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Introduction

Insulin and insulin-like-growth-factor-I (IGF-I) constitute
two members of the growth factor family, which play im-
portant roles in the regulation of metabolism and growth
of virtually all tissues in mammals. The receptors for in-
sulin and IGF-I are expressed ubiquitously and mediate
the growth and metabolic effects of the hormones in vir-
tually all tissues in the body [1–3]. Most of the informa-
tion we currently know regarding insulin/IGF-I signaling
pathways is derived from studies underlying the defects
in insulin action in type 2 diabetes [4,5]. Insulin and IGF-
1 bind to distinct receptors that in turn transmit signals
by phosphorylating insulin receptor substrates (IRS) in-
cluding the four IRS proteins, Shc, Gab-1, FAK, Cbl, and
potentially other substrates [1,4,6–9]. These insulin re-
ceptor substrates play different but crucial roles in cellu-
lar processes that are important for the metabolism and
growth of tissues including glucose transport and utiliza-
tion, protein synthesis, cell growth, proliferation and anti-
apoptosis. Several reviews provide an excellent update on
these signaling networks [1,6–8]. Over the last decade,
several laboratories have created global and tissue-specific
knockouts of genes that code for protein(s), which are con-
sidered potentially important in regulating the effects of
insulin and/or IGF-I. The pleiotropic signaling effects of
insulin and IGF-I family of growth factors have been stud-
ied in great detail in classic insulin sensitive tissues includ-
ing skeletal muscle, liver and adipose [4,5]. While IGFs
have been studied for their contributions to islet develop-
ment, a role for insulin during growth of the endocrine
cells in the embryonic and post-natal periods is not fully
understood.

Although the presence of functional insulin receptors in
β-cells is now undisputable (reviewed in [10]), it has been
a challenge to study the signaling pathways activated by in-
sulin in β-cells for several reasons. First, the precise local-
ization of receptors on apical and/or basolateral surfaces
of different islet cells using immunohistochemistry, has
been limited due to lack of a robust anti-insulin receptor
antibody. Second, the continuous secretion of insulin by
β-cells via the regulated and constitutive pathways allows
potential internalization and downregulation of insulin re-
ceptors and confounds the effects of added ligand. Thus,
several studies have used experimental protocols wherein
islets/beta cells are either treated with exogenous insulin
[11,12,146] or with inhibitors of regulated insulin secre-
tion such as somatostatin or diazoxide followed by exam-
ining the consequences on insulin secretion or synthesis
due to direct or indirect effects. A confounding factor in
the latter approach is the inability to completely inhibit
insulin secretion since most secretory cells possess regu-
lated and constitutive secretion pathways [13,14]. Thus,
very small amounts of insulin secreted by the constitutive
pathway likely maintain downregulation of insulin recep-
tors in the presence of inhibitors of regulated secretion
such as somatostatin and diazoxide, which in turn, can
lead to erroneous interpretation of data. The development
of powerful genetic engineering techniques has circum-
vented several disadvantages discussed above and allow
for disruption of the gene(s) coding for a given protein and
enable direct evaluation function of the targeted protein(s)
[10]. Recent studies in humans provides further evidence
for a role for insulin action in the β-cells [140]. Thus, this
review will focus mostly on direct evidence provided by
these techniques for a role for insulin and IGF-I during
early growth and development of islets and in the mainte-
nance of adult β-cell mass.
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Role of Insulin/IGF-I During Embryonic
and Early Post-Natal Development
of the Endocrine Pancreas

The pancreas develops from the fusion of two diverticula
of primordial gut tissue to form the distinct endocrine and
exocrine components observed in adulthood [15]. Sev-
eral recent reviews provide insight into the development
of the endocrine cells [16,17] and the role of numerous
transcription factors that are considered essential for the
development of the different endocrine cell types [18,19].
Several elegant studies provide compelling evidence to
disprove old dogmas. For example, based on irreversible
tagging of progeny through the activity of Cre recombi-
nase it is now accepted that α- and β-cell lineages raise
independently from a common precursor expressing the
pancreatic homeodomain protein, PDX-1, and not from
glucagon-expressing progenitors as was originally sug-
gested [16]. Furthermore, direct lineage tracing studies
indicate that NGN3+ cells are islet precursors and are
distinct from ductal precursors [20]. It would be informa-
tive to use similar techniques to explore the role(s) of in-
sulin and IGF-I signaling during embryonic development
of islet cells.

Global and Conditional Knockouts of Insulin,
IGF-I, IGF-II, and Proteins in Their
Signaling Pathways

The significance of IGF-I and insulin during early devel-
opment and growth of islet cells has been a major focus of
study for several decades and several important insights
have emerged from these experiments [21–24]. The fetal
pancreas expresses IGF-I, IGF-II, and IGF-binding pro-
tein 3 during late gestation [21,25,26]. IGF-II levels are
higher than IGF-I during fetal development and IGF-II
has been localized to islets and duct epithelial cells by im-
munohistochemistry and in situ hybridization techniques
[21,25,27]. Together, these studies indirectly implicate a
role for IGF-I and IGF-II during the post-natal develop-
ment of the endocrine pancreas [28].

The development of genetic engineering techniques
over the last decade, to create gain of function or loss
of function mutations [29,30], has been used successfully
to examine the function of specific proteins in different
cell types in the islet. Further, the ability to “turn off” a
gene encoding for a particular protein in a time-dependent
manner provides a tool to simulate the gradual dysfunction
that is usually observed in chronic diseases [30]. Although
adaptation to the creation of a genetic mutation during
embryonic life is a natural consequence of this method
the information obtained in studies in multiple biological
disciplines has been extremely useful to unravel poten-

tially novel and unexpected functions of proteins. These
observations are comparable to those made from humans
bearing naturally occurring genetic mutations, who of ne-
cessity adapt to the mutation, but nevertheless provide
important clues to understand the function of the proteins
encoded by the gene(s). A partial list of global and condi-
tional knockouts/transgenics of insulin, IGFs and proteins
in their signaling pathways is provided in Tables 1 and 2.
Unfortunately, many references could not be cited due to
space limitations.

To directly evaluate the role of growth factors, sev-
eral investigators have utilized homologous recombina-
tion in mice. Thus, global knockout of genes coding for

Table 1. Partial list of phenotypes and references of global
knockout/transgenics of insulin and IGF-1 genes and proteins in the
insulin receptor/IGF-1 signaling pathway.

Protein Phenotype Reference

Insulin Intrauterine growth retardation, [31]
Neonatal lethality, Ketoacidosis, [121]
Liver steatosis

IGF-1 Dwarfism, [66]
Variable survival [42]

IGF-II (overexpressor) Islet hyperplasia, [37]
organ overgrowth

Insulin receptor Neonatal lethality, [122]
Ketoacidosis [123]

IGF-1 receptor Dwarfism [124]
Neonatal lethality

IRS-1 Post-natal growth retardation [55]
Insulin resistance [56]
Islet hyperplasia [57]
Insulin secretory defect [59]

[58]
[60]
[61]

IRS-2 Insulin resistance [46]
Diabetes [58]
Islet hypoplasia

IRS-3 Relatively normal [66]
IRS-4 Mild glucose intolerance [67]
PI 3-kinase isoforms

p85α Increased insulin sensitivity, [69]
Hypoglycemia [70]

p85β Increased insulin sensitivity, [68]
Hypoglycemia

p50α/p55α Increased insulin sensitivity [125]
Akt1 Growth retardation, [126]

Increased apoptosis,
Normal glucose tolerance.

Akt2 Insulin resistance in liver and
muscle,

[127]

Increased islet mass.
P70S6kinase Hypoinsulinemia, [72]

Glucose intolerance, and
Reduced beta-cell size.

Insulin receptor-related receptor [128]
Normal phenotype
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Table 2. Partial list of phenotypes and references of tissue-specific
knockout/transgenics of insulin and IGF-1 genes and proteins in the
insulin receptor/IGF-1 signaling pathway.

Protein/Tissue Phenotype Reference

IGF-I
Liver Normal growth and

development,
[129]

Muscle insulin sensitivity. [124]
[130]

Islets Islet hyperplasia, [36]
Resistance to diabetes

IGF-II
β-cell (overexpressor) Islet hyperplasia, [38]

diabetes
Insulin receptor
Muscle (transgenic) Increased adiposity, [131]

Dyslipidemia and
Glucose intolerance.
Normal glucose tolerance, [132]
Elevated triglyceride and FFA

levels
β-cell Glucose intolerance, [48]

Loss of acute phase insulin
secretion,

Reduced β-cell mass.
Liver Severe glucose intolerance, [112]

Hepatic dysfunction
Brain [133]

Increased food intake and
obesity in female

Impaired spermatogenesis and
ovarian follicle maturation

Adipose [134]
Protect against obesity and glu-
cose intolerance
Heterogeneity in white adipose
cell size

Insulin receptor
Muscle + Adipose Impaired glucose tolerance [135]

Insulin resistance
IGF-1 receptor
β-cell Impaired glucose tolerance [49]

Reduced glucose-stimulated
insulin secretion

[50]

IRS-2
β-cell Mild diabetes, obesity [63]

[62]
[64]

Insulin receptor +
IGF-1 receptor

Muscle Insulin resistance, [136]
β-cell dysfunction and diabetes

Akt
β-cell (overexpressor) Islet hyperplasia, [137]

hyperinsulinemia [138]

the insulin gene in mice leads to growth retardation, and
death due to diabetes mellitus with ketoacidosis and liver
steatosis [31,32]. Interestingly, pancreas examination dur-
ing the post-natal period revealed large islets and prompted

the authors to suggest that insulin is a negative regulator
of islet growth [31,32]. However, since IGF-II levels are
reported to be elevated during the immediate post-natal
period [28], it is possible that lack of insulin allows for
unopposed action of IGF-II at both insulin and/or IGF-1
receptors to promote islet hyperplasia. Alternatively, the
enhanced vascularization in the absence of insulin may
lead to an increase in local concentrations of morphogens,
derived from the circulation and/or endothelial cells, to
promote islet cell growth [33–35]. A recent study in which
the IGF-I gene was inactivated in islets using the PDX-
1 promoter described hyperplastic islets that are resistant
to streptozotocin-induced diabetes [36]. The increase in
the size of islets was disproportionate to the mild hyper-
glycemia suggesting that IGF-II or insulin acting via in-
sulin and/or IGF-1 receptors enhanced islet growth in the
absence of locally produced IGF-I. In this context, it is
worth noting that over-expression of IGF-II in β-cells has
also been reported to lead to hyperplastic islets [37] and
intriguingly the mice develop diabetes [38]. While the islet
growth effects induced by IGF-II could be mediated via
the insulin receptor, the creation of a model of IGF-II over-
expression in a mouse lacking insulin receptors in β-cells
will directly address whether the IGF-II/insulin receptor
pathway is indeed critical in islet/β-cell growth.

Not surprisingly, mice with null mutations of the IGF-I
and IGF-II genes show similar but milder defects com-
pared to mice lacking the insulin gene (reviewed in [32,39–
41]. IGF-I null mice show growth defects similar to IGF-II
null mutants [39,41], and depending on the genetic back-
ground, some of the IGF-I knockouts die, while others
survive into adulthood [40,41]. Mice lacking the IGF-I
gene exhibit postnatal lethality, growth retardation, in-
fertility, and defective development of bone and muscle
[41,42]. Similar findings were reported in a human with
homozygous partial deletion of the IGF-I gene [43]. Taken
together these global knockouts underscore the crucial im-
portance of insulin and IGF-I and their cognate receptors
in the overlapping regulatory functions of metabolism and
growth in mice and humans.

Insulin and IGF-I mediate their effects via the insulin
and IGF-1 receptors respectively. Considering the high
degree of homology between the insulin and IGF-1 recep-
tors it is likely that the ligands can also act via their cog-
nate receptors [39]. Thus, one would predict either similar
phenotypes when either of the receptor is lacking or alter-
natively one receptor could compensate for the absence of
the other receptor in an effort to maintain normal signal-
ing in target tissues. Mice homozygous for a null mutation
of the insulin receptor show normal intrauterine growth
but die within 48 to 72 h after birth due to severe hyper-
glycemia and diabetic ketoacidosis [44,45]. On the other
hand, IGF-1 receptor null mutants show severe growth
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deficiency and die at birth due to respiratory failure [41]
and manifest a phenotype similar to the IGF-1 null mutants
[40]. Although both mutants die early, these studies clearly
indicate the mice are born with β-cells. While β-cells in
insulin receptor null mutants show degranulation, which
likely occurs due to severe hyperglycemia, mice lacking
functional IGF-1 receptors show small [46] or relatively
normal islet/β-cell mass [47]. These studies provide evi-
dence that neither receptor is critical for the early develop-
ment and formation ofβ-cells. Furthermore, these findings
have been confirmed in conditional knockouts of insulin
or IGF-1 receptors. Thus, β-cell-specific insulin receptor
knockouts (βIRKO) [48] or β-cell specific IGF-1 recep-
tor nulls [49,50] are both born with a normal complement
of islets/β-cells. Considering the overlapping signaling
pathways shared by insulin and IGF-I stimulation, both
these knockouts develop secretory defects manifested by
blunted glucose-stimulated insulin release secondary to
poor glucose sensing [48–51,141,142,147]. However, one
notable difference between the two mutants is the effect
on maintenance of β-cell mass in adults. Thus, follow-
up studies indicate an increased susceptibility of βIRKO
mice to develop age-dependent diabetes consequent to a
reduced β-cell mass [51,52]. In contrast, β-cell mass in 12
month-old βIGFRKO mice is relatively normal [49] (R.N.
Kulkarni unpublished observations). Together, these stud-
ies point to similar phenotypes related to secretory func-
tion when the insulin or IGF-1 receptors are disrupted
selectively in β-cells but suggest a prominent role for in-
sulin signaling in maintenance of adult β-cell mass (see
below).

Humans bearing mutations of the insulin receptor (lep-
rechaunism), however, manifest quite a different pheno-
type characterized by intrauterine growth retardation and
only mild hyperglycemia and display large islets [53,54].
It is unclear whether the receptor is devoid of all signal-
ing capability or whether the mutated protein continues to
transmit some signals that allows selective growth path-
ways to be active [54]. Thus, it is possible that the islet
hyperplasia in humans with leprechaunism is due to se-
lective activation of proteins critical for mediating growth
effects in the β-cells. The lack of reports describing muta-
tions in insulin or IGF-1 receptors that are restricted only
to β-cell in humans makes it difficult to resolve the issue
of whether insulin signaling plays a role in modulating
β-cell growth and function in vivo. The creation of mouse
models bearing mutations in β-cells, similar to mutations
that occur in humans, perhaps using a knock-in strategy,
is one way to gain insight into this question.

Gene deletion of proteins downstream to the insulin
and IGF-1 receptor, including the IRS proteins, leads to
different phenotypes compared to those observed in the re-
ceptor mutants. Thus, IRS-1 knockouts exhibit post-natal

growth retardation and hyperinsulinemia but a relatively
normal lifespan [55,56] and interestingly, the IRS-1 null
mice show hyperplastic but dysfunctional islets [57–61].
In contrast, IRS-2 knockouts show only mild growth re-
tardation, and depending on the genetic background of the
founder mice either manifest a mild phenotype [58] or de-
velop β-cell hypoplasia leading to overt diabetes [46]. It
must be noted, however that β-cell-specific loss of IRS-
2 does not prevent development and growth of β-cells
during the embryonic and early post-natal periods [62–
64]. Notwithstanding the observation that a few β-cells
“escape” Cre recombination, it is intriguing that lack of
IRS-2 in a “majority” of β-cells during the early post-natal
period does not lead to a phenotype as severe as that ob-
served in global mutants despite being created on similar
genetic backgrounds. This indicates that signals indepen-
dent of IRS-2 are likely necessary during early growth and
development of β-cells. Thus, it is prudent to exercise cau-
tion when interpreting and extrapolating data from global
mutants to alterations in function and growth of specific
cell types.

Further, global IRS-2 knockouts also show defects in
the CNS that indicate a potential role for the substrate
in neuronal function [65]. Pituitaries of female IRS-2 de-
ficient mice are small and have a reduced number of go-
nadotrophs and the mutants show hypothalamic resistance
to leptin. By contrast, IRS-3 null mice develop normally
and have normal glucose tolerance [66]. IRS-4 deficient
mice manifest mild growth defects and glucose intolerance
and this is evident only in males because the IRS-4 gene is
located on the X chromosome [67]. Knockout of the p85
regulatory subunit of PI 3-kinase in mice leads to increased
insulin sensitivity and hypoglycemia [68–70], while null
mutants for Akt-2 (PKB-β) show insulin resistance in
muscle and liver and an increased islet mass [71]. Mutants
for p70S6 kinase show reduced β-cell size, lower insulin
secretion and reduced pancreatic insulin content [72].

The lack of a defect in the early growth and devel-
opment of islet/β-cells in mice lacking insulin or IGF-1
receptors indicates that other growth factors are likely im-
portant for the development of the insulin-secreting cells
(Fig. 1). Indeed, several reports indicate a role for pla-
cental lactogen and GH during the early development of
the pancreas (reviewed in [73,74,143,144]). Furthermore,
over-expression of placental lactogen [75], PThRP [76]
and HGF [77] individually in β-cell using the rat insulin
promoter lead to an increase in β-cells mass and resis-
tance to strepotozotocin-induced β-cell death. It will be
useful to examine the potential cross-talk between signal-
ing pathways activated by the receptor tyrosine kinases
for these growth factors and the insulin/IGF-I signaling
pathway to dissect the mechanisms underlying the growth
and apoptosis of islet β-cells.



New Insights into the Roles of Insulin/IGF-I in the Development and Maintenance of β-Cell Mass 203

Fig. 1. A schematic showing relative significance of growth factors on
growth of β-cells during embryonic and adult periods. Data supported
by direct evidence is indicated by arrows with solid lines and indirect
evidence by dotted lines.

Role of Insulin and IGF-I in the Maintenance
of Adult β-Cell Mass

The mechanisms and signaling pathways that maintain
adult β-cell mass are currently intense areas of research
in stem cell biology and especially in type 1 and type 2
diabetes. Several mechanisms have been proposed to influ-
ence adult β-cell mass including neogenesis from ductal
cells [78,79] and apoptosis [80,81]. Recent studies using
lineage trace analysis provide compelling evidence for β-
cell replication as a major pathway for the renewal of adult
β-cells in mice [82]. Whether a similar mechanism is op-
erative in humans is not known and impossible to prove
by lineage trace analysis. Some evidence for DNA dupli-
cation is available from two recent studies suggesting de-
differentitaion and differentiation of human islet precursor
cells [83,84]. Nevertheless, it is conceivable that all three
processes are occurring to maintain an appropriate num-
ber of β-cells for glucose homeostasis, and identifying
the major pathway that contributes to β-cell regeneration
will be key to plan strategies to intervene therapeutically.
Therefore, until lineage trace analyses or a similar tech-
nique can conclusively prove that neogenesis from duct
or periductal cells is also a major source of β-cells in
rodents, or studies in humans conclusively show β-cell
regeneration does not involve mitosis, efforts must be tar-
geted to understand the basic mechanisms regardingβ-cell
replication. Some immediate questions include—what are
the signals that promote β-cell replication and how many
times can a single β-cell divide over its life span? Answers
to these questions, though not trivial, will likely provide
therapeutic targets to enhance β-cell growth.

A recent study examining the role of cyclin D1 D2
supports the replication hypothesis [85,145]. Mice lacking
cyclin D2 showed a selective decrease in β-cell expansion
while maintaining normal ductal cells suggesting that the
cell cycle protein is important for proliferation of β-cells
independent of influencing duct cells.

One potential mechanism that can contribute to β-cell
expansion is a well-recognized pathway that has been
studied in considerable detail in organogenesis and in
cancer [86,87]. Epithelial-to-mesenchymal transition or
EMT occurs in epithelial cells expressing tyrosine ki-
nase receptors and involves disappearance of differenti-
ated junctions, reorganization of cytoskeleton and redistri-
bution of organelles, together transforming epithelial into
mesenchymal cells [87–89]. Eventually the mesenchymal
cells may regain a fully differentiated epithelial pheno-
type via a mesenchyme-to-epithelial transition (MET) or
reverse EMT [90]. A characteristic feature of EMT is re-
pression of epithelial markers including E-cadherin and
α- and γ -catenins and induction of mesenchymal markers
including vimentin, fibronectin and N-cadherin [87,91].
Although the term EMT has mostly been associated ei-
ther with early development or neoplasia, it is possible
that this process is occurring, albeit modified, in normal
cells responding to physiological demands that require
cell/tissue expansion. Indeed, the E-cadherin/catenin fam-
ily of proteins can also act as master regulatory and signal-
ing molecules for differentiation, proliferation and apopto-
sis [87,92] indicating that these proteins have the capacity
to regulate growth in normal tissues [92]. Cell-cell adhe-
sion, as mediated by the cadherin-catenin system, is a pre-
requisite for normal cell function and the preservation of
tissue integrity in most tissues including islet cells. Both E-
cadherin and β-catenin and several other members of the
cadherin/catenin family are under the control of growth
factors including epidermal growth factor (EGF), hepa-
tocyte growth factor/scatter factor (HGF/SF) and insulin
like-growth factors (IGF-I and IGF-II) [87,90]. Receptors
for these growth factors are expressed in β-cells and pro-
teins in their signaling pathways have been reported to
play functional roles in β-cell growth and hormone se-
cretion. Intriguingly, treatment of mouse embryonic stem
cells or rat bladder carcinoma cells with IGF-II induces
EMT and the withdrawal of IGF-II allows a reversal of
the phenotype to an epithelial cell [90]. Direct associa-
tion between insulin/IGF-1 receptors with the E-cadherin-
catenin system forming a multi-element complex has been
recently suggested based on co-localization of IGF-1 re-
ceptors with E-cadherin and β- and α-catenins at points of
cell contacts [87]. The presence of IGF-1 receptors and its
substrate proteins insulin receptor substrate-1 and SHC
in the same complex with E-cadherin indicates poten-
tial cross talk between growth factor and catenin-cadherin
signaling pathways [87]. Further evidence for a role for
cadherin-catenin complex in islet growth is provided by
mouse experiments in which dominant-negative expres-
sion of E-cadherin on the rat insulin promoter perturbed
islet formation without increasing the incidence of tumor
formation [87,93]. Together, these data provide a basis for
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Fig. 2. (a) Representative islet from a mouse model of islet hyperplasia (insulin receptor/insulin receptor substrate-1 double heterozygous (DH)
mouse) showing multiple PCNA+ cells. A serial section from the same pancreas shows that PCNA+ cells are independent of a pancreatic ductal
marker (lectin). (b) Pancreas sections from wild-type (WT), IR/IRS-1 double heterozygotes (IR/IRS-1) and PDX-1 haploinsufficient mice
(PDX-1+/−). The WT islet shows immunostainng for both E-cadherin and β-catenin, while E-cadherin is down-regulated in DH islet and β-catenin
is down-regulated in PDX+/− islet. Figures 2a and 2b reproduced with permission from Kulkarni et al., J Clin Invest 114(6):828–836, 2004.

a link between growth factor signaling and the potential
for EMT in islet/β-cell growth.

Recently, features suggestive of EMT were described
to occur in vivo in a mouse model of insulin resistance
manifesting robust islet hyperplasia [94]. The presence of
PCNA+ cells within the islets, which also showed down
regulation of E-cadherin provided evidence for alterations
in adhesion properties and an ability of the cells to replicate
(Fig. 2(a)) [94]. Furthermore, the lack of close association
of replicating cells with lectin (a ductal marker), in multi-
ple pancreas sections, suggests the cells are independent of
pancreatic ducts and are likely replicating β-cells that have
undergone metaplastic changes. We also observed down-
regulation of β-catenin, another adhesion protein, in islet

cells from a mouse which is haploinsufficient for PDX-1,
indicating a potential role for the homeodomain protein
in the EMT process (Fig. 2(b)). In fact, growth factor sig-
naling has been linked to PDX-1-mediated regulation of
β-cell growth [139] providing additional evidence for a
role for PDX-1 in β-cell regeneration. Thus, it is possible
that EMT or an EMT-like process, may promote β-cell
expansion under the appropriate stimulatory conditions
induced by insulin resistance. The report that EMT also
occurs in human islet cell precursor cells [83,84] suggests
that this process is a common response across species.
Whether this indeed occurs in vivo in humans in early
stages of diabetes is an important but difficult question to
address.
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Fig. 3. A schematic of potential mechanisms contributing to β-cell
regeneration.

It has been recognized for over a decade that β-cells
compensate in order to overcome the ambient hyperinsu-
linemia [52,95]. However, few studies have examined the
pathways and proteins underlying the islet hyperplastic
process. Since circulating insulin levels are significantly
elevated in insulin resistance, an obvious candidate for β-
cell proliferation is insulin itself [23,96] (Fig. 1). In fact,
insulin has been shown to enhance islet β-cell replication
in neonatal rat monolayer cultures [97] and to increase the
regenerative ability of β-cells in transplantation models of
fetal rat pancreas [98,99]. A role for insulin as a growth
factor is also supported by studies in βIRKO mice, which
display an age-dependent decrease in β-cell mass [48,51]
and by reports that treatment of MIN6 β-cells with insulin
receptor siRNA leads to altered expression of cell cycle
proteins and proliferation [100]. In addition to its nutrient
role, glucose has been shown to increase β-cell mass in
several models (reviewed in [73])[101]. Whether the ef-
fects of glucose are mediated by the secreted insulin acting
in an autocrine manner to promote growth and/or prevent
apoptosis in β-cells requires further study in models lack-
ing insulin receptors in β-cells. Similarly, it is possible
that the effects of GLP-1 on β-cell proliferation [19,102]
are mediated, in part, by secreted insulin acting in an au-
tocrine manner.

Other mechanisms that have been reported to contribute
to regeneration of β-cells include transdifferentiation from
acinar cells [103,104] and the ability of transcription fac-
tors to induce hepatocytes to differentiate into insulin-
secreting cells [105,106]. Figure 3 shows a schematic
of current concepts on potential pathways of β-cell
regeneration.

The Liver-Pancreas Connection

The liver and the pancreas are known to share a com-
mon developmental pathway [107,108] and express sev-
eral common transcription factors, which are essential for
their growth [108]. Therefore, it is not surprising that even

in the adult organism there is evidence suggestive of com-
munication between the two metabolic tissues. For exam-
ple, mice with a hepatic glucokinase knock-out manifest
impaired insulin secretion in response to glucose suggest-
ing that loss of hepatic glucose sensing impacts on islet
function [109]. Furthermore, the liver has long been rec-
ognized as a source of circulating growth factors including
IGF and HGF/SF, both of which are known to especially
influence islet growth (reviewed in [52]) [28,77,110,111].
In this context, it is interesting that mice lacking insulin
receptors in hepatocytes develop large islets [112]. One
interpretation of these observations is that in pathophysi-
ological states, the insulin-resistant liver may potentially
transmit signals to the islets via secreted growth factors to
allow for β-cell compensation [52]. Although studies in
hepatocytes implicate a role for insulin in regulating the
hepatocyte nuclear transcription factor 3β (Foxa2) [113],
and PDX-1 has been linked to growth factor signaling in
the context of β-cell growth [139,142], further studies to
define the proteins linking upstream signals such as in-
sulin with transcription factors in islets/β-cells are worth
exploring [114].

Growth and Development of Islet α-Cells

Insulin and IGF-1 receptors are also expressed in islet α-
cells [115,116] and their role in early development and
growth of glucagon-producing cells is not fully explored.
However, a relative increase in α-cell number is a recog-
nized feature in adult patients with type 2 diabetes [117].
Whether potential stimulation of α- cell proliferation is in
fact mediated by high circulating levels of insulin in estab-
lished cases of type 2 diabetes is not clear. Several studies
implicate a role for intra-islet insulin to suppress glucagon
release as an important factor in poor recovery from hy-
poglycemia in patients with long-standing type 1 diabetes
and in advanced stages of type 2 diabetes on insulin ther-
apy [118,119]. The signaling proteins and pathways that
mediate this inhibitory effect are not fully defined. A re-
cent study, in which mice were treated with glucagon re-
ceptor inhibitors, reported a significant increase in α-cell
hyperplasia providing evidence for therapeutic interven-
tion at the receptor level in modulating the ability of islet
cells to grow [120].

Future Insights

Genetic engineering techniques have revolutionized the
understanding of the role of insulin and IGFs in the devel-
opment and maintenance of β-cell mass. An understand-
ing of the link between insulin/IGF-I/FoxO1 signaling and
PDX-1 with molecules that regulate β- and α-cell cycle
control will be crucial for the development of therapeutic
strategies aimed at promoting β-cell regeneration.
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