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Abstract Intrauterine growth retardation (IUGR) has been
linked to later development of type 2 diabetes in adulthood.
Human studies indicate that individuals who were growth
retarded at birth have impaired insulin secretion and insulin
resistance. Multiple animal models of IUGR demonstrate
impaired β-cell function and development. We have
developed a model of IUGR in the rat that leads to diabetes
in adulthood with the salient features of most forms of type
2 diabetes in the human: progressive defects in insulin
secretion and insulin action prior to the onset of overt
hyperglycemia. Decreased β-cell proliferation leads to a
progressive decline in β-cell mass. Using this model, we
have tested the hypothesis that uteroplacental insufficiency
disrupts the function of the electron transport chain in the
fetal β-cell and leads to a debilitating cascade of events:
increased production of reactive oxygen species, which in
turn damage mitochondrial (mt) mtDNA and causes further
production of reactive oxygen species (ROS). The net result
is progressive loss of β-cell function and eventual devel-
opment of type 2 diabetes in the adult. Studies in the IUGR
rat also demonstrate that an abnormal intrauterine environ-
ment induces epigenetic modifications of key genes
regulating β-cell development; experiments directly link
chromatin remodeling with suppression of transcription.
Future research will be directed at elucidating the mecha-
nisms underlying epigenetic modifications in offspring.
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1 Introduction

The period from conception to birth is a time of rapid
growth, cellular replication and differentiation, as well as
functional maturation of organ systems. These processes are
very sensitive to alterations in the intrauterine milieu.
Programming describes the mechanisms whereby a stimu-
lus or insult at a critical period of development has lasting
or lifelong effects. This review will discuss the human and
animal data supporting the Developmental Origin’s of
Adult Disease hypothesis and some of the underlying
cellular and molecular mechanisms responsible for the
observed defects in β-cell function and development.

2 Low birth weight

It is becoming increasingly apparent that the in utero
environment in which a fetus develops may have long-term
effects on subsequent health and survival [1, 2]. The
landmark cohort study of 300,000 men by Ravelli et al.
showed that exposure to the Dutch famine of 1944–1945
during the first one-half of pregnancy resulted in signifi-
cantly higher obesity rates at age 19 years [3]. Subsequent
studies of English men demonstrated a relationship between
low birth weight and the later development of cardiovas-
cular disease [4] and impaired glucose tolerance [5–8].
Other studies of populations in the United States [9–11],

Rev Endocr Metab Disord (2007) 8:95–104
DOI 10.1007/s11154-007-9045-1

R. A. Simmons (*)
Department of Pediatrics, Children’s Hospital Philadelphia
and University of Pennsylvania School of Medicine,
BRB II/III, Rm 1308, 421 Curie Blvd,
Philadelphia, PA 19104, USA
e-mail: rsimmons@mail.med.upenn.edu



Sweden [12], France [13, 14], Norway [15], and Finland
[16], have demonstrated a significant correlation between
low birth weight and the later development of adult diseases.
The associations with low birth weight and increased risk of
coronary heart disease, stroke, and type 2 diabetes remain
strong, even after adjusting for lifestyle factors (e.g.,
smoking, physical activity, occupation, income, dietary
habits, childhood socio-economic status) and occur inde-
pendent of the current level of obesity or exercise [17].

3 High birth weight

An increased birth weight is associated with an enhanced
body mass index (BMI) and an elevated prevalence of
adulthood obesity [18]. Those individuals who are obese as
adults tend to have been heavier at birth and to have had an
accelerated gain in body mass through childhood and
adolescence. Factors in early childhood may lead to obesity
through metabolic programming (discussed below) or
establishment of lifestyle behaviors. During infancy,
breastfeeding may protect against the development of
excess weight during childhood. Most, but not all,
epidemiological studies demonstrate this protective effect,
which could be mediated by behavioral and/or physiolog-
ical mechanisms. Confounding cultural factors associated
with both the decision to breastfeed and later obesity,
however, are possible. Recent data also suggest that rapid
weight gain during infancy is associated with obesity later
in childhood, perhaps reflecting a combination of geneti-
cally determined catch-up growth and postnatal environ-
mental factors [18].

4 Low birth weight and insulin secretion

It remains controversial as to whether the adverse effects of
intrauterine growth retardation on glucose homeostasis are
mediated through programming of the fetal endocrine
pancreas [1]. Growth-retarded fetuses and newborns have
been reported to have both a reduced population of
pancreatic β-cells [19] or a normal percentage of pancreatic
area occupied by β-cells [20]. Both of these studies were
observational, morphometric analyses were not optimal,
and only a small number of fetuses/newborns were
examined. It is likely that a significant proportion, but not
all growth-retarded fetuses will have reduced β-cell
numbers. A more clinically relevant consideration is the
impact of fetal growth retardation upon β-cell function.

Intrauterine growth retarded (IUGR) fetuses have been
found to exhibit lower insulin and glucose levels and higher
G/I ratio in the third trimester as measured by cordocentesis
[21]. Two recent studies showed that IUGR infants display

decreased pancreatic β-cell function, but increased insulin
sensitivity at birth [22, 23]. Low birth weight has been
associated with reduced insulin response after glucose
ingestion in young non-diabetic men, whereas, other studies
have found no impact of low birth weight upon insulin
secretion [17, 18]. However, none of these earlier studies
adjusted for the corresponding insulin sensitivity, which has
a profound impact upon insulin secretion. Therefore, Jensen
et al. measured insulin secretion and insulin sensitivity in a
well-matched Caucasian population of 19-year-old glucose
tolerant men with birth-weights of either below the 10th
percentile (small for gestational age—SGA) or between the
50th and 75th percentile (controls) [24]. To eliminate the
major confounders such as “diabetes genes”, none of the par-
ticipants had a family history of diabetes, hypertension, or
ischemic heart disease. There was no difference between the
groups with regard to current weight, body mass indes (BMI),
body composition, and lipid profile. When controlled for
insulin sensitivity, insulin secretion was reduced by 30%.
Insulin sensitivity, however, was normal in the SGA subjects.
The investigators hypothesized that defects in insulin secre-
tion may precede defects in insulin action and that once SGA
individuals accumulate body fat, they will develop insulin
resistance [24].

5 Insulin secretion in offspring of diabetic mothers

Several epidemiological studies show that the risk for
diabetes is significantly higher in the offspring of mothers
who have type 2 diabetes [25–28]. It is likely that impaired
β-cell function contributes to this increased risk. Islet
hypertrophy and β-cell hyperplasia are typical features of
fetuses and newborns of diabetic mothers [29]. Most
studies have focused on altered glucose homeostasis during
the newborn period; two clinical investigations done at
older ages, however, demonstrate altered insulin secretion
[28, 30]. Thus, both a deficiency and a surfeit of nutrient
availability to the fetus during development have profound
lasting effects upon β-cell function.

6 Genetics versus environment

Several epidemiological and metabolic studies of twins and
first-degree relatives of patients with type 2 diabetes have
demonstrated an important genetic component of diabetes
[31–34]. The association between low birth weight and risk
of type 2 diabetes in some studies could theoretically be
explained by a genetically-determined reduced fetal growth
rate. In other words, the genotype responsible for type 2
diabetes may itself cause retarded fetal growth in utero.
This forms the basis for the fetal insulin hypothesis, which
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suggests that genetically-determined insulin resistance
could result in low insulin-mediated fetal growth in utero
as well as insulin resistance in childhood and adulthood
[35]. Insulin is one of the major growth factors in fetal life
and monogenic disorders that affect fetal insulin secretion
or fetal insulin resistance also affect fetal growth. Mutations
in the gene encoding glucokinase have been identified that
result in low birth weight and maturity onset diabetes of the
young [36, 37].

The recently described type 2 diabetes susceptibility
gene Transcription Factor7-like 2 (TCF7L2) confers a risk-
allele frequency of approximately 30% [38]. Studies of
non-diabetic subjects show that TCF7L2 diabetes-risk
genotypes alter insulin secretion [39–41]. A large study of
24,053 subjects from 6 studies demonstrated that TCF7L2
is the first type 2 diabetes gene to be reproducibly
associated with altered birth weight. Each maternal copy
of the T allele at re7903146 increased offspring birth weight
by 30 g, and the investigators suggest that the most likely
mechanism is through reduced maternal-insulin secretion
resulting in maternal hyperglycemia and increased insulin-
mediated fetal growth [42].

Recent genetic studies suggest that the increased
susceptibility to type 2 diabetes of subjects who are born
SGA also results from the combination of both genetic
factors and an unfavorable fetal environment. Polymor-
phisms of Peroxisome Proliferator-Activated Receptor-γ2
(PPARγ2), a gene involved in the development and in the
metabolic function of adipose tissue, have been shown to
modulate the susceptibility of subjects who are born SGA
to develop insulin resistance later in life [43, 44]. The
polymorphism is only associated with a higher risk of type 2
diabetes if birth weight is reduced [43, 44]. There is
obviously a close relationship between genes and the envi-
ronment. Not only can maternal gene expression alter the
fetal environment, the maternal intrauterine environment
also affects fetal gene expression and both influence birth
weight.

7 What animal models can tell us

Animal models have a normal genetic background upon
which environmental effects during gestation or early
postnatal life can be tested for their role in inducing
diabetes. Ontogeny of β-cell development in the rodent
approximates what has been observed in the human [45,
46]. The most commonly used animal models for IUGR are
caloric or protein restriction, glucocorticoid administration,
or induction of uteroplacental insufficiency in the pregnant
rodent. In the rat, maternal dietary protein restriction
(approximately 40–50% of normal intake, termed LP)
throughout gestation and lactation has been reported to

alter insulin secretory capacity and reduce β-cell mass
through a reduction in β-cell proliferation rate and an
increase in apoptosis [47–55]. Expression of Pdx-1 (pan-
creatic duodenal homeobox-1), a homeodomain-containing
transcription factor that regulates early development of both
endocrine and exocrine pancreas, and later differentiation
and function of β-cells [56], is also reduced in islets from
pups of LP mothers [57]. In adulthood, rats born from LP
mothers still have reductions in β-cell mass and insulin
secretion and show glucose intolerance, but usually not
overt diabetes [47, 48, 55]. In old age, LP offspring develop
fasting hyperglycemia associated with insulin resistance
[58–62].

Total caloric restriction during the last week of pregnan-
cy and throughout lactation also reduces β-cell mass and
impairs insulin secretion in the offspring [63, 64]. When
maternal undernutrition is prolonged until weaning and
normal nutrition is given to the offspring from weaning
onwards, growth retardation and β-cell mass reduction
persists into adulthood [64].

Treatment of pregnant rats with dexamethasone during
the last week of gestation retards fetal growth [65]. Insulin
content of fetal β-cells is reduced and is associated with a
reduction in Pdx-1 [65].

An ovine model of IUGR induced by placental insuffi-
ciency (heat-induced) results in a significant reduction in β-
cell mass in fetuses near term (0.9 of gestation) from
decreased rates of β-cell proliferation and neogenesis [66].
Plasma insulin concentrations in the IUGR fetuses are
lower at baseline and glucose-stimulated insulin secretion is
impaired. Similar deficits occur with arginine-stimulated
insulin secretion. A deficiency in islet glucose metabolism
also occurs in the rate of islet glucose oxidation at maximal
stimulatory glucose concentrations. Thus, pancreatic islets
from nutritionally-deprived IUGR fetuses caused by chron-
ic placental insufficiency have impaired insulin secretion
caused by reduced glucose-stimulated glucose oxidation
rates, insulin biosynthesis, and insulin content. This
impaired glucose stimulated insulin secretion (GSIS) occurs
despite an increased fractional rate of insulin release from a
greater proportion of releasable insulin as a result of
diminished insulin stores [67].

To extend these experimental studies of growth retarda-
tion, we developed a model of IUGR in the rat that restricts
fetal growth [68–70]. Growth-retarded fetal rats have
critical features of a metabolic profile characteristic of
growth-retarded human fetuses: decreased levels of glu-
cose, insulin, IGF-I, amino acids, and oxygen [68–72].
Birth weights of IUGR animals are significantly lower than
those of controls until approximately 7 weeks of age, when
IUGR rats catch up to controls. Between 7 and 10 weeks of
age, the growth of IUGR rats accelerates and surpasses that
of controls, and by 26 weeks of age, IUGR rats are obese

Rev Endocr Metab Disord (2007) 8:95–104 97



[69]. No significant differences are observed in blood
glucose and plasma insulin levels at 1 week of age. Between
7 and 10 weeks of age, however, IUGR rats develop mild
fasting hyperglycemia and hyperinsulinemia. IUGR animals
are glucose-intolerant and insulin-resistant at an early age.
First-phase insulin secretion in response to glucose is also
impaired early in life in IUGR rats, before the onset of
hyperglycemia. There are no significant differences in β-cell
mass, islet size, or pancreatic weight between IUGR and
control animals at 1 and 7 weeks of age. In 15-week-old
IUGR rats, however, the relative β-cell mass is 50% that of
controls, and by 26 weeks of age, β-cell mass is less than
one-third that of controls. This loss of β-cell mass is
accompanied by a reduction in Pdx-1 expression that is
greater than that in β-cell mass [73]. By 6 months of age,
IUGR rats develop diabetes with a phenotype remarkably
similar to that observed in the human with type 2 diabetes:
progressive dysfunction in insulin secretion and insulin
action [69]. Thus, despite different animal models of IUGR,
these studies support the hypothesis that an abnormal
intrauterine milieu can induce permanent changes in β-cell
function after birth and lead to type 2 diabetes in adulthood.

8 Cellular mechanisms: Mitochondrial dysfunction
and oxidative stress

Uteroplacental insufficiency, caused by such disorders as
preeclampsia, maternal smoking and abnormalities of
uteroplacental development, is one of the most common
causes of fetal growth retardation. The resultant abnormal
intrauterine milieu restricts the supply of crucial nutrients to
the fetus, thereby limiting fetal growth. Multiple studies
have shown that intrauterine growth retardation is associ-
ated with increased oxidative stress in the human fetus [73–
80]. A major consequence of limited nutrient availability is
an alteration in the redox state in susceptible fetal tissues
leading to oxidative stress. In particular, low levels of
oxygen, evident in growth-retarded fetuses, will decrease the
activity of complexes of the electron transport chain, which
will generate increased levels of reactive oxygen species
(ROS). Overproduction of ROS initiates many oxidative
reactions that lead to oxidative damage not only in the
mitochondria but also in cellular proteins, lipids, and nucleic
acids. Increased ROS levels inactivate the iron–sulfur
centers of the electron transport chain complexes, and
tricarboxylic acid cycle aconitase, resulting in shutdown of
mitochondrial energy production.

A key adaptation enabling the fetus to survive in a
limited energy environment may be the reprogramming of
mitochondrial function. However, these alterations in
mitochondrial function can have deleterious effects, espe-
cially in cells that have a high-energy requirement, such as

the β-cell. The β-cell depends upon the normal production
of ATP for nutrient-induced insulin secretion [81–88] and
proliferation [89]. Thus, an interruption of mitochondrial
function can have profound consequences for the β-cell.

Mitochondrial dysfunction can also lead to increased
production of ROS, which causes oxidative stress if the
defense mechanisms of the cell are overwhelmed. β-cells
are especially vulnerable to ROS because expression of
antioxidant enzymes in pancreatic islets is very low [90,
91], and β-cells have a high oxidative energy requirement.
Increased ROS impair glucose-stimulated insulin secretion
[92, 93], decrease gene expression of key β-cell genes [94–
98], and induce cell death [98–103].

We have examined the causal role of mitochondrial
dysfunction in the impairment of β-cell function and de-
velopment in IUGR offspring [104]. Reactive oxygen
species production and oxidative stress gradually increase
in IUGR islets. ATP production is impaired and continues to
deteriorate with age. The activities of complex I and III of
the electron transport chain progressively decline in IUGR
islets. Mitochondrial DNA point mutations accumulate with
age and are associated with decreased mitochondrial DNA
content and reduced expression of mitochondria-encoded
genes in IUGR islets. Mitochondrial dysfunction results in
impaired insulin secretion. These results demonstrate that
IUGR induces mitochondrial dysfunction in the fetal β-cell,
leading to increased production of ROS, which in turn
damage mitochondrial DNA. A self-reinforcing cycle of
progressive deterioration in mitochondrial function leads to
a corresponding decline in β-cell function. Finally, a
threshold in mitochondrial dysfunction and ROS production
is reached, and diabetes ensues [104].

9 Molecular mechanisms: Epigenetic regulation
of β-cell genes

An adverse intrauterine milieu impacts the development of
the fetus by modifying gene expression in both pluripoten-
tial cells and terminally differentiated, poorly replicating
cells such as the β-cell. The long-range effects on the
offspring [into adulthood] depend upon the cells undergo-
ing differentiation, proliferation, and/or functional matura-
tion at the time of the disturbance in maternal fuel
economy. Permanent alterations to the phenotype of the
offspring suggest that fetal growth retardation is associated
with stable changes in gene expression.

Epigenetic modifications of the genome provide a
mechanism that allows the stable propagation of gene
activity states from one generation of cells to the next.
Excellent reviews on this topic appear frequently, reflecting
the rapid advances of knowledge in the field [105–108].
Epigenetic states can be modified by environmental factors,
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which may contribute to the development of abnormal
phenotypes. There are at least two distinct classes of epi-
genetic information that can be inherited with chromosomes.
One class of epigenetic control of gene expression involves
changes in chromatin proteins, usually involving modifica-
tions of histone tails. The amino termini of histones can be
modified by acetylation, methylation, sumoylation, phos-
phorylation, glycosylation, and ADP ribosylation. The most
common modifications involve acetylation and methylation
of lysine residues in the amino termini of H3 and H4.
Increased acetylation induces transcription activation,
whereas decreased acetylation usually induces transcription
repression. Methylation of histones is associated with both
transcription repression and activation.

The second class of epigenetic regulation is DNA
methylation, in which a cytosine base is modified by a
DNA methyltransferase at the C5 position of cytosine, a
reaction that is carried out by various members of a single
family of enzymes. Approximately 70% of CpG (cytosine–
guanine) dinucleotides in human DNA are constitutively
methylated, whereas most of the unmethylated CpGs are
located in CpG islands. CpG islands are CG-rich sequences
located near coding sequences, and serve as promoters for
the associated genes. Approximately half of mammalian
genes have CpG islands. Methylation of CpG sites is also
maintained by DNA methyltransferases. DNA methylation
is commonly associated with gene silencing and contributes
to X-chromosomal inactivation, genomic imprinting, as
well as transcriptional regulation of tissue-specific genes
during cellular differentiation [108].

Most CpG islands remain unmethylated in normal cells,
however, under some circumstances such as cancer [109–
114] and oxidative stress (see below), they can become
methylated de novo. This aberrant methylation is accompa-
nied by local changes in histone modification and chromatin
structure, such that the CpG island and its embedded
promoter acquire a repressed conformation that is incom-
patible with gene transcription. It is not known why
particular CpG islands are susceptible to aberrant methyla-
tion. A recent study by Feltus et al. suggests that there is a
“sequence signature associated with aberrant methylation”
[115]. Of major significance to type 2 diabetes is their
finding that Pdx-1 is one of only 15 CpG genes (a total of
1749 genes with CpG islands were examined) that is
susceptible to increased methylation from over-expression
of a DNA methyltransferase.

Hypermethylation of specific genes has also been
observed in tissues of aging individuals [113]. As an age-
related disease, type 2 diabetes increases in prevalence in
older populations as the metabolic profile of individuals
deteriorates with time. DNA methylation errors that
accumulate with increasing age could explain this phenom-
enon, perhaps through induction of oxidative stress.

Reactive oxygen species can also lead to alterations in
DNA methylation, without changing the DNA base
sequence [117]. Such changes in DNA methylation patterns
have been shown to affect the expression of multiple genes
[116]. Replacement of guanine with the oxygen radical
adduct 8-hydroxyguanine profoundly alters methylation of
adjacent cytosines [116]. Histones, because of their abun-
dant lysine residues, are also very susceptible to oxidative
stress [117–119].

A number of studies have suggested that uteroplacental
insufficiency induces epigenetic modifications in the
offspring [120–124]. Genome-wide DNA hypomethylation
has been found in postnatal IUGR liver and is associated
with an increase in total H3 acetylation [120]. Acetylation
of histone H3 and acetylation of H3 lysine-9 (H3/K9),
lysine-14 (H3/K14), and lysine-18 (H3/K18) is increased at
the promoters of PPAR-coactivator-1 (PGC-1) and Carni-
tine palmitoyltransferase 1 (CPTI), respectively, in IUGR
liver [122]. At day 21 of life, the neonatal pattern of H3
hyperacetylation persists only in the IUGR males. Whether
hyperacetylation at these sites actually causes increased
transcription of PGC-1 or CPT1 and how these findings
relate to a phenotype in the offspring remains to be
determined.

We have examined epigenetic regulation of Pdx-1 in β-
cells of IUGR rats [125]. As early as 24 h after the onset of
growth retardation, Pdx-1 mRNA levels are reduced by
more than 50% in IUGR fetal rats [73]. Suppression of
Pdx-1 expression persists after birth and progressively
declines in the IUGR animal, implicating an epigenetic
mechanism. The proximal promoter of Pdx-1 is obligate for
transcription of the gene and the histones H3 and H4 are
heavily acetylated in normal β-cells [126]. In islets of
IUGR animals, however, H3 and H4 in this region of the
Pdx-1 promoter are deacetylated. Histone deacetylation is
catalyzed by histone deacetylases (HDACs) and HDAC1 is
strongly associated with the proximal Pdx-1 promoter in
IUGR β-cells. Reversal of deacetylation by an HDAC
inhibitor normalizes Pdx-1 expression in islets of IUGR
animals, demonstrating that histone deacetylation contrib-
utes to the observed Pdx-1 transcription suppression [125].

Unlike acetylation, histone H3 methylation can be
equally associated with either transcriptional activation or
repression. Methylation of the lysine residue Lys4 H3 (H3-
K4) correlates with activation of gene expression, whereas
H3Lys9 (H3-K9) methylation is involved in the establish-
ment and maintenance of silent heterochromatin regions
[105–108]. Lysine methylation is catalyzed by the action of
histone methyltransferases (SET7/9), which demonstrate a
high degree of specificity for H3-K4. There is a loss of
binding of SET7/9 to the proximal promoter of Pdx-1 in β-
cells from IUGR animals, which results in a marked
reduction of methylation of H3K4 in this region of Pdx-1.
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These observations demonstrate that the level of H3
acetylation is linked to the degree of H3K4 methylation.

Transcriptional repression is also facilitated by methyl-
CpG binding proteins that bind to promoter-proximal
methylated DNA sequences, thereby maintaining the
condensed nucleosome structure [127]. However, one
methyl-CpG-binding domain protein-MeCP2 also mediates
transcription repression through histone deacetylation [128–
130]. MeCP2 contains a transcriptional repression domain
which functions by recruitment of the co-repressor Sin3A, a
histone deacetylase [128–130], and a histone 3 lysine 9
methyltransferase (Suv39h) [131, 132]. MeCP2 binding
occurs in IUGR fetal pancreas as early as 24 h after uterine
artery ligation. Association of MeCP2 with the proximal
promoter of Pdx-1 precipitates Sin3A binding at day 1 of
life in IUGR islets. The repressor complex consisting of
MeCP2, Sin3A, HDAC1 and Suv39h induces H3 deacety-
lation and methylation of H3K9 [125]. Thus, a cascade of
epigenetic events is triggered by IUGR resulting in
permanent suppression of Pdx-1 expression. The sequence
of epigenetic events (Fig. 1) that occurs in IUGR islets
leading to suppression of Pdx-1 transcription appears to be
the following: MeCP2 binds to methylated DNA in the CpG
island at the Pdx-1 promoter. This results in recruitment of a
repressor complex, which catalyze the deacetylation of H3
and methylation of H3K9, respectively. Deacetylation of H3
in turn promotes the loss of H3K4 methylation, further
suppressing Pdx-1 transcription. As the IUGR animals age,
DNA methylation of the CpG island progresses, thereby
permanently silencing Pdx-1 expression [125].

How do these events lead to diabetes? Targeted
homozygous disruption of Pdx-1 in mice results in
pancreatic agenesis [133], and homozygous mutations yield
a similar phenotype in humans [134]. Milder reductions in
Pdx-1 protein levels, as occurs in the Pdx+/− mice, allow
for the development of a normal mass of β-cells [135], but
impair several events in glucose-stimulated insulin secre-

tion [136]. These results indicate that Pdx-1 plays a critical
role, distinct from its developmental role, in the normal
function of β-cells [137]. This may be the reason why
humans with heterozygous missense mutations in Pdx-1
exhibit early and late onset forms of type 2 diabetes [137,
138].

10 Conclusions

The human and animal studies described above clearly
show that an adverse intrauterine environment associated
with fetal growth retardation or fetal overgrowth results in
impaired function and development of the β-cell, which in
turn leads to the development of type 2 diabetes. Animal
models demonstrate that the cellular and molecular mech-
anisms underlying altered β-cell development are related to
abnormal mitochondrial function and epigenetic alterations
of key β-cell genes.

11 Key unanswered questions

Much of the recent progress in understanding epigenetic
phenomena is directly attributable to technologies that
allow researchers to pinpoint the genomic location of
proteins that package and regulate access to the DNA.
The advent of DNA microarrays and inexpensive DNA
sequencing has allowed many of those technologies to be
applied to the whole genome. It is possible that epigenetic
profiling of CpG islands in the human genome can be used
as a tool to identify genomic loci that are susceptible to
DNA methylation or loss of DNA methylation.

The genome-wide mapping of histone modifications by
ChIP-chip has led to important insights regarding the
mechanism of transcriptional and epigenetic memory, and
how different chromatin states are propagated through the

Ac Ac AcAc AcAc

H3 MeK4
SET7/9

Pdx-1

MeH3K9

MeCp2

HDAC1

Sin3A

Suv39h

Control: Active Pdx-1 transcription

IUGR: Suppressed Pdx-1 transcription

Fig. 1 Schematic of histone
acetylation and methylation of
the proximal promoter of Pdx-1.
In control animals, H3 is heavily
acetylated and H3K4 is methyl-
ated in islets from control ani-
mals. H3K4 methylation is
catalyzed by SET7/9. In IUGR
animals, acetylation of H3 and
methylation of H3K4 of Pdx-1
are lost and methylation of
H3K9 is gained. These histone
modifications are mediated by
HDAC1 (histone deacetylase 1),
Sin3A, and Suv39h
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genome [139]. In the near future it is likely that
technologies will be developed that will allow genome-
wide epigenetics studies, especially applied to the limited
numbers of cells that can be isolated to a high degree of
purity by techniques such as laser capture microscopy.
Epigenetic modifications can then be used as biomarkers
for disease.
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