulin receptor exhibit decreased proliferation, suggesting
that insulin is a growth factor at least for this insulinoma
cell line [69]. It is important to mention that the effects of
the insulin receptor in b-cell function are less clear.

The abnormalities demonstrated in animal models
deficient in insulin receptor substrate 2 (IRS2) suggest that
events downstream of the insulin and IGF receptors are

critically important for b-cell mass [70]. IRS2 signaling
leads to stimulation of the PI3 kinase/Akt and ERK1/2
pathways [71]. Akt, also known as protein kinase B (PKB),
has been proposed to be one of the critical mediators of
many IRS2 signals in b-cells. Mice deficient in AKT2
develop insulin resistance and diabetes due to impaired
adaptation of b-cells, providing evidence for the importance
of Akt signaling in b-cells [72]. Moreover, overexpression
of Akt in b-cells induces b-cell mass by augmented
proliferation, cell size and resistance to apoptosis [39, 40].
Akt exerts several biological functions by modulation of
multiple downstream targets. The current evidence suggests
that Foxo1, GSK3b and the mTOR signaling pathway
could be critical downstream effectors of Akt signaling
[73–77]. The events linking GSK3, Foxo1 and mTOR to
regulation of b-cell proliferation and apoptosis are ill
defined.

2.3 Incretins

The two most studied incretin hormones are glucagon-like
peptide-1 (GLP-1) and glucose-dependent insulinotropic
polypeptide (GIP). The incretin hormones have been shown
to increase b-cell proliferation and decrease b-cell apoptosis
[78]. Glucose-intolerant rats demonstrate increased b-cell
mass after infusion with GLP-1 [79]. Mice treated with
GLP-1 similarly show increased insulin secretion, b-cell
size and neogenesis [80]. GLP-1 has also been shown to
cause enhanced b-cell regeneration after partial pancreatec-
tomy and streptozotocin administration [81, 82]. In addition
to its effects on b-cell proliferation, b-cell regeneration and
insulin secretion, GLP-1 has also been shown to have an
anti-apoptotic effect [83]. GIP has been less studied, but
also has been shown to induce proliferation in cultured
b-cells [84].

GLP-1 binds to the GLP-1 receptor (GLP1R), a G
protein-coupled receptor expressed in many tissues, includ-
ing b-cells [78]. Activation of the GLP1R stimulates cyclic
AMP formation and activation of downstream targets such
as protein kinase A and cAMP-dependent guanine nucle-
otide exchange factors [85]. GLP1R activation also leads to
an increase in intracellular calcium, which triggers insulin
release [86, 87]. An important downstream target of GLP-1
is the transcription factor pancreatic duodenal homeobox-1
(Pdx-1) [88]. Indeed, many of the effects of GLP1R
activation seem to be due to effects on Pdx-1 [89]. GLP1R
activation has also been shown to activate PI3K/Akt;
human islets and MIN-6 cells treated with the GLP-1
agonist exendin-4 demonstrated increased IRS2 expression
and stimulated Akt phosphorylation [90]. GLP1R activation
causes activation of the PI3K/Akt pathway via the
epidermal growth factor receptor (EGFR) [91]. Binding of
GLP-1 to its receptor can also transactivate the EGF receptor
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via production of EGF-like ligands. This is caused by c-SRC
activation; inhibitors of c-SRC and the EGFR both cause
suppression of PI3K activation by GLP-1 in INS-1 cells
[92]. The GIP receptor is another G protein-coupled receptor.
Like GLP-1, it also acts via adenylyl cyclase to upregulate
cyclic AMP. GIP leads to stimulation of the MAP kinase
pathway and the PI3K/Akt pathway [78, 84].

3 Mechanisms of b-cell failure

3.1 Glucotoxicity

Glucose concentration is the major determinant for regula-
tion of b-cell mass and function, as discussed above.
Transient increases in glucose levels within physiological
range induce insulin secretion and potentially beneficial
signals. In contrast, glucotoxicity induced by prolonged
hyperglycemia causes b-cell dysfunction and altered b-cell
mass [93]. The effects of chronic hyperglycemia in b-cells
have been assessed in animal models and in vitro using
insulinoma cells and isolated islets. In the setting of chronic
exposure to hyperglycemia, rat islets exhibit basal insulin
hypersecretion and defective GSIS [94]. In animal models
and humans, chronic hyperglycemia is associated with
alterations in b-cell mass and function [29]. The b-cell has
an incredible ability to adapt and compensate for chronic
hyperglycemia, as seen in the Zucker diabetic fatty (ZDF) rat,
but ultimately, obesity, chronic hyperglycemia, and worsening
insulin resistance lead to increased b-cell apoptosis [95].
Similarly, postmortem studies in human type 2 diabetic
patients reveal low frequency of replication and reduced
b-cell mass, mainly by increased apoptosis [96].

Proposed mechanisms by which glucotoxicity acts
include mitochondrial dysfunction with production of
reactive oxygen species (ROS), endoplasmic reticulum
(ER) stress and increased levels of intracellular calcium.
Although high glucose has been shown to induce these
pathways and impair insulin secretion, these processes do
not appear to consistently result in b-cell apoptosis [93].
Initial studies showed that exposure of b-cell lines to
conditions of prolonged hyperglycemia led to decreased
b-cell function with decreased insulin mRNA levels,
insulin content, and insulin release [97]. Chronically
increased glucose concentrations cause increased glucose
metabolism through oxidative phosphorylation. This
causes mitochondrial dysfunction and the production of
reactive oxygen species (ROS) [98]. Several lines of
evidence suggest that this is an important mechanism for
the induction of b-cell dysfunction. b-cells have a limited
defense against excess ROS production due to low levels
of ROS-detoxifying enzymes [99]. Markers of oxidative
stress are significantly higher in the islets of type 2

diabetics than of controls, and the levels of these markers
correlate with the degree of impairment of GSIS [100].
Overexpression of antioxidant enzymes in isolated islets
resulting in decreased levels of ROS prevents islet
dysfunction in conditions that mimic prolonged hypergly-
cemia [100]. Also, improved b-cell function in db/db mice
and ZDF rats treated with antioxidant agents such as
n-acetylcysteine or aminoguanidine provide further evi-
dence for the role of oxidative stress in the deleterious
effects of chronic hyperglycemia [98, 101]. A similar
improvement in b-cell function was observed in isolated
islets from diabetic patients treated with antioxidant agents
[102]. Increases in oxidative stress lead to decreased
transcription of the insulin gene by decreasing Pdx1 and
Maf A binding [97, 103]. The mechanisms by which ROS
decrease b-cell mass and function are not completely
understood. However, it is known that the generation of
ROS will ultimately activate stress-induced pathways,
including nuclear factor kB (NF-kB), c-Jun N-terminal
kinase (JNK), and hexosamines [104, 105]. The activation
of the JNK signaling pathway after induction of oxidative
stress inhibits IRS1 signaling by phosphorylation of IRS-1
on Ser307 [106, 107].

In addition to oxidative stress, chronic hyperglycemia
can disrupt b-cell mass and function by inducing ER stress
(see below), increasing intracellular calcium and increas-
ing nutrient signaling. Chronic hyperglycemia leads to
long-term increases in cytosolic Ca2+ that may be
proapoptotic and induce b-cell dysfunction [94, 108].
Another potential mechanism of apoptosis by glucose is
the production of interleukin-1 beta [104]. Finally, recent
publications support the concept that the nutrient-regulated
mTOR/S6K signaling pathway exerts negative feedback to
regulate IRS proteins by Ser/Thr phosphorylation [109–
111]. Experiments in INS1 cells showed that IGFI
signaling downregulates IRS2 protein levels by activation
of mTOR signaling, suggesting that a similar mechanism
is operating in b-cells. The biological and physiological
effects of this feedback regulation are not clear, but
modulation of IRS signaling by mTOR/S6K could be
implicated in the adaptive responses of b-cells to nutrient
excess. However there is no direct evidence suggesting
that this mechanism is part of signaling events induced by
glucotoxicity. In summary, there is some knowledge of the
signaling pathways induced by chronic hyperglycemia.
However, the downstream events and targets governing
the effects of glucotoxicity have not been completely
elucidated.

3.2 Lipotoxicity

Dyslipidemia characterized by an increase in circulating
free fatty acids (FFA) is one of the major abnormalities in
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the lipid profile of diabetics. Experiments in humans
suggest that elevation of FFA in healthy individuals has
stimulatory effects on insulin secretion, but may contribute
to progressive b-cell failure in some individuals with a
genetic predisposition to diabetes [112–114]. In vitro
experiments using isolated islets demonstrated toxic effects
of FFA on insulin secretion and apoptosis [115]. It is
important to note that several in vitro experiments have
been performed using concomitant high glucose concen-
trations. The current evidence suggests that the deleterious
effects of lipids are observed predominantly in the presence
of high glucose. Therefore, we will expand on the different
mechanisms in the next section.

3.3 Glucolipotoxicity

In the process of glucolipotoxicity, toxic actions of FFA on
tissues become apparent in the context of hyperglycemia as
described by Prentki et al [116]. Studies in humans reveal that
lipid infusion in type 2 diabetic patients causes impaired
insulin secretion [117]. Long-term exposure of islets or
insulin-secreting cells to increased levels of fatty acids is
associated with inhibition of GSIS in vitro [118, 121],
impairment of insulin gene expression [122–127], and
induction of cell death by apoptosis [115, 117, 128–135].
Notably, reducing plasma FFA concentrations in type 2
diabetics with the niacin derivative acipimox was associated
with enhanced insulin sensitivity and improvement in oral
glucose tolerance tests [93]. These and other experiments
support the concept that FFA alters b-cell function and
survival.

Several mechanisms by which glucolipotoxicity impairs
GSIS have been postulated. One of the proposed mecha-
nisms for glucolipotoxicity is the inhibition of FFA
oxidation by elevated glucose [116]. In the setting of
hyperglycemia and elevated FFA, glucose metabolism
results in elevated levels of malonyl CoA, a known
inhibitor of carnitine palmitoyl transferase-1 (CPT1). The
inhibition of CPT1 decreases fatty acid oxidation, which
causes accumulation of elevated cytosolic long-chain acyl-
CoA esters, generation of ceramide and lipid partitioning
[93]. Previous experiments have shown that long–chain
acyl-CoA esters result in b-cell dysfunction [136]. Studies
also suggest that AMP-activated protein kinase (AMPK)
activity may play a role in glucolipotoxicity. AMPK
activation promotes fatty acid oxidation by phosphorylation
and inhibition of acetyl-CoA carboxylase or via down
regulation of the transcription factor sterol-regulatory-
element-binding-protein-1c (SREBP1c) [99, 137]. In addi-
tion to affecting insulin secretion, glucolipotoxicity can
decrease insulin gene expression by alterations in Pdx1 and
MafA binding to the insulin promoter [127, 138]. Ceramide
generation and activation of JNK with subsequent decrease

in IRS signaling have been postulated to relate the signals
on the insulin promoter [93, 126]. In summary, high
glucose inhibits detoxification of fat and promotes parti-
tioning of FFA to toxic complex lipids, which in turn
induces b-cell dysfunction, inhibits insulin gene expression
and causes apoptosis. This concept was supported by the
findings that treatment with an inhibitor of fat oxidation
promoted b-cell death, while treatment with an AMPK
activator, which leads to increased FFA oxidation, protected
b-cells from glucolipotoxicity [117]. In addition, alteration
of the mitochondrial pathway of pyruvate metabolism, with
a reduction in the glucose-induced exchange of pyruvate
with intermediates of the Krebs cycle has also been
proposed as a mechanism by which an increased lipid
supply blunts normal GSIS [139].

Another possible mechanism by which FFA may impair
b-cell function involves the expression of uncoupling
protein-2 (UCP2), part of the UCP family of proteins,
which act to regulate cellular ATP production. Previous
studies have shown that chronic exposure of islets or
insulinoma lines to elevated FFA cause increased UCP2
expression and UCP−/− mice are protected from impaired
b-cell function [140]. The mechanisms by which UCP2
may play a role in b-cell failure are unclear. Some studies
have suggested increased UCP2 expression leading to
increased ROS production as a possible mechanism, but
this has not been reproduced nor have antioxidants been
shown to cause any benefit in restoring impaired GSIS in
lipid-exposed islets [141]. Recently, the ATP-binding
cassette transporter subfamily A member 1 (ABCA1), a
mediator of reverse cholesterol efflux, was shown to be an
important mediator of the effects of FFA on insulin
secretion. Conditional deletion of ABCA1 results in
increased cellular cholesterol content and impaired insulin
secretion at the level of exocytosis [142].

As discussed above, multiple studies have shown that
fatty acids can induce b-cell death by apoptosis and that this
effect is potentiated by glucose [117, 130, 134, 143].
Several mechanisms have been proposed to mediate fatty
acid induced apoptosis in b-cells, including ceramide
formation leading to altered lipid partitioning, and the
generation of ROS (for review [144]). More recently, ER
stress and the unfolded protein response have received
experimental support [138, 145, 146]. In addition to these
processes, apoptosis after fatty acid administration can
result from the activation of the JNK pathway and
decreased Akt signaling with subsequent activation of
Foxo1-dependent gene expression [132, 143, 145]. While
the exact mechanisms are not delineated, it is clear that
elevated FFA play a role in impaired b-cell function and
apoptosis. It is conceivable that the combination of elevated
FFA and chronic hyperglycemia synergize to create a
milieu conducive to b-cell dysfunction and failure.
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3.4 ER stress

Recent evidence suggests that ER stress links obesity with
insulin resistance (reviewed in [147, 148]). Studies in
humans and rodent models also implicate this mechanism
in b-cell adaptation to the diabetic milieu. Evidence for ER
stress in islets from type 2 diabetics has been demonstrated
by increased staining for ER chaperones and CHOP along
with increased ER size [146, 149, 150]. In rodent models,
increased ER stress markers have been demonstrated in
mouse islets from db/db mice [146]. Insulin-2 mutations in
Akita mice induce accumulation of misfolded insulin and
progressive b-cell loss caused by ER stress, demonstrating
the importance of this pathway for b-cell survival [151].
Similarly, mice with deletion of wfs1, the affected gene in
Wolfram Syndrome, which is characterized by juvenile-
onset diabetes mellitus, also exhibit decreased b-cell mass
and impaired GSIS [151, 152]. Taken together, these data
suggest that ER stress is present in human b-cells and that
this could be a common mechanism for the two major
pathophysiological events in type 2 diabetes, insulin resis-
tance and b-cell failure.

ER stress has been postulated to result from increased
biosynthetic demand induced by chronic hyperglycemia,
elevated FFA, and chronic over-nutrition in the b-cell. This
pathway is best understood in the context of the Unfolded
Protein Response (UPR). The UPR alleviates ER stress,
restores homeostasis, and prevents cell death by inducing a
number of downstream responses that: 1) decrease new
protein arrival to the ER; 2) increase the amount of ER
chaperones to improve folding capacity; and 3) increase the
cell’s capacity to dispose of misfolded proteins. If unable to
successfully perform these tasks, the UPR will trigger the
apoptosis cascade [152]. The three primary modulators of
the UPR are: inositol requiring protein 1-alpha (IRE1-
alpha), activating transcription factor 6 (ATF6), and protein
kinase RNA (PRK)-like ER associated kinase (PERK)
[153]. These sensors remain inactive via interaction with
the ER chaperone BiP until activated by increased ER stress
[154].

IRE1-alpha possesses critical endoribonuclease activity
that induces the splicing of X-box binding protein 1
(XBP1). The spliced form of XBP1, XBP1s, regulates the
transcription of genes involved in ER expansion as well as
protein maturation, folding and export. In addition, XBP1
modulates the expression of genes that regulate the
degradation of misfolded proteins and ER-targeted mRNAs
in order to decrease protein synthesis [152]. These actions
may be critical in b-cell adaptation to ER stress. Previous
evaluation has shown that short-term glucose exposure of
isolated islets induces IRE1-alpha signaling but not XBP1
splicing and this was found to be important for pro-insulin
biosynthesis [155]. In contrast, long-term exposure of islets

to hyperglycemia is associated with XBP1 splicing and
progressive inhibition of insulin mRNA and protein
expression [155]. Recent work demonstrates that activation
of IRE1-alpha caused by chronic high glucose leads to
insulin mRNA degradation [156, 157]. In addition to
causing the degradation of mRNA, IRE1-alpha may also
signal apoptosis via activation of the JNK signaling
pathway by interaction with TNF receptor-associated factor
(TRAF) 2 and the activation of procaspase 12 [158, 159].
Palmitate has also been shown to activate IRE1-alpha
signaling, suggesting that this pathway could be relating
some of the ER stress signals induced by fatty acids (for
review [152]). The potentiation of ER stress markers by
glucose has not always been reproduced in primary b-cells
and human islets [160].

ATF6, another essential modulator of the UPR, is
released from BiP in response to accumulation of unfolded
proteins in the ER lumen. ATF6 acts as a co-activator of the
UPR by binding to the promoters of UPR-responsive genes,
including those controlling ER chaperones [161–163].
ATF6 augments the expression of XBP1 mRNA, providing
more substrate for IRE1-induced generation of XBP1s
[164]. Combined null mutations in both isoforms of ATF6
in mice result in an early developmental lethal phenotype,
but loss of function of ATF6-alpha alone in mice results in
impaired recovery from acute stress and inability to tolerate
chronic stress [165]. Studies of Dutch and Pima Indians
reveal that missense mutations and polymorphisms within
ATF6-alpha may be linked to type 2 diabetes [166, 167].
Further evidence that this signaling pathway is important is
demonstrated by induction of ATF6 signaling by palmitate
[145]. Recent evidence showed that ATF6 levels were
increased in the pancreatic islets of diabetic OLETF rats
[168]. In the same study, induction of ATF6 by ER stress
was associated with repression of the insulin gene via the
up regulation of SHP. This suggests that this pathway could
also be implicated in ER stress induced b-cell dysfunction.

Finally, the activation of PERK causes phosphorylation
of eukaryotic translation initiation factor-2a (eIF2a), result-
ing in an overall decrease in mRNA translation but
increased translation of select proteins such as ATF4
[169–171]. ATF4 induces the transcription of genes
involved in amino acid import, glutathione biosynthesis,
protein synthesis (inducing of 4EBP) and resistance to
oxidative stress as well as the proapoptotic gene CHOP
[172–176]. Palmitate has been shown to activate PERK and
eIF2a phosphorylation, leading to inhibition of protein
synthesis and induction of ATF4 and CHOP in islets and
insulinoma cells [138, 143, 177]. CHOP induction by FFA
is mediated by ATF4 binding to the C/EBP-ATF binding
site in the CHOP promoter, as well as by c-Fos and Jun-B
dimer binding to the activator protein-1 (AP-1) binding site
and possibly Foxo1 [145, 178]. The importance of the
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PERK pathway in b-cell survival has been assessed in
genetically modified animals. Deficiency in the PERK-
eIF2a pathway leads to progressive loss of b-cell mass and
severe diabetes in both humans and mice [153, 179]. It
would then follow that activation of the PERK-eIF2a
pathway would provide “a respite” for the ER and prevent
further damage. However, further study into the function of
the PERK/eIF2a pathway reveals that chronic induction of
the PERK-eIF2a pathway may also lead to cell apoptosis at
least in part by upregulation of CHOP [174]. Indication that
CHOP is a critical component in apoptosis induced by this
pathway was demonstrated by delayed onset of diabetes
and ameliorated b-cell apoptosis in Akita mice with
targeted disruption of CHOP [180].

Current evidence suggests that ER stress is an important
contributor to b-cell failure in Type 2 Diabetes. The mo-
lecular mechanisms by which FFA- and glucolipotoxicity-
induced ER stress cause b-cell apoptosis are not well
understood. In addition to induction of CHOP, ER stress
can induce apoptosis by JNK, ATF-3 and inhibition of Bcl-2
and/or activation of proapoptotic members of the Bcl-2
family (for review [152]). In particular, activation of JNK
could lead to suppression of IRS/Akt signaling through
serine phosphorylation of IRS-1 in liver and b-cells [143,
181]. Inhibition of IRS/Akt signaling reduces survival
signals and ultimately leads to apoptosis. Inhibition of Foxo1
using a dominant-negative mutant reduces ER stress markers
and promotes b-cell survival at least in part by modulation of
CHOP [143]. Recently, a potential important link between
ER stress and IRS2 signaling was demonstrated by
transcriptional repression of the IRS2 promoter by ATF3
[182]. Inhibition of IRS2 signaling was also observed by ER
stress-induced activation of SREBP in insulinoma cells
treated with high levels of glucose, suggesting that this
pathway could also play a role [183]. While the exact
mechanisms of ER stress mediated apoptosis are not
completely understood, there is no question that chronic
hyperglycemia and nutrient excess lead to activation of the
UPR and its cascade of downstream responses. It is likely
that cumulative damage from hyperglycemia, over-nutrition,
and elevated FFA levels overwhelm the ER of the b-cell,
resulting in activation of the UPR and eventual apoptosis
and b-cell failure.

4 Concluding remarks

Type 2 diabetes mellitus is a disease with devastating
complications that is increasing in prevalence at an alarming
rate, at great cost to the lives of patients and to society as a
whole. The inherent defect in this disease is b-cell failure in
the setting of insulin resistance. Pancreatic b-cells possess
the ability to greatly increase their mass in response to

stress conditions such as insulin resistance. Elegant studies
have identified some of the cell cycle machinery governing
b-cell proliferation. The proliferation of b-cells is regulated
by a multitude of nutrient signals and growth factors.
Further research into the machinery of b-cell proliferation
may identify potential therapeutic strategies in the treatment
of diabetes. The findings that certain factors, such as
incretins, can upregulate b-cell mass is an exciting prospect
for possible methods of increasing b-cell mass or improving
the adaptation of b-cells to insulin resistance. Furthermore,
recent lineage-tracing experiments provide insight into the
origins of new b-cells. Delineation of the processes and
conditions required for b-cell neogenesis are of great
relevance to the understanding and possible treatment of
diabetes. Understanding the mechanisms involved in b-cell
dysfunction and failure observed in late stages of diabetes is
also a topic of major importance. Research has begun to
unravel how excess glucose and lipids lead to impaired b-
cell function and apoptosis. The generation of reactive
oxygen species, ER stress, alterations in b-cell metabolism,
decreased IRS signaling and induction of pro-apoptotic
signals have been found to be key players in b-cell failure.
Further research into the process of ER stress may reveal
how a response designed to protect the b-cell can ultimately
lead to its demise. As the pathways of b-cell expansion and
b-cell failure are further clarified, the essential modulators
of these processes will be identified, providing potential
novel therapeutic targets to investigate. For now, it is
conceivable that pharmacological agents that decrease
oxidative stress, modulate ER stress or sensitize b-cells to
the action of insulin could have major implications to delay
or prevent the development of diabetes. Finally, it is
important to note that current evidence indicates that diet
and exercise are the most effective interventions to prevent
or delay type 2 diabetes.
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