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Abstract
Especially in many online markets, consumers can readily observe prices, but may 
need to inspect products further to assess their suitability. We study the effects of 
product differentiation and search costs on competition and market outcomes in a 
tractable model of price-directed consumer search. We find that: (i) firms’ equilib-
rium pricing always induces efficient search behavior; (ii) for relatively large product 
differentiation, welfare distortions still occur because some consumers (may) forgo 
consumption; and (iii) lower search costs lead to stochastically higher prices, which 
increases firms’ expected profits and decreases their frequency of sales. Consumer 
surplus often falls when search costs decrease.
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1 Introduction

The advent of the Internet has drastically improved consumers’ ability to shop 
around and compare different offerings. Access to price comparison websites and 
product search engines enables consumers to obtain price quotes quickly from many 
different sellers. Yet, while the Internet has substantially reduced the search frictions 
that consumers face, in many cases it is still costly to gather product information in 
order to find a suitable product. This motivates research on price-directed consumer 
search when products are differentiated.

However, solving such models can be intricate: If competing firms are ex-ante 
symmetric, it is optimal for consumers to sample cheaper products first. Firms thus 
have an incentive to reduce their prices to gain a favorable position in consumers’ 
search process, which eliminates a pure-strategy equilibrium. Unfortunately, the cor-
responding mixed-strategy equilibrium turns out to be quite intractable under stand-
ard assumptions,1 To circumvent this issue, one approach in the literature has been 
to include a second, ex-ante observable layer of product differentiation, which can 
restore the existence of a pure-strategy equilibrium (Choi et al., 2018; Haan et al., 
2018). But this comes with its own problems, as we will outline below.

Another route, taken by Armstrong and Zhou (2011) and Ding and Zhang (2018), 
has been to simplify the market setting to gain enough tractability to allow for a 
derivation of the mixed-strategy equilibrium. But consumers’ product valuations—
their so-called match values—are perfectly negatively correlated in the former and 
are all-or-nothing in the latter, which undermines an understanding of the role of 
product differentiation on market outcomes. Moreover, two important features are 
ruled out in these models: Consumers never return to previously sampled firms—so-
called returning demand does not exist—and classic deadweight losses that stem 
from market power cannot arise.2

By making consumers’ match values binary and allowing for partial matches, 
our contribution is to set up a simple and tractable model of price-directed search 
through which the role of product differentiation and its interaction with search costs 
can be studied. We characterize three types of mixed-strategy pricing equilibria, two 
of which are novel to the literature and give rise to returning demand.3 Higher prod-
uct differentiation has the (expected) effect of stifling competition. If it is sufficiently 
large, a classic deadweight loss arises because part of the consumers are (always or 

1 The main issue is that when consumers’ match values are drawn from a continuous distribution—such 
as in the workhorse model for analyzing search in differentiated-goods markets by Wolinsky (1986)—
and prices are observable before search, the demand faced by any given seller depends both discontinu-
ously on her price rank and for a given rank, continuously on her price differences with other sellers. As 
it turns out, the characterization of the resulting mixed-strategy equilibrium is extremely difficult.
2 The latter is true because in Armstrong and Zhou (2011), it is assumed that consumers’ (identical) val-
uation for their “ideal” variety is sufficiently high so that the market is fully covered. In Ding and Zhang 
(2018), products are either completely unsuitable—valued at zero—or have the same positive value, so 
that firms will never price above that value in equilibrium.
3 For sufficiently low product differentiation, there is also a pure-strategy equilibrium where firms price 
at marginal cost.
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with positive probability) priced out of the market. On the other hand, consumers’ 
equilibrium search behavior is always efficient.

We also analyze the effects of lower search costs—such as caused by the advance-
ment of information technologies—on market outcomes. We show that lower search 
costs have a perverse effect on firms’ pricing: They lead to stochastically higher 
prices, which results in higher expected profits. In terms of welfare, there are two 
conflicting effects: Lower search costs directly reduce the search friction that is 
incurred by consumers; but lower search costs also lead to higher prices, which may 
increase the expected deadweight loss. Still, we establish that the former positive 
effect almost always dominates. This is quite different for consumers, however: Due 
to the induced higher prices, they are often harmed as search costs decrease.

The remainder of this article is structured as follows: In Sect. 2, we summarize 
the related literature. Section 3 introduces the model, while in Sect. 4, we provide 
a full equilibrium characterization. In Sect.  5, we study the effects of a decrease 
in search costs. Section 6 concludes. Several technical proofs are relegated to the 
“Appendix”.4

2  Related Literature

Our paper joins an extensive literature on costly consumer search, which studies the 
effects of frictions and incomplete information about product characteristics and/
or prices on market outcomes.5 In early work which relates to our model, such as 
the seminal papers by Wolinsky (1986), Stahl (1989), and Anderson and Renault 
(1999), prices are unobservable and consumer search is random.

In departures from models of random search, there have been efforts to describe 
environments in which consumers search firms according to some order. The first 
papers in this vein focused on predetermined orders, arising, e.g., due to spatial fea-
tures (see Arbatskaya (2007) for homogeneous products, Armstrong et al. (2009) for 
differentiated products with a “prominent” firm,6 or Zhou (2011) for a general analy-
sis with differentiated products).

In Athey and Ellison (2011) and Chen and He (2011), firms bid for positions 
along consumers’ search path, while in Haan and Moraga-González (2011) consum-
ers’ search order is influenced by firms’ advertising intensities. However, in these 
models, prices do not affect the order of search. Armstrong (2017) outlines a setting 

4 In a previous working paper version, we have also considered the case where consumers cannot 
observe prices in advance, and contrast this setting of “random search” to the baseline model with price-
directed search. Unfortunately, due to possible utility ties in candidate pure-strategy equilibria, this 
model variant does not prove to be very tractable. Yet, we provide some suggestive evidence that market 
performance should tend to decrease when prices are unobservable before search. See Obradovits and 
Plaickner (2022) for further details.
5 For comprehensive literature reviews, see Anderson and Renault (2018) and Baye et al. (2006); or, for 
the case of digital markets, see Moraga-González (2018).
6 One firm is exogenously searched first by all consumers, while the remaining firms are searched in 
random order.
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in which the order of search is chosen endogenously by consumers who form expec-
tations about prices and firms that act according to their beliefs in equilibrium.

One of the first attempts to model observable prices as important strategic vari-
ables for directing search can be found in Armstrong and Zhou (2011, Sect.  2), 
where firms advertise the price of their differentiated product on a price-comparison 
website. Consumers’ optimal search path is then guided by those advertised prices. 
To keep the model tractable, the authors introduce a specific—Hotelling duopoly—
structure in which consumers’ match values are perfectly negatively correlated.7 A 
key finding is that the competition between firms that seek to be searched first drives 
down retail prices, relative to a benchmark without price advertising, and that this 
effect is stronger when search frictions increase.

As outlined in the Introduction, tractability is generally a major issue when it 
comes to solving models of price-directed search. For example, even a duopoly ver-
sion of the standard differentiated-products framework by Wolinsky (1986) with 
independently distributed match values becomes essentially intractable with observ-
able prices. Choi et al. (2018) and Haan et al. (2018) circumvent this problem by 
incorporating sufficiently strong ex-ante differentiation into Wolinsky’s framework 
with observable prices.8 This restores the existence of a pure-strategy equilibrium 
that can be characterized.

However, there are two problems with this approach: The first is that the pure-
strategy equilibrium candidate breaks down when firms’ ex-ante differentiation 
becomes relatively weak, as then non-local deviations become profitable. The sec-
ond is that a pure-strategy price equilibrium and continuous demand around price-
rank changes is hard to reconcile with the empirical findings in many online mar-
kets.9 By considering a two-point distribution of match values, we obtain tractability 
without introducing any exogenous ex-ante differentiation.

The most closely related article is Ding and Zhang (2018). That paper both 
extends Stahl’s (1989) model of random search for (originally) homogeneous prod-
ucts to incorporate binary all-or-nothing consumer product valuations, and also 
studies the same setting with observable prices. Their latter model of price-directed 
search, while similar, differs in two major aspects from our contribution:

First, and most important, we allow for a variable degree of product differentia-
tion. While in Ding and Zhang consumers either fully value a product or not at all, 
in our setting they may have a positive valuation—that exceeds firms’ marginal cost 

7 More concretely, upon inspecting the lower-priced product first, consumers learn its match value and 
can then perfectly deduce the match value that is offered by the other firm.
8 See also Shen (2015) for a related analysis in a Hotelling context.
9 For evidence that firms resort to mixed-strategy pricing, see, e.g., Baye et al. (2004a, 2004b), Bachis 
and Piga (2011), and Seim and Sinkinson (2016). Baye et al. (2009) document that the number of clicks 
that are received by online retailers is highly dependent on their price rank. Examining a large price-
comparison site at the time, they find that the lowest-priced retailers for a given product received on 
average 60% more clicks than higher-priced competitors. Relatedly, Ellison and Ellison (2009) establish 
that the price transparency provided by a price search engine tended to make demand (for low-quality 
computer memory modules, which is a relatively homogeneous good) extremely elastic, even though this 
was counteracted by obfuscation attempts by some of the examined online retailers.
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of production—for non-fully matched products. This can directly affect competition 
by influencing consumers’ search behavior: The highest price that they are willing 
to search may now depend on the price of the lowest-priced product, and consumers 
may also optimally return to purchase this product. Moreover, classic deadweight 
losses occur when not all consumers purchase eventually.

Second, we do not include informed consumers who costlessly observe all match 
values, which is however crucial to generate most of the interesting results in Ding 
and Zhang (2018). In particular, their “gap equilibrium” with non-convex pricing 
support and resulting welfare losses arises only when their share of informed con-
sumers is quite large. But especially for online product markets where many con-
sumers are casual first-time buyers, such informed consumers will arguably con-
stitute a minority. For simplicity and to highlight a different channel, we set their 
number to zero in our model.10

Note finally that our result that prices (stochastically) decrease in search costs 
is shared with most concurrent models of price-directed consumer search, includ-
ing Armstrong and Zhou (2011), Shen (2015), Haan et al. (2018), and Choi et al. 
(2018).11 But also other consumer search frameworks can give rise to this counterin-
tuitive property. See, for example, Zhou (2014) for the case of multiproduct search, 
Garcia et al. (2017) for search in vertically related markets, Moraga-González et al. 
(2017) for when search costs are heterogeneous, and Garcia and Shelegia (2018) for 
search that is guided by observational learning.

3  Model Setup

We study the following market: There are N ≥ 2 risk-neutral firms i = 1,… ,N that 
compete in prices pi . Each firm offers a single differentiated product of which an 
arbitrary amount can be sold at common and constant marginal cost of production 
c ≥ 0.

There is a unit mass of risk-neutral consumers with unit demand and an outside-
option value normalized to zero. All consumers freely observe the prices of all prod-
ucts. However, there is horizontal differentiation in the sense that the consumers 
do not initially know how well each product fits their tastes: For each individual 
consumer, product i perfectly suits her needs—the product is “a full match”—with 
probability � ∈ (0, 1) . In this case, the consumer’s willingness to pay is given by 
vi = vH > c . With complementary probability 1 − � , product i is only “a partial 
match”, for which a consumer’s willingness to pay is given by vi = vL ∈ [c, vH).12 ,13

10 For a sufficiently small fraction of informed consumers, we can show that our equilibrium characteri-
zation would remain completely unaffected.
11 In the closely related model by Ding and Zhang (2018), this is different when search costs are large. 
See footnote 29 below for details.
12 For vL < c , since firms never optimally price below their marginal cost, our setup collapses to one 
with all-or-nothing product matches, as studied, for example, by Ding and Zhang (2018).
13 Note that we could, without loss of generality, normalize one of the cost/valuation parameters c, vL , 
vH or s (to be introduced below) to some arbitrary positive constant. For example, we could set vH = 1 , 
such that c, vL and s could simply be interpreted as fractions of vH . However, in order to make consum-
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Importantly, as is common in the literature on sequential consumer search with 
horizontally differentiated products, we assume that the match values vi are iden-
tically and independently distributed across all consumer-firm pairs. In particular, 
there are no systematic quality differences: Each product provides a full match to a 
share � of the consumer population and a partial match to the remaining share. We 
also assume that the firms cannot identify which product(s) will be a full match for 
any individual consumer, which rules out price discrimination.

In order to find out their match values, consumers have to incur a search cost 
s ≥ 0 per product that they sample. It is assumed that they cannot purchase any 
product before searching it first. Consumers engage in optimal sequential search 
with free recall and maximize their expected consumption utility, where consump-
tion utility is given by

when buying product i (which can either be a full or partial match) after having 
searched k ∈ {1,… ,N} products, and u0 = −ks when taking their outside option 
after having searched k ∈ {0,… ,N} products. All market parameters are common 
knowledge.

The timing of the game is as follows: First, firms simultaneously set prices pi . 
Second, consumers observe these prices, and engage in optimal sequential search. 
Third, payoffs realize.

In order to make the problem interesting, we finally assume that the search cost is 
not too large: s ≤ �vH + (1 − �)vL − c . Otherwise, the market collapses, as no firm 
could offer a non-negative expected surplus to consumers even when setting pi = c.

4  Equilibrium Analysis

Optimal Search. Since, apart from their prices, firms’ products appear ex-ante iden-
tical, consumers clearly find it optimal to search firms in ascending order of prices.14 
Without loss of generality, we index firms such that p1 ≤ p2 ≤ … ≤ pN−1 ≤ pN . 
Given a consumer started at firm 1 and found a full match, she optimally purchases, 
since there can be no gain from further searching. But if only a partial match is 
found, she might want to continue to search firm 2, and so on. Consumers’ optimal 

(1)ui ≡ vi − pi − ks, with vi ∈ {vL, vH}

14 In case of ties, consumers are assumed to randomize with equal probability among firms, which is 
however inconsequential for our results. We moreover assume that whenever a consumer is indifferent 
between purchasing directly and continuing to search, the consumer continues to search; and whenever a 
consumer is indifferent between buying and not buying after her search process has ended, the consumer 
buys.

Footnote 13 (continued)
ers’ optimal search behavior and the equilibrium expressions as transparent as possible, we have decided 
against such a normalization. It is straightforward to verify that the thresholds that delineate the different 
equilibrium regions in our model are homogeneous of degree 0 in (c, vL, vH , s) , while the equilibrium 
pricing supports, profits, and welfare expressions are homogeneous of degree 1 in it.
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search behavior now crucially depends on whether p1 > vL or p1 ≤ vL , as only in the 
latter case may it be optimal to return to firm 1 eventually.

The following lemma fully characterizes consumers’ optimal search behavior:

Lemma 1 Optimal Search:

• If p1 > vL , search, in increasing order of prices, all firms i = 1,… ,N for which 
pi ≤ vH −

s

�
 . Purchase immediately if a full match is found, and continue to 

search if not. If no full match is found at any suitable firm, take the outside 
option.

• If p1 ≤ vL , start search at firm 1 if p1 ≤ �vH + (1 − �)vL − s , and otherwise 
take the outside option. If firm 1 is searched and a full match is found, pur-
chase there immediately. If not, search, in increasing order of prices, all firms 
i = 2,… ,N for which pi ≤ p1 + (vH − vL −

s

�
) . Purchase immediately if a full 

match is found, and continue to search if not. If no full match is found at any 
suitable firm, purchase at firm 1.

Proof The first part follows trivially from the fact that partial matches are irrelevant 
in the considered case (since they provide a negative net utility); hence consumers 
who have not found a full match so far find it optimal to search, in increasing order 
of prices, exactly those firms i for which �(vH − pi) − s ≥ 0 : for which pi ≤ vH −

s

�
—and to take their outside option if no full match is found among these firms.

The second part is true because for p1 ≤ vL , it is worthwhile to start search-
ing (at firm 1) if and only if �(vH − p1) + (1 − �)(vL − p1) − s ≥ 0—as otherwise, 
each individual search would yield a negative expected payoff. Moreover, pro-
vided that firm 1 has been searched and only partial matches have been found so 
far, it is optimal to search, in increasing order of prices, exactly those firms i > 1 
for which the expected gains from search, �[(vH − pi) − (vL − p1)] − s , are non-
negative—and to return to buy from firm 1 if no full match is found among these 
firms. This easily transforms to pi ≤ p1 + (vH − vL −

s

�
) .   ◻

Preliminary Equilibrium Results. Having characterized consumers’ optimal search 
behavior, one may first note that for very high search costs—s ≥ �(vH − vL)—the 
binding condition for consumers to start searching is p1 ≤ �vH + (1 − �)vL − s (≤ vL) ; 
moreover, consumers will never search firms that are not among the lowest-priced. 
The reason is that in this case, after obtaining a partial match at (one of) the lowest-
priced firm(s), the expected gains from searching are too low for any higher-priced 
firms. Then, the property that consumers will search only firms that are among the 
lowest-priced immediately implies the following:

Proposition 1 If s ≥ �(vH − vL) , or equivalently

(2)
vL

vH
≥ � ≡ 1 −

s

�vH
,
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then in the unique symmetric equilibrium each firm chooses p∗ = c and earns zero 
profit. On the equilibrium path, each consumer searches exactly one random firm 
and buys there immediately—independent of whether a full or partial match is 
found.15

Proof See the argument above. Given p∗ = c , consumers indeed find it 
optimal to search one random firm due to the parameter assumption of 
s ≤ �vH + (1 − �)vL − c .   ◻

We will subsequently refer to the parameter region where Proposition 1 holds as 
the “Bertrand region”, since intense price competition drives firms to price at mar-
ginal cost. As we show next, the market outcome is decisively different for lower 
search costs.

Lemma 2 If s < 𝜃(vH − vL) , or equivalently vL∕vH < 𝛾  , there exists no (symmetric 
or asymmetric) pure-strategy equilibrium. In a symmetric mixed-strategy equilib-
rium, firms make positive expected profits and draw prices from an atomless CDF 
that is bounded away from marginal cost.

Proof A symmetric pure strategy-equilibrium at any price level above marginal 
cost cannot exist because firms would have an incentive to undercut marginally, so 
as to be searched first by all consumers, rather than just by 1/N of the consumers. 
However, unlike the case where s ≥ �(vH − vL) , it is also not an equilibrium that 
every firm prices at marginal cost (c). This is because, when all rival firms price at 
c, setting a price in the non-empty range (c, c + vH − vL −

s

�
] guarantees that a firm 

is searched (by those consumers who do not find a full match at any rival firm; com-
pare with Lemma 1) and makes a positive profit.

Hence, any symmetric equilibrium must be in mixed strategies. The respective 
equilibrium pricing CDF must be bounded away from marginal cost because firms 
can guarantee a positive profit. It must be atomless because otherwise, transferring 
probability mass from the atom(s) to prices marginally below would pay because 
this avoids ties. The argument for why no asymmetric pure-strategy equilibrium 
exists is relegated to the “Appendix”.   ◻

Preview of Mixed-Strategy Equilibria. It turns out that the symmetric mixed-
strategy equilibrium for s < 𝜃(vH − vL)—equivalently, for vL

vH
< 𝛾—comes in three 

qualitatively different subtypes, depending on the degree of product differentia-
tion—which is inversely related to vL∕vH—in combination with the other market 
parameters:

15 In the borderline case where s = �(vH − vL) , given that pi = c for all firms, consumers are actually 
indifferent between buying immediately after obtaining a partial match or continuing to search. This is 
however inconsequential for the equilibrium outcome in terms of profits and consumer surplus.
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A “high-price equilibrium” (high differentiation, with vL∕vH ≤ �  ); a “gap equi-
librium” (intermediate differentiation, with vL∕vH ∈ (𝛾 , �̃�) ); or a “low-price equi-
librium” (relatively low differentiation, with vL∕vH ∈ [�̃� , 𝛾) ) emerges as the unique 
symmetric equilibrium. We will now characterize these equilibria in turn.

Figure 1 previews the various equilibrium regions in (s∕vH , vL∕vH)-space for an 
exemplary combination of the probability of full matches, the number of firms, and 
the constant marginal costs of production relative to vH . In the region to the right of 
the dotted line where s ≥ �(vH − c) , the Bertrand equilibrium is played whenever 
our parameter assumption of s ≤ �vH + (1 − �)vL − c holds.16

4.1  High‑Price Equilibrium

We show first that if product differentiation is relatively large—vL∕vH is relatively 
small—then a “high-price equilibrium” emerges in which firms draw prices from 
a convex support that lies strictly above vL . Clearly, in this equilibrium, a firm can-
not attract any “returning” demand: Consumers either buy immediately after finding 
a full match, or they never return (as partial matches yield a negative net utility). 
Proposition 2 provides the full characterization:

Proposition 2 Suppose that vL∕vH ≤ �  , where

Then in the unique symmetric equilibrium each firm samples prices continuously 
from the interval [p

H
, pH] following the atomless CDF

with

and

Each firm makes an expected profit of

(3)� ≡
c

vH
+

(
1 −

s

�vH
−

c

vH

)
�(1 − �)N−1

� + (1 − �)N
.

(4)FH(p) ≡
1

�

[
1 − (1 − �)

(
vH −

s

�
− c

p − c

) 1

N−1
]
,

(5)p
H
≡ c +

(
vH −

s

𝜃
− c

)
(1 − 𝜃)N−1 > vL

(6)pH ≡ vH −
s

�
.

(7)�∗
H
≡

(
vH −

s

�
− c

)
�(1 − �)N−1.

16 For vL < c , the high-price equilibrium is played whenever s < 𝜃(vH − c) ; otherwise, the market breaks 
down.
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On the equilibrium path, each consumer keeps searching (in increasing order of 
prices) until a full match is found, and takes the outside option if no full match is 
found at any firm.

Proof See “Appendix”.   ◻

The economic ratio for the occurrence of this equilibrium is that when vL is 
sufficiently low compared to vH—when vL is sufficiently close to marginal cost—
firms do not find it worthwhile to reduce their prices so much as to be able to serve 
only partially matched consumers. Instead, they compete for and sell to only fully 
matched consumers.

Firms’ equilibrium pricing support extends up to consumers’ “threshold price”: 
the highest price they are ever willing to search: vH −

s

�
 . This is because on the equi-

librium path, consumers who have discovered only partial matches so far hold only 
their outside option of value zero, and are thus willing to search any firm i as long as 
�(vH − pi) − s ≥ 0.

Since the equilibrium CDF must be atomless (cf. Lemma 2), choosing the highest 
price pi = pH moreover implies that firm i will definitely be sampled last by con-
sumers. This directly pins down the equilibrium profit �∗

H
 , as firm i’s corresponding 

demand is given by (1 − �)N−1� : Only a share—(1 − �)N−1—of consumers do not 
find a full match at any previously sampled rival firm, of which a share � have a full 
match at firm i.

It should be noted that various versions of the above pricing equilibrium have 
appeared before in the literature, where it was generally assumed that vL = 0 . 
In particular, setting vL = 0 and c = 0 , it is easy to see that we nest the model of 
price-directed search by Ding and Zhang (2018) for the case in which there are no 
informed consumers ( � = 0 in their notation).17 We extend their findings by show-
ing that even when consumers have a positive valuation for non-fully matched prod-
ucts, their price equilibrium prevails—provided that this valuation is not too large: 
vL∕vH ≤ � .18

17 Letting s = 0 and N = 2 , we also nest a duopoly version of Varian (1980) with inelastic demand up 
to a maximum valuation of vH (with a fraction � =

�2

1−(1−�)2
=

�

2−�
 of fully-informed “shoppers”). For 

s = 0 and arbitrary N ≥ 2 , our setup is moreover identical to the second stage of Ireland (1993) when his 
“information shares” si—the share of consumers who know about the existence of firm i—satisfy si = � 
for all i = 1, ...,N (and vH = 1 to match his normalization). For N = 2 and s1 = s2 = � , it is then straight-
forward to check that Ireland’s second-stage solution coincides with ours (compare with Ireland, 1993, p. 
66). For N > 2 , this should also be the case; but due to his focus on asymmetric information shares, the 
comparison of equilibria is less obvious.
18 On top of that, the characterized high-price equilibrium is also robust to introducing shoppers to our 
model, given that their share in the population is not too large. Indeed, with a fraction � of shoppers who 
have zero search cost—or alternatively, they know all match values—the best possible deviation price 
above vH −

s

�
 is simply vH . At this price, a deviating firm’s profit is �(vH − c)(1 − �)N−1� , which does not 

exceed the candidate equilibrium profit whenever � ≤
vH−

s

�
−c

vH−c
.



327

1 3

Price‑Directed Search, Product Differentiation and…

4.2  Gap Equilibrium

When product differentiation is not too large such that vL∕vH > 𝛾  , the high-price 
equilibrium characterized above breaks down. This is because, even when p

H
> vL 

in a candidate high-price equilibrium, firms have an incentive to reduce their price 
to vL . Doing so, they would be able to sell to the segment (1 − �)N of consumers 
without a full match at any firm, who would eventually return to the deviating firm.19 
If this is the case but still vL is not too close to vH , a novel type of pricing equilib-
rium with non-convex support arises.

In this “gap equilibrium”, firms randomize between: (i) pricing in a high range 
strictly above vL , and thereby selling only to fully matched consumers that have 
not found a full match at any lower-priced firm; and (ii) pricing in a low range 
that extends up to vL , with a gap in between. Pricing in the low range gives firms 
a chance to sell to returning consumers that have not found a full match anywhere, 
which happens when a firm manages to offer the best deal in the market. In a way, 
through their randomization, firms strike an optimal balance between setting high 
prices that target only fully matched consumers and fighting for the share of return-
ing consumers who do not have a full match at any firm.

The gap above vL arises because marginally increasing one’s price starting from 
vL implies a probabilistic loss of demand from the mass (1 − �)N of consumers who 
do not have a full match anywhere: In the event that all other firms price in the 
high range above vL , a firm would sell to these consumers with pi = vL (in which 
case they would return) but not with pi = vL + � . Due to this discrete reduction in 
expected demand, there is a range of prices above vL that firms do not find optimal.20

Proposition 3 gives the detailed characterization. An example equilibrium CDF is 
depicted in Fig. 2.

Proposition 3 Suppose that vL∕vH ∈ (𝛾 , �̃�) , where

Then in the unique symmetric equilibrium each firm samples prices from two dis-
connected intervals [p

M
, vL] ∪ [p�

M
, pM] , with p′

M
> vL . In the lower interval, firms 

draw prices from an atomless CDF FM1
(p) that is implicitly defined by

(8)�̃� ≡
c

vH
+

(
1 −

s

𝜃vH
−

c

vH

)
𝜃 + (1 − 𝜃)N

2
[
𝜃 + (1 − 𝜃)N

]
− 𝜃(1 − 𝜃)N−1

.

19 As is shown in the proof of Proposition 2, this is indeed the best deviation from the high-price equi-
librium, even though firms could further boost their demand by pricing strictly below vL and probabilisti-
cally blocking some rival firms from being searched.
20 A gap equilibrium may also emerge in the closely related model of price-directed search in Ding and 
Zhang (2018), but for a different reason. Their model has a share of informed consumers who do not 
have to pay any search costs and know all match values. A gap equilibrium then arises when the share 
of these consumers is sufficiently large so that firms find it optimal (also) to set very high prices that are 
addressed at informed consumers only.
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where

denotes firms’ equilibrium expected profit and

In the upper interval, firms draw prices from the atomless CDF

where

(9)(p − c)
[
�(1 − �FM1

(p))N−1 + (1 − FM1
(p))N−1(1 − �)N

]
= �∗

M
,

(10)�∗
M
≡

(
vH − vL −

s

�

)
[� + (1 − �)N]�(1 − �)N−1

� + (1 − �)N − �(1 − �)N−1

(11)p
M
≡ c +

(
vH − vL −

s

�

)
�(1 − �)N−1

� + (1 − �)N − �(1 − �)N−1
.

(12)FM2
(p) ≡

1

�

[
1 −

(
�∗
M

�(p − c)

) 1

N−1

]
,

(13)p�
M
≡ c +

�∗
M

�(1 − ��)N−1
,

Fig. 1  Depiction of equilibrium regions for � = 0.4 , N = 4 and c∕v
H
= 0.4
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and � ≡ FM1
(vL) is implicitly defined by

On the equilibrium path, each consumer keeps searching (in increasing order of 
prices) until a full match is found, and returns to purchase at the lowest-priced firm 
if p1 ≤ vL and no full match is found at any firm.

Proof See “Appendix”.   ◻

Remarkably, the gap equilibrium price distribution has the property that the 
spread of its support—pM − p

M
= vH − vL −

s

�
—is exactly as wide as the maximal 

price difference that a consumer who is partially matched at the lowest-priced firm 
would accept to keep searching for a full match (cf. Lemma 1).21 Hence, on the equi-
librium path, consumers never settle for a partially matched product before having 
searched all products, and only those consumers without a full match anywhere 
return to the lowest-priced firm—provided that its price does not exceed vL.

The described property is in fact used to pin down the explicit functional form of 
the equilibrium price distribution: From p

M
< vL and pM − p

M
= vH − vL −

s

�
 , it fol-

lows that the corresponding demands at p
M

 and pM are given by � + (1 − �)N and 
(1 − �)N−1� , respectively. Together with the necessary profit equivalence at these 
bounds, the equilibrium’s (outer) support bounds and expected profit are uniquely 
determined.

An interesting feature of the characterized equilibrium is that profits are inde-
pendent of the (common) marginal costs of production. The reason is that higher 
marginal costs have a similar effect on firms’ incentive to compete as a higher degree 
of product differentiation (lower vL∕vH ): It becomes relatively more attractive to 
choose high prices that are aimed at fully matched consumers, rather than to try to 
have the lowest price in the market and also be able to serve consumers without a 
full match anywhere. As a result, competition relaxes by moving up the equilibrium 
pricing support one to one, maintaining the same level of equilibrium profits.

One may finally wonder how the gap equilibrium distribution behaves as vL∕vH 
approaches the lower and upper thresholds �  and �̃� that delimit the gap equilibrium 
region.22 For this, note that p

M
 , pM , and �∗

M
 all strictly decrease in vL , while the 

(14)pM ≡ c +

(
vH − vL −

s

�

)
[� + (1 − �)N]

� + (1 − �)N − �(1 − �)N−1
,

(15)(vL − c)
[
�(1 − ��)N−1 + (1 − �)N−1(1 − �)N

]
− �∗

M
= 0.

21 Note that when the lower support bound—p
M

—lies strictly below vL , it is easy to see that it cannot 
be the case that pM − p

M
< vH − vL −

s

𝜃
 . This is because by consumers’ optimal search rule, instead of 

pricing at pM , a firm could price at p
M
+ (vH − vL −

s

𝜃
) > pM without losing any demand. Thus, in any 

candidate equilibrium with p
M
< vL , it must hold that pM − p

M
≥ vH − vL −

s

�
 . What is much less obvi-

ous—see the uniqueness argument at the end of the proof of Proposition 2 in the “Appendix”—is that it 
also cannot be the case that pM − p

M
> vH − vL −

s

𝜃
.

22 We thank an anonymous reviewer for raising this point.
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equilibrium probability � that firms price below vL strictly increases in vL.23 In the 
proof of Proposition 3, it is moreover shown that the lower bound of the upper pric-
ing range—p′

M
—strictly exceeds vL for all � ∈ [0, 1) , and equals vL for � = 1.24

Now, for vL∕vH = �  , we have that: � = 0 ; p
M
= vL ; and p′

M
> vL . One can check 

that p′
M

 and pM coincide with the support bounds of the high-price equilibrium dis-
tribution (see Proposition 2) in this point (and also FM2

(p) equals FH(p) ). Slightly 
increasing vL then leads firms to put probability mass below vL , as p

M
 then falls 

below vL . Moreover, a gap of length p�
M
− vL appears. If instead vL∕vH = �̃� , we have 

that: � = 1 ; pM = p�
M
= vL ; and p

M
< vL . Slightly decreasing vL then leads to 

pM > p′
M
> vL , while still p

M
< vL . Hence, firms start to put probability mass in the 

upper range, and the gap area opens up in a continuous manner.

4.3  Low‑Price Equilibrium

As a final type of equilibrium, when product differentiation is relatively low but not 
so low as to induce Bertrand competition—vL∕vH ∈ [�̃� , 𝛾) —a novel “low-price equi-
librium” occurs in which firms never price above vL . Intuitively, for low product dif-
ferentiation, a firm cannot afford to have a much higher price than its rivals because 
otherwise – due to the similarity of products—not even consumers that are partially 
matched at all cheaper firms would be willing to search this firm. This increases the 
competitive pressure and leads to lower prices. At the same time, low product differ-
entiation means that vL is close to vH , so pricing above vL is relatively less attractive 
as this eliminates the chance to sell to returning consumers.

The following proposition gives the precise equilibrium characterization:

Proposition 4 Suppose that vL∕vH ∈ [�̃� , 𝛾) . Then in the unique symmetric equilib-
rium each firm samples prices continuously from the interval [p

M
, pM] , with pM ≤ vL , 

following the atomless CDF FM1
(p) and making an expected profit of �∗

M
 , where p

M
 , 

pM , FM1
(p) and �∗

M
 are defined in Proposition 3. On the equilibrium path, each con-

sumer keeps searching (in increasing order of prices) until a full match is found, and 
returns to purchase from the lowest-priced firm if no full match is found at any firm.

Proof See “Appendix”.   ◻

In the low-price equilibrium, the lower and upper pricing support bounds, as well 
as the equilibrium profit, have the same functional form as in the gap equilibrium 
that was characterized above. Moreover, since now competition is so strong that 
pM ≤ vL , all consumers eventually buy—and all consumers who have a full match at 
at least one firm also end up with a fully matched product. Note finally that, as in the 

23 The last property is easy to infer from the implicit definition of � that is given in (15).
24 Note that p′

M
 can be non-monotonic in vL.



331

1 3

Price‑Directed Search, Product Differentiation and…

gap equilibrium, firms’ equilibrium profits are independent of their marginal costs, 
for the same reason as was outlined above.

4.4  Welfare

We conclude the equilibrium analysis by discussing the welfare properties of the dif-
ferent equilibria. We first examine consumers’ equilibrium search behavior; we then 
turn to allocative distortions.

Recall that in the Bertrand equilibrium—which occurs for s ≥ �(vH − vL)—con-
sumers search a single (random) firm and buy there immediately, no matter whether 
a full or partial match is found. In all other equilibria, where s < 𝜃(vH − vL) , con-
sumers keep searching until a full match is found, and only potentially return to the 
lowest-priced firm when all available options have been exhausted. It is now easy 
to see that this search behavior is optimal from a social point of view: Another 
search by a so-far only partially matched consumer creates an expected social 
gain of �(vH − vL) − s.25 Hence, consumers should indeed buy immediately for 
s ≥ �(vH − vL) , and keep searching for s < 𝜃(vH − vL).26 We may thus state:

Proposition 5 Consumers’ equilibrium search behavior is always socially efficient.

Any welfare losses that arise in the market must thus stem from allocative distor-
tions. In particular, note that for s < 𝜃(vH − vL)—equivalently, vL∕vH < 𝛾—product 
differentiation is sufficiently large such that firms have market power. But as long as 
product differentiation is not too large—vL∕vH ∈ [�̃� , 𝛾)—this market power is still 
innocuous for social welfare. This is because, as firms never price above vL , all con-
sumers are served eventually. On the other hand, in the gap equilibrium and in the 
high-price equilibrium, by setting prices above vL , firms may deter partially matched 
consumers from buying, even though they should buy from an allocative perspective 
as vL > c.

Specifically, note first that there is a deterministic welfare loss of size 
(vL − c)(1 − �)N in the high-price equilibrium. This is because firms always price 
above vL in that case, such that those consumers without a full match at any firm—a 
share (1 − �)N of the population—eventually drop out of the market, for a welfare 
loss of vL − c per such consumer. Note second that the same may happen in the gap 
equilibrium with its low and high-price range, but only if all firms end up pricing in 
the high range above vL . The probability of this is (1 − �)N,27 for an expected wel-
fare loss of (vL − c)(1 − �)N(1 − �)N in this equilibrium. In summary, we have:

25 This is because with probability � , a match improvement of size vH − vL is achieved, at a search cost 
of s.
26 Note that our parameter restriction of s ≤ �vH + (1 − �)vL − c ensures that it is optimal for consumers 
to start searching.
27 Recall that � ∈ (0, 1) denotes the probability that an individual firm prices below vL in the gap equi-
librium.
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Proposition 6 In the high-price equilibrium—for vL∕vH ≤ �  —a deterministic wel-
fare loss of (vL − c)(1 − �)N occurs. In the gap equilibrium—for vL∕vH ∈ (𝛾 , �̃�)—an 
expected welfare loss of (vL − c)(1 − �)N(1 − �)N occurs.

As a corollary and for future reference, we may also derive explicit expressions 
for the social welfare in the different equilibria. In the Bertrand equilibrium, this is 
trivially given by WB = �vH + (1 − �)vL − c − s . For the mixed-strategy equilibria, 
we first need to compute the aggregate search friction that is incurred by consumers, 
who keep searching until they find a full match. This is given by28

Since all but a share (1 − �)N of consumers eventually find a full match in these 
equilibria, the maximal aggregate consumption surplus that could be achieved is 
given by (vH − c)[1 − (1 − �)N] + (vL − c)(1 − �)N . Subtracting the aggregate search 

(16)S =

(
N−1∑
k=1

�(1 − �)k−1ks

)
+ (1 − �)N−1Ns = s

[
1 − (1 − �)N

�

]
.

Fig. 2  Example equilibrium CDF in the gap equilibrium. The parameters used are v
H
= 1 , v

L
= 0.5 , 

s = 0.2 , c = 0.4 , � = 0.5 , N = 2

28 Note that for k = 1,… ,N − 1 , a fraction (1 − �)k−1� of consumers has no full match at the first k − 1 
sampled firms and a full match at the kth sampled firm, with a per-consumer search cost of ks (first term). 
A fraction (1 − �)N−1 of consumers has no full match at the first N − 1 firms and therefore searches all 
firms, with a per-consumer search cost of Ns (second term). The second equality can then easily be estab-
lished via induction starting from N = 2.
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friction S and the (expected) welfare losses in the high-price and gap equilibrium, 
Corollary 1 is immediate:

Corollary 1 The total social welfare in the market is given by

5  The Effects of Lower Search Costs

The surge of the Internet, the emergence of a wide array of price-comparison web-
sites and product search engines, as well as the ongoing improvement of smart-
phones and mobile applications has arguably led to a steady decline in consumers’ 
costs of searching and comparing products. In this section, we therefore study the 
comparative effects of a reduction of search costs within our model framework.

We will subsequently define “sales” as price draws that do not exceed vL , such 
that firms have a chance to sell also to partially matched consumers when pricing 
accordingly. We can then first establish the following:

Proposition 7 Suppose that s < 𝜃(vH − vL)—equivalently, vL∕vH < 𝛾—such that the 
Bertrand equilibrium is not played. Then a decrease in search costs leads to strictly 
higher equilibrium prices—in the sense of first-order stochastic dominance and 
therefore also in expectation—and higher equilibrium expected profits and a weakly 
lower probability that firms engage in sales (strictly so in the gap equilibrium).

Proof See “Appendix”.   ◻

The intuition is that lower search costs make consumers more willing to continue 
to search after having obtained only partial matches so far, which allows firms to 
attract these consumers even when they charge higher prices and thereby competi-
tion is relaxed. As a direct consequence, firms’ expected prices and profits increase 
and they may reduce their propensity to engage in sales.

As mentioned earlier, the finding that lower search costs unambiguously increase 
prices and profits is also featured in the models of price-directed search by Arm-
strong and Zhou (2011), Shen (2015), Choi et al. (2018) and Haan et al. (2018),29 

(17)

W =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
vH −

s

𝜃
− c

��
1 − (1 − 𝜃)N

�
if

vL

vH
≤ 𝛾�

vH −
s

𝜃
− c

��
1 − (1 − 𝜃)N

�
+ (vL − c)(1 − 𝜃)N

�
1 − (1 − 𝜅)N

�
if

vL

vH
∈ (𝛾 , �̃�)�

vH −
s

𝜃
− c

��
1 − (1 − 𝜃)N

�
+ (vL − c)(1 − 𝜃)N if

vL

vH
∈ [�̃� , 𝛾)

𝜃vH + (1 − 𝜃)vL − s − c if
vL

vH
≥ 𝛾 .

29 Notably, this is different in the model of price-directed search by Ding and Zhang (2018). This is 
because in their model, a decrease in s makes selling to uninformed consumers (whose maximal pur-
chase price decreases in s) relatively more attractive than selling to informed consumers (who do not face 
any search costs and thus have a higher maximal purchase price that is independent of s). When s is large 
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and it is in stark contrast to the result in standard models of random search with 
unobservable firm pricing (such as Wolinsky (1986), Stahl (1989) and Anderson and 
Renault (1999)).

We turn finally to the effect of lower search costs on total welfare and consumer 
surplus:

Proposition 8 A decrease in search costs: (i) strictly increases the expected total 
social welfare whenever N ≥ 3 ; and (ii) may increase or decrease the expected con-
sumer surplus.

Proof See “Appendix”.   ◻

A decrease in search costs s has two effects on welfare: On the one hand, it 
directly reduces the aggregate search friction. On the other hand, as was documented 
above, it makes pricing less competitive, which shifts the equilibrium price distribu-
tion to the right. However, since the prices paid are mere redistributions, we need to 
examine only the effect of lower search costs on the expected consumption surplus 
net of search costs in order to evaluate their impact on welfare.

In the Bertrand, high-price, and low-price equilibria, the consumption surplus 
is deterministic and independent of s; thus a decrease in search costs unambigu-
ously improves welfare. In the gap equilibrium, a decrease in search costs actually 
decreases the expected consumption surplus, since the probability that at least one 
firm engages in a sale decreases (compare with Proposition 7 above).

Still, also for the gap equilibrium, we can show that the reduced search friction 
outweighs the expected loss of consumption surplus for almost all parameter com-
binations; the only exception is when N = 2 and both vL∕vH and � are small. Intui-
tively, the price-increasing effect of a reduction in s is smaller when there is a larger 
number of firms, as it becomes more important to be searched early and hence price 
competition is generally more aggressive. Moreover, while a decrease in s increases 
the probability that a single firm prices above vL , the welfare-decreasing event that 
all firms price above vL is less likely when N is larger. As it turns out, the detrimen-
tal welfare effect may dominate only when N = 2.

Interestingly, the expected consumer surplus instead often decreases after a 
reduction of search costs. The reason is that consumers have to pay higher prices on 
average due to the strategic effect on firms’ pricing, which may dominate their gains 
stemming from less costly search. In particular, we show in the proof of Proposi-
tion 8 that this happens when the gap equilibrium is played and both vL∕vH and � are 
relatively small.30

30 When the Bertrand equilibrium is played, consumers clearly always benefit from lower search costs, 
and we show in the proof of Proposition 8 that the same holds for the high-price equilibrium. In contrast, 
the expected consumer surplus may also fall as s decreases in the low-price equilibrium; however, we can 

Footnote 29 (continued)
such that in equilibrium firms target both consumer groups, a decrease in s thus leads to lower prices. In 
our model, there are no informed consumers, such that a decrease in s always relaxes competition by ena-
bling higher-priced firms to be searched more readily.
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A partial intuition for this is that for small vL , sale prices below vL create a large 
surplus for fully matched consumers at the respective firms; moreover, they allow the 
segment (1 − �)N of consumers who do not find a full match at any firm to recover 
some of their losses from search. A reduction of search costs now makes firms less 
likely to price below vL , which causes a large expected harm for consumers.

Figure 3 illustrates how the expected consumer surplus depends on s for the cases 
of two, three, and four firms. It can clearly be seen that a reduction of s may indeed 
decrease the expected consumer surplus in the market over a wide range of search 
costs.

6  Conclusion

We have developed a tractable model of price-directed search in which consumers 
observe prices, but need to engage in costly sequential search to discover whether 
products fully or only partially match their needs. We have characterized consumers’ 
optimal search behavior and the set of symmetric pricing equilibria that are induced 
by different degrees of product differentiation.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
s

0.05

0.10

0.15

CS

Fig. 3  Expected consumer surplus as a function of s for N = 2 (solid line), N = 3 (dashed line), and 
N = 4 (dotted line). The parameters used are v

H
= 1 , v

L
= 0.5 , c = 0.4 , � = 0.25

prove that this only occurs when N = 2 and � ≤ 0.5 . Details to the latter are available from the authors 
upon request.

Footnote 30 (continued)
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While it turns out that consumers’ equilibrium search behavior is always efficient 
from a social point of view, welfare losses still occur, as all firms may price above 
consumers’ valuation for partial matches. If this happens, a fraction of the consum-
ers inefficiently drop out of the market. Investigating the impact of lower search 
costs on market outcomes, we establish that these lead to higher prices and profits, 
but typically also to higher total social welfare. In contrast, consumer surplus may 
well fall when search costs decrease.

For future work, it might be interesting to generalize the model by allowing for 
more general match-value distributions—e.g., by also incorporating a zero match 
utility—or by including a share of informed consumers who know their match val-
ues in advance, as in Ding and Zhang (2018). However, preliminary calculations 
suggest that these extensions greatly increase the complexity of the analysis, and 
likely make the model intractable for parts of the parameter space.

Another promising route may be to introduce various forms of observable or 
unobservable firm heterogeneity into tractable models of price-directed search, and 
examine the effects on equilibrium pricing and market outcomes. In particular, the 
impact of unobservable quality differences on the interaction between firms’ pricing 
and consumers’ search behavior does not seem to be well understood.

Ultimately, we hope that our model will serve both as a useful building block for 
applied researchers studying markets with price-directed search, and as a starting 
point for further modeling developments.

Appendix: Technical Proofs

Proof of Lemma 2 We need to show that no asymmetric pure-strategy equilibrium 
exists. In such a candidate equilibrium, note first that it cannot be the case that two 
or more firms choose the same lowest price pmin > c : otherwise, either of them 
would find it profitable to undercut marginally so as to be searched first by all con-
sumers. Hence, p∗

1
< p∗

2
.

Suppose first that p∗
1
> vL . Then firm 1 clearly has a profitable deviation to any 

higher price p1 ∈ (p∗
1
, p∗

2
) , as this would not decrease its demand. Suppose hence 

in what follows that p∗
1
≤ vL . Then it must hold that p∗

N
≤ p∗

1
+ (vH − vL −

s

�
) ; oth-

erwise, the highest-priced firm(s) would not be searched (compare with Lemma 1), 
such that it (they) would find it profitable to deviate to (e.g.) p∗

1
 . In turn, it cannot 

be the case that two or more firms choose the highest price: otherwise, undercut-
ting marginally would pay. Hence, p∗

N
> p∗

N−1
 , and firm N would deterministically be 

searched last.
Now, from p∗

N
≤ p∗

1
+ (vH − vL −

s

�
) , it must be the case that p∗

1
= vL , as 

for any p∗
1
< vL , firm 1 could deviate to prices in the range (p∗

1
, min{p∗

2
, vL}) 

without losing demand. But then, from p∗
N
> p∗

N−1
 , it must also hold that 

p∗
N
= p∗

1
+ (vH − vL −

s

�
) = vH −

s

�
 , as otherwise, firm N could deviate upward with-

out losing demand. But this cannot be true in equilibrium, since firm 1 would then 
want to decrease its price marginally in order to discourage partially matched con-
sumers at firm 1 from searching firm N, which discretely increases firm 1’s expected 
demand.   ◻
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Proof of Proposition  2 We first give a detailed existence proof. We then provide a 
sketch as to how uniqueness can be established.

Existence. When setting some price p anywhere in the candidate equilibrium’s 
support, firm i’s expected demand is (1 − �FH(p))

N−1� . This is because any given 
rival firm will stop a consumer from visiting firm i only if it provides a full match 
to the consumer and has a lower price, which happens with probability �FH(p) . 
With complementary probability 1 − �FH(p) , this is not the case for any given rival 
firm—such that with probability (1 − �FH(p))

N−1 , not a single rival firm blocks the 
consumer from visiting firm i. In this case, the consumer purchases if and only if 
firm i provides a full match, which happens with probability �.

Given that all other firms sample prices from the CDF FH(p) as defined in Eq. (4), 
it is then easy to see that for any price in the candidate equilibrium’s support 
[p

H
, pH] , it indeed holds that �i(p) = (p − c)(1 − �FH(p))

N−1� = �∗
H

 , with �∗
H

 as 
defined in Eq.  (7). It is moreover straightforward to check that given the imposed 
parameter restriction vL∕vH ≤ �  , FH(p) is strictly increasing over its support, and 
that p

H
> vL . Hence, the candidate equilibrium is well-behaved.

We now rule out profitable deviations outside the candidate equilibrium’s pricing 
support. Clearly, it cannot be optimal to choose any price in the range (vL, p

H
) , as the 

same demand could already be achieved by pricing at p
H

 . When instead deviating to 
vL , a firm makes an expected profit of �i(vL) = (vL − c)

[
� + (1 − �)N

]
 , as it becomes 

the lowest-priced firm: It thereby attracts its fully matched consumers as well as 
those consumers without a full match at any firm (who would eventually return). 
Note moreover that those consumers who are only partially matched at the deviating 
firm would always continue to search: Even if all rival firms priced at pH , the 
expected gains from search would be non-negative. It is then easy to see that 
�i(vL) ≤ �∗

H
 if and only if vL∕vH ≤ � .

We next establish that under the relevant parameter restrictions, it is never prof-
itable to price strictly below vL , as the expected profits for any deviation price 
p ∈ (c, vL) are lower than when deviating to vL . To see this, note that since the devi-
ating firm is guaranteed to be searched first, the fraction � of consumers who find a 
full match at this firm will immediately buy there.

Furthermore, consumers who find only a partial match will search only those 
rival firms j (and buy there in case they find a full match) whose price difference is 
not too large relative to the deviation price: for which pj ≤ p + vH − vL −

s

�
 (com-

pare with Lemma 1). The probability that one rival sets pj ≤ p + vH − vL −
s

�
 (such 

that it will be searched) and provides a full match (such that it will attract the deviat-
ing firm’s partially matched consumers) is given by FH

(
p + vH − vL −

s

�

)
� . Hence, 

the probability that not a single rival firm does so is given by [
1 − FH

(
p + vH − vL −

s

�

)
�

]N−1
.

In turn, the expected deviation profits for p ≤ vL can be written as
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Since p−c

p−c+vH−vL−
s

�

 is strictly increasing in p when vH − vL −
s

𝜃
> 0 (as holds in the 

considered parameter region), it is easy to see that the last expression is strictly 
increasing in p. It is thus indeed maximized for p = vL , such that deviations below 
vL cannot be optimal.

It remains to show that there is no profitable deviation above pH = vH −
s

�
 . 

But since no firm would ever be searched for p > pH (compare once again with 
Lemma 1), this is immediately evident. This completes the proof of existence.

Uniqueness. For brevity, we provide only a sketch as to how uniqueness can be 
established in the class of symmetric equilibria. This sketch also applies for the sub-
sequent Propositions 3 and 4.

Note first that the parameter requirement for Proposition 2 (as well as Proposi-
tions 3 and 4) is that vL∕vH < 𝛾  , which is equivalent to 𝜃(vH − vL) > s . Only in this 
case, consumers may have an incentive to search on after discovering only a partial 
match at the lowest-priced firm; otherwise, the Bertrand outcome is the unique sym-
metric equilibrium.

Second, since the parameter requirement 𝜃(vH − vL) > s is equivalent to 
vH −

s

𝜃
> vL , it follows immediately from consumers’ optimal search rule in 

Lemma  1 that no firm can make a positive profit when pricing strictly above 
pmax ≡ vH −

s

�
 , as it would never be searched. But clearly, each firm can guarantee a 

positive profit by pricing at c + vH − vL −
s

𝜃
> c , since it would be searched by only 

partially matched consumers even for p1 = c . Hence, no firm will ever price above 
pmax in equilibrium.

Third, given that 𝜃(vH − vL) > s , clearly no symmetric pure-strategy equilibrium 
can exist, as marginally undercutting any symmetric candidate equilibrium price 
p∗ ∈ (c, vH −

s

�
] would give a firm a discretely higher profit (by being searched first 

by all consumers). By a similar logic, there can be no mass points in any symmetric 
equilibrium.

Denoting p and p as the upper and lower support bound of any symmetric can-
didate equilibrium, with p ≤ pmax , the crucial steps are now to establish that either: 
(i) p − p < Δ ≡ vH − vL −

s

𝜃
 and p = pmax ; or (ii) p − p = Δ . The former is trivial to 

see by contradiction: In any candidate equilibrium where p − p < Δ and p < pmax , a 
firm that chooses pi = p could increase its profit by choosing pi = min{p + Δ, pmax} 
instead. This gives the firm an identical demand of (1 − �)N−1� at a higher price—in 
particular, since there can be no mass point at p.

It is somewhat more demanding to show that p − p > Δ cannot hold. This can 
be proven by contradiction via the following steps: (1) For p − p > Δ , it must hold 

that the density f (p)
!
=0 by comparing limp↑p �

�
i
(p) with limp↓p �

�
i
(p) ; (2) from this, 

it follows that the density f (p − Δ) > 0 , such that p − Δ must lie in the equilibrium 

�i(p) = (p − c)

[
� + (1 − �)

[
1 − FH

(
p + vH − vL −

s

�

)
�

]N−1]

= (p − c)

[
� + (1 − �)N

(
vH −

s

�
− c

p − c + vH − vL −
s

�

)]
.
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support; (3) limp↑(p−Δ) �
�
i
(p) = limp↓(p−Δ) �

�
i
(p) as a consequence of f (p) = 0 ; (4) 

combining the conditions ��
i
(p)

!
=0 and ��

i
(p − Δ)

!
=031; and (5) finally observing that 

this leads to a contradiction.
Using the result that either (i) p − p < Δ and p = pmax or (ii) p − p = Δ , the 

required profit indifference at p and p gives rise to a respectively unique solution for 
p , p , and the candidate equilibrium profit �∗ , both for (i) (as is provided in Eqs. (5), 
(6), and (7)); and for (ii) (as is provided in equations (10), (11), and (14)). The cor-
responding p for (ii) is however not compatible with p ≤ pmax if vL∕vH ≤ � ,32 as 
assumed for Proposition 2—while it is compatible with it for vL

vH
∈ (� , �) , in which 

case the candidate equilibrium following (i) does not exist. We note finally that with 
p − p ≤ Δ there can be no holes in the equilibrium support, apart possibly from 
some range immediately above vL . In each case, the respective equilibrium then fol-
lows uniquely from construction.   ◻

Proof of Proposition 3 It is convenient first to provide the slightly simpler proof of 
Proposition 4, which we do below. The proof of Proposition 3 follows immediately 
afterwards.

Proof of Proposition 4 In what follows, we prove existence. For uniqueness, the argu-
ment at the end of the proof of Proposition 2 applies.

Existence. It is first easy to check that pM − p
M
= vH − vL −

s

�
 , pM ≤ vL due to 

vL∕vH ≥ �̃� , and p
M
> c due to vL∕vH < 𝛾  . Moreover, it holds that �∗

M
= (p

M
− c)

(1 − �)N−1� = (p
M
− c)[� + (1 − �)N] . Consumers’ optimal search rule (see 

Lemma 1) implies that firm i’s expected demand when setting some price p any-
where in the candidate equilibrium support is given by �(1 − �F

M1
(p))N−1+

(1 − F
M1
(p))N−1(1 − �)N . The first term follows from the same logic as in the proof 

of Proposition 2, whereas the second term stems from firm i’s returning demand: 
With probability (1 − FM1

(p))N−1 , all rival firms choose a higher price, such that firm 
i attracts the mass (1 − �)N of consumers who don’t find a full match anywhere and 
therefore return to firm i.

By construction, the implicit definition of FM1
(p) in equation (9) now ensures that 

all prices in the candidate equilibrium’s support yield the same expected profit. One 
may also note from Eq. (9) that FM1

(p) is strictly increasing in its support. Hence, all 
equilibrium objects are well-behaved.

We now rule out profitable deviations outside the candidate equilibrium’s pricing 
support. First, we show that there is no profitable deviation above pM . A deviating 

31 The latter must be true since p − Δ lies in the equilibrium support, such that there must also be prob-
ability mass immediately below or above p − Δ (or both).
32 In the borderline case where vL∕vH = �  , it actually holds that p = pmax and p = vL . In particular, this 
would mean that the firms choose prices weakly lower than vL with zero probability, yet p = vL lies in the 
support, with discretely higher demand than when setting p + � for any 𝜖 > 0 (due to returning demand). 
Hence, there would need to be a gap in the equilibrium distribution for prices slightly above vL , which is 
however incompatible with F(vL) = 0 and vL being part of the support.
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firm pricing at some p > pM will be searched only if its price is not too high rela-
tive to the lowest-priced firm, which holds if p1 ≥ p −

(
vH − vL −

s

�

)
 (compare 

with Lemma 1). Hence, in order for the deviating firm to be searched at all, all rival 
firms’ prices must lie above p −

(
vH − vL −

s

�

)
 . Then, the deviating firm will cater to 

the mass (1 − �)N−1� consumers who don’t have a full match at any rival firm, but 
a full match at this firm. Thus, the expected profit at any such price p > pM can be 
written as

For prices that lie in the support of the candidate equilibrium—p ∈ [p
M
, pM]—the 

expected profit is by construction equal to �∗
M

 , where we replicate here the implicit 
definition of FM1

(p) , Eq. (9), for convenience:

Since FM1
(p) cannot be obtained in closed form for an arbitrary number of firms N, 

we will use an estimation. Rewriting (19), it holds for p ∈ [p
M
, pM] that

such that by isolating (1 − FM1
(p))N−1 we obtain

For p ∈ [pM , pM + (vH − vL −
s

�
)] , it holds that p − (vH − vL −

s

�
) ∈ [p

M
, pM] . 

Hence, by inequality (20), we have that for p ∈ [pM , pM + (vH − vL −
s

�
)],

In turn, this implies that the following estimation can be given for Eq.  (18) and 
p ∈ [pM , pM + (vH − vL −

s

�
)]:

(18)�i(p) = (p − c)

[
1 − FM1

(
p −

(
vH − vL −

s

�

))]N−1
(1 − �)N−1�.

(19)�i(p) = (p − c)
[(
1 − �FM1

(p)
)N−1

� +
(
1 − FM1

(p)
)N−1

(1 − �)N
]
= �∗

M
.

(1 − FM1
(p))N−1 =

�∗
M

p−c
−
(
1 − �FM1

(p)
)N−1

�

(1 − �)N
≤

�∗
M

p−c
−
(
1 − FM1

(p)
)N−1

�

(1 − �)N
,

(20)(1 − FM1
(p))N−1 ≤

�∗
M

(p − c)
[
� + (1 − �)N

] .

[
1 − FM1

(
p −

(
vH − vL −

s

�

))]N−1
≤

�∗
M[

p − c −
(
vH − vL −

s

�

)][
� + (1 − �)N

] .

�i(p) = (p − c)

�
1 − FM1

�
p −

�
vH − vL −

s

�

���N−1
(1 − �)N−1�

≤ (p − c)

⎡⎢⎢⎢⎣

�∗
M�

p − c −
�
vH − vL −

s

�

���
� + (1 − �)N

�
⎤⎥⎥⎥⎦
(1 − �)N−1�.
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Since p−c

p−c−(vH−vL−
s

�
)
 is strictly decreasing in p for vH − vL −

s

𝜃
> 0 , as assumed for the 

proposition, the last expression is thereby maximized for p = pM . This implies that 
for p ∈ [pM , pM + (vH − vL −

s

�
)],33

Hence, deviations above pM are indeed not profitable.
Next, we show that there is no profitable deviation below p

M
 . For such low prices, 

there is now a positive probability that some or all rival firms draw high enough 
prices such that consumers who are only partially matched at the deviating firm do 
not search them: For deviation prices p < p

M
 , consumers that are only partially 

matched at the deviating firm will search only rival firms j for which 
pj ≤ p + vH − vL −

s

�
 (compare with Lemma 1). Moreover, consumers will buy only 

at such firms if they are fully matched at them.
The probability to lose the mass 1 − � of partially matched consumers towards a 

single rival is therefore given by FM1

(
p + vH − vL −

s

�

)
� . Consequently, the proba-

bility not to lose these consumers against any rival firm is given by [
1 − FM1

(
p + vH − vL −

s

�

)
�

]N−1
 . Hence, we can write a deviating firm’s expected 

profit for p < p
M

 as

Again, our strategy will be to use an estimation for the additional expected demand, 
which will be derived from the implicitly defined CDF FM1

 . Using once more 
Eq. (19), we find that for p ∈ [p

M
, pM] it holds that

For p ∈ [p
M
− (vH − vL −

s

�
), pM − (vH − vL −

s

�
)] = [p

M
− (vH − vL −

s

�
), p

M
] , it 

holds that p + (vH − vL −
s

�
) ∈ [p

M
, pM] . Hence, by inequality (22), we have that for 

p ∈ [p
M
− (vH − vL −

s

�
), p

M
],

�i(p) ≤ (pM − c)

⎡
⎢⎢⎢⎣

�∗
M�

pM − c −
�
vH − vL −

s

�

���
� + (1 − �)N

�
⎤
⎥⎥⎥⎦
(1 − �)N−1� = �∗

M
.

(21)�i(p) = (p − c)

[
� + (1 − �)

[
1 − FM1

(
p + vH − vL −

s

�

)
�

]N−1]
.

(22)(1 − �FM1
(p))N−1 =

�∗
M

p−c
− (1 − FM1

(p))N−1(1 − �)N

�
≤

�∗
M

�(p − c)
.

[
1 − �FM1

(
p +

(
vH − vL −

s

�

))]N−1
≤

�∗
M

�(p − c + vH − vL −
s

�
)
.

33 For p > pM + (vH − vL −
s

𝜃
) , �i(p) = 0 , since no consumer would ever search the deviating firm.
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In turn, this implies that the following approximation can be given for Eq. (21) and 
p ∈ [p

M
− (vH − vL −

s

�
), p

M
]:

Since p−c

p−c+vH−vL−
s

�

 is strictly increasing in p for vH − vL −
s

𝜃
> 0 , as assumed for the 

proposition, the last expression is thereby maximized for p = p
M

.This implies that 
for p ∈ [p

M
− (vH − vL −

s

�
), p

M
],34

Hence, deviations below p
M

 are indeed not profitable. This completes the proof.   ◻

Proof of Proposition 3 In what follows, we prove existence. For uniqueness, the argu-
ment at the end of the proof of Proposition 2 applies.

Existence. It is first straightforward to check that pM ∈ (vL, vH −
s

�
) due to 

vL∕vH ∈ (𝛾 , �̃�) and that p
M
∈ (c, vL) due to vL∕vH ∈ (� , �) . To see that p′

M
> vL , note 

the following: First, since (vL − c)
[
�(1 − ��)N−1 + (1 − �)N−1(1 − �)N

]
 is strictly 

increasing in vL for � ∈ [0, 1] while �∗
M

 is strictly decreasing in vL , one can clearly 
see via the implicit definition of � = FM1

(vL) in Eq.  (15) that � must be strictly 
increasing in vL whenever � ∈ [0, 1) . Moreover, for vL∕vH = �  , it holds that � = 0 ; 
while for vL∕vH = �̃� , it holds that � = 1 . Hence, � ∈ (0, 1) in the considered parame-
ter region.

Substituting �∗
M

 from Eq. (15) into Eq. (13) now yields

which indeed strictly exceeds vL for all � ∈ [0, 1).
A firm’s expected profit when choosing a price in the range [p

M
, vL] is given by

such that �i(p) = �∗
M

 for all prices in that interval via the implicit definition of FM1
(p) 

in Eq.  (9). A firm’s expected profit when choosing a price in the range[p�
M
, pM] is 

given by �i(p) = (p − c)
[
1 − FM2

(p)�
]N−1

� , such that for

�i(p) = (p − c)

[
� + (1 − �)

[
1 − FM1

(
p + vH − vL −

s

�

)
�

]N−1]

≤ (p − c)

[
� + (1 − �)

[
�∗
M

�(p − c + vH − vL −
s

�
)

]]
.

�i(p) ≤ (p
M
− c)

[
� + (1 − �)

[
�∗
M

�(p
M
− c + vH − vL −

s

�
)

]]
= �∗

M
.

p�
M
= c + (vL − c)

[
1 +

(1 − �)N

�

(
1 − �

1 − ��

)N−1
]
,

�i(p) = (p − c)
[
�(1 − �FM1

(p))N−1 + (1 − FM1
(p))N−1(1 − �)N

]
,

34 For p < p
M
− (vH − vL −

s

𝜃
) , 𝜋i(p) < 𝜋i(p

M
− (vH − vL −

s

𝜃
)) , since all consumers already purchase 

deterministically at the deviating firm for p = p
M
− (vH − vL −

s

�
).
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it also holds that �i(p) = �∗
M

 for all prices in that interval. It is moreover easy to see 
that both FM1

(p) and FM2
(p) are strictly increasing in p. Hence, all equilibrium 

objects are well-behaved.
We now rule out profitable deviations outside the candidate equilibrium’s pricing 

support. First, it clearly cannot be optimal to deviate to a price p ∈ (vL, p
�

M
) , as the 

deviating firm would not achieve a higher expected demand than when pricing at 
p′
M
> p.

When deviating to a price p > pM , the deviating firm will be searched only if all 
rival firms price above p −

(
vH − vL −

s

�

)
 (compare with Lemma 1). Then, the devi-

ating firm will cater to the mass (1 − �)N−1� consumers who don’t have a full match 
at any rival firm, but do have a full match at this firm. Thus, the expected profit at 
any such price p > pM can be written as

where FM1
(p − (vH − vL −

s

�
)) (rather than FM2

(p − (vH − vL −
s

�
)) ) is the relevant 

probability that a rival firm prices below p − (vH − vL −
s

�
).35 The same estimation 

as in the proof of Proposition  4 can now be used to show that �i(p) ≤ �∗
M

 for all 
p > pM . Hence, deviations above pM are not profitable.

We finally show that there are no profitable deviations to prices p ∈ (c, p
M
) . Fol-

lowing the argument in the proof of Proposition  4, a firm that deviates to such a 
price makes an expected profit of

where r = 1 if p + vH − vL −
s

�
≤ vL and r = 2 otherwise. Since FM1

(p) is implicitly 
defined by

while FM2
(p) is implicitly defined by

it is straightforward to see that FM1
(p) > FM2

(p) when applied to the same price.
Comparing with (24), a sufficient condition to have no profitable deviations 

below p
M

 is then that for all p ∈ (c, p
M
),

FM2
(p) =

1

�

[
1 −

(
�∗
M

�(p − c)

) 1

N−1

]
,

(23)�i(p) = (p − c)

[
1 − FM1

(
p −

(
vH − vL −

s

�

))]N−1
(1 − �)N−1�,

(24)�i(p) = (p − c)

[
� + (1 − �)

[
1 − FMr

(
p + vH − vL −

s

�

)
�

]N−1]
,

(p − c)
[
�(1 − �FM1

(p))N−1 + (1 − FM1
(p))N−1(1 − �)N

]
− �∗

M
= 0,

(p − c)
[
�(1 − �FM2

(p))N−1
]
− �∗

M
= 0,

35 Otherwise p > vH −
s

𝜃
 , which implies zero demand for the deviating firm.
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Inserting FM2
(⋅) from Eq. (12), the above condition is equivalent to

Since p−c

p−c+vH−vL−
s

�

 is strictly increasing in p for vH − vL −
s

𝜃
> 0 , as assumed for the 

proposition, the LHS in the last expression is maximized for p = p
M

 . Hence, for 
p ∈ (c, p

M
],

such that deviations below p
M

 are indeed not profitable. This completes the proof.  
 ◻

Proof of Proposition  7 One may first check that the gap equilibrium smoothly 
transitions to the high-price equilibrium as vL∕vH ↓ �—equivalently, 
s ↓ �(vH − c) − (vL − c)

�+(1−�)N

(1−�)N−1
—and that it smoothly transitions to the low-price 

equilibrium as vL∕vH ↑ �̃�—equivalently, s ↑ �(vH − c) − �(vL − c)
2[�+(1−�)N ]−�(1−�)N−1

�+(1−�)N
 . 

Moreover, the low-price equilibrium smoothly transitions to the Bertrand equilib-
rium as vL∕vH ↑ �—equivalently, s ↑ �(vH − vL).

Inspection of FH(p) in Proposition  2 then immediately reveals that FH(p) 
increases in s—which means that as s decreases, prices increase in the sense of 
first order stochastic dominance (FOSD in what follows), as claimed. Next, inspec-
tion of the implicit definition of FM1

(p)—together with �∗
M

 in Proposition 3—shows 
that FM1

(p) also increases in s (since �∗
M

 decreases in s). Thereby, also � = FM1
(vL) 

increases in s.
It is moreover easy to see that FM2

(p) increases in s and that p
M

 and pM decrease in 

s. p′
M

 decreases in s as it can be rewritten as p�
M
= c + (vL − c)

[
1 +

(1−�)N

�

(
1−�

1−��

)N−1
]
 

(see the proof of Proposition  3), which decreases in s because � increases in s. 
Together, this again implies that prices increase in the sense of FOSD as s decreases 
in the gap equilibrium. Since the same expressions for FM1

(p) , p
M

 , and pM are also 
relevant for the low-price equilibrium, the same conclusion can be reached there. 
Overall, prices thus increase in the sense of FOSD as s decreases.

That a decrease in s strictly increases equilibrium profits is trivial to see from 
the respective expressions. The final claim that a decrease in s weakly decreases 
the probability that firms price below vL follows from the fact that this probability 
is constant in the high-price equilibrium and low-price equilibrium—zero and one, 

�i(p) ≤ (p − c)

[
� + (1 − �)

[
1 − FM2

(
p + vH − vL −

s

�

)
�

]N−1]
≤ �∗

M
.

(p − c)

[
� + (1 − �)

[
�∗
M

�(p − c + vH − vL −
s

�
)

]]
≤ �∗

M
∀p ∈ (0, p

M
).

�i(p) ≤ (p
M
− c)

[
� + (1 − �)

[
�∗
M

�(p
M
− c + vH − vL −

s

�
)

]]
= �∗

M
,
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respectively—and strictly increasing in s in the gap equilibrium since � = FM1
(vL) 

strictly increases in s.   ◻

Proof of Proposition 8 For (i), note first that total social welfare W strictly decreases 
in s whenever the gap equilibrium is not played; this follows immediately from the 
expressions in Corollary 1. It thus remains to show that W strictly decreases in s also 
in the gap equilibrium whenever N ≥ 3 . Now, in the gap equilibrium, it holds that

where the second equality follows from computing d�
ds

 with the use of the implicit 
definition of � given in (15).

The first term in the last expression for dW/ds above is independent of s, while the 
second term indirectly depends on s via its effect on � . Indeed, it is straightforward 
to see that the second term strictly decreases in s since: (i) it is strictly positive for 
𝜅 < 1 ; (ii) it strictly decreases in � since its nominator strictly decreases in � while 
its denominator weakly increases in it (the latter because 1−��

1−�
 strictly increases in � 

and its exponent N − 2 is nonnegative); and (iii) � strictly increases in s.
Overall, we may thus conclude that d2W∕ds2 < 0 in the gap equilibrium. By the 

result that the second term of dW/ds strictly decreases in � , it moreover clearly holds 
that

The above upper bound for dW
ds

 decreases in N, as follows from the fact that all of 

−
1

�

[
1 − (1 − �)N

]
 , N

N−1
,
(1−�)2N−1

�2+(1−�)N
 and �+(1−�)N

�+(1−�)N−�(1−�)N−1
 decrease in N. To show that 

dW

ds
< 0 for N ≥ 3 , it thus suffices to establish that dW

ds

|||𝜅=0,N=3 < 0 , which is true if 
and only if

This inequality indeed holds, as can easily be shown numerically. This proves (i).
On the other hand, it may be noted that

dW

ds
= −

1

�

[
1 − (1 − �)N

]
+ (vL − c)(1 − �)NN(1 − �)N−1

d�

ds

= −
1

�

[
1 − (1 − �)N

]
+

(1 − �)NN(1 − �)N−1
[�+(1−�)N](1−�)N−1

�+(1−�)N−�(1−�)N−1

(N − 1)
[
�2(1 − ��)N−2 + (1 − �)N(1 − �)N−2

]

= −
1

�

[
1 − (1 − �)N

]
+

(1 − �)2N−1N(1 − �)
�+(1−�)N

�+(1−�)N−�(1−�)N−1

(N − 1)

[
�2
(

1−��

1−�

)N−2

+ (1 − �)N
] ,

dW

ds
≤

dW

ds

||||�=0 = −
1

�

[
1 − (1 − �)N

]
+

(1 − �)2N−1N
�+(1−�)N

�+(1−�)N−�(1−�)N−1

(N − 1)
[
�2 + (1 − �)N

] .

−3 + 3𝜃 − 𝜃2 +
3(1 − 𝜃)5

[
𝜃 + (1 − 𝜃)3

]

2
(
1 − 3𝜃 + 4𝜃2 − 𝜃3

)(
1 − 3𝜃 + 5𝜃2 − 2𝜃3

) < 0 for all 𝜃 ∈ (0, 1).



346 M. Obradovits, P. Plaickner 

1 3

Hence, for N = 2 , welfare locally increases in s in the gap equilibrium when vL∕vH 
lies sufficiently close above �—where by continuity � is close to 0—and � is suf-
ficiently small.

For (ii), note first that in the Bertrand equilibrium, the consumer surplus satis-
fies CSB = WB = �vH + (1 − �)vL − c − s ; thus, it clearly increases as s decreases. 
For the other equilibria, we may simply compute the expected consumer surplus by 
subtracting the expected industry profit—N�∗

H
 in the high-price equilibrium, or N�∗

M
 

in both the gap and low-price equilibrium—from the relevant welfare expression as 
given in Corollary 1. For the high-price equilibrium, this implies that

Clearly, this expression is strictly decreasing in s if

This is indeed the case, since �(�,N) is strictly increasing in � (as is easy to check), 
and �(0,N) = 0 . Hence, the consumer surplus in the high-price equilibrium strictly 
increases as s decreases.

We will finally prove that the expected consumer surplus strictly increases in s in 
the gap equilibrium when vL∕vH lies sufficiently close above �  and � is sufficiently 
small. To see this, note that in the gap equilibrium we have that

where the inequality follows from d
2W

ds2
< 0 (as was shown in part (i) of the proof) 

and d
2�∗

M

ds2
= 0.

Hence, dCS
ds

 is clearly largest at the boundary to the high-price equilibrium where 
� = 0 . There, we have that

where the second equality uses the expression for dW
ds

|||�=0 that was obtained in part 
(i) of the proof above.

dW

ds

||||𝜅=0,N=2 =
𝜃
(
1 − 6𝜃 + 10𝜃2 − 8𝜃3 + 2𝜃4

)
(
1 − 2𝜃 + 2𝜃2

)2 > 0 for 𝜃 ⪅ 0.2533.

CSH =
(
vH −

s

�
− c

)[
1 − (1 − �)N − N(1 − �)N−1�

]
.

𝜂(𝜃,N) ≡ 1 − (1 − 𝜃)N − N(1 − 𝜃)N−1𝜃 > 0.

d2CS

ds2
=

d2W

ds2
− N

d2𝜋∗
M

ds2
< 0,

dCS

ds

||||�=0 =
dW

ds

||||�=0 − N
d�∗

M

ds

= −
1

�

[
1 − (1 − �)N

]
+

(1 − �)2N−1N
�+(1−�)N

�+(1−�)N−�(1−�)N−1

(N − 1)
[
�2 + (1 − �)N

]

+ N
[� + (1 − �)N](1 − �)N−1

� + (1 − �)N − �(1 − �)N−1
,
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The limit of this as � tends to zero is N

N−1
 , as is straightforward to check. Hence, 

we have that dCS
ds

|||𝜅=0,𝜃=0 =
N

N−1
> 0 . By continuity, this implies that for � ≈ 0—that 

is, vL∕vH sufficiently close above �—and � sufficiently close to zero, it holds that 
dCS

ds
> 0 in the gap equilibrium. Thus, in this case, the expected consumer surplus 

falls as s decreases. This completes the proof.   ◻
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